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We propose a new method for the nonperturbative solution of quantum field theories and illustrate its
use in the context of a light-front analog to the Greenberg–Schweber model. The method is based on
light-front quantization and uses the exponential-operator technique of the many-body coupled-cluster
method. The formulation produces an effective Hamiltonian eigenvalue problem in the valence Fock
sector of the system of interest, combined with nonlinear integral equations to be solved for the functions
that define the effective Hamiltonian. The method avoids the Fock-space truncations usually used in
nonperturbative light-front Hamiltonian methods and, therefore, does not suffer from the spectator
dependence, Fock-sector dependence, and uncanceled divergences caused by such truncations.
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1. Introduction

The central problem of a quantum field theory is to compute
its mass spectrum and the corresponding eigenstates. All physical
quantities can be computed from these. If the theory is quantized
in terms of light-front coordinates [1], this spectral problem can
be written as a Hamiltonian eigenvalue problem [2], Pμ|ψ(P )〉 =
Pμ|ψ(P )〉, where P− ≡P0 −P z is the light-front energy operator,
P ≡ (P+ = P0 + P z, �P⊥ = (Px,P y)) is the light-front momen-
tum operator, and Pμ are the corresponding eigenvalues. For an
eigenstate of mass M , the mass-shell condition P 2 = M2 yields
P− = (M2 + P 2⊥)/P+ . Thus, eigenvalues of P− determine the mass
spectrum.

The standard light-front Hamiltonian approach is to expand
|ψ(P )〉 in a set of Fock states, eigenstates of P with definite num-
bers of constituents. The coefficients in the expansion are the light-
front momentum-space wave functions. This takes advantage of
two important aspects of light-front coordinates [2]: the relative-
momentum coordinates separate from the external momentum, so
that the wave functions depend only on the relative momenta, and

the positivity of P+ =
√

(�P )2 + M2 + P z excludes vacuum contri-
butions to the expansion, so that the wave functions represent the
properties of the eigenstate only.
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Given the Fock-state expansion, the eigenvalue problem be-
comes an infinite set of coupled integral equations for the wave
functions. The expansion and the coupled system are truncated to
yield a finite problem, which is then solved, usually by numerical
techniques [3].

In more than two dimensions, some form of regularization
is required to properly define the integrals of the coupled sys-
tem. The cancellations that must take place in the regularization
scheme are disrupted by the truncation, resulting in uncanceled
divergences. A reparameterization of the theory, such as sector-
dependent parameterization [4–8], can be arranged to appear to
absorb these divergences, but not simultaneously for all physical
quantities [8]. The truncation also causes self-energy contribu-
tions and vertex functions to be dependent on the momenta of
Fock-state constituents that are only spectators to the process in
question. This spectator and Fock-state dependence results in great
complications for the analysis and solution of the theory.

In particular, the Ward identity of gauge theories is destroyed
by truncation. For photon emission in QED, a one-photon trunca-
tion keeps only the self-energy correction to the electron leg on
the side opposite the photon emission; the self-energy correction
on the other leg and the vertex loop correction are eliminated
[9,5]. The relevant diagrams are shown in Fig. 1; only the first
survives the truncation. Thus, the Ward identity connecting ver-
tex and wave function renormalization is broken for interactions
internal to a bound-state problem. This is what drives the renor-
malization of the charge in a sector-dependent parameterization of

http://dx.doi.org/10.1016/j.physletb.2012.04.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:jhiller@d.umn.edu
http://dx.doi.org/10.1016/j.physletb.2012.04.032
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


418 S.S. Chabysheva, J.R. Hiller / Physics Letters B 711 (2012) 417–422
Fig. 1. Graphs contributing to the Ward identity in QED. Only the first contributes in a one-photon truncation of the Fock space.
the theory [5,6], but this is clearly unphysical and has nothing to
do with ordinary charge renormalization.1

The analog of these difficulties with truncation can be induced
in Feynman perturbation theory by separating covariant diagrams
into time-ordered diagrams and discarding those time orderings
that include intermediate states with more particles than some
finite limit. This destroys covariance, disrupts regularization, and
induces spectator dependence for subdiagrams. In the nonpertur-
bative case, this happens not just to some finite order in the cou-
pling but to all orders.

2. Light-front coupled-cluster method

To avoid truncation, we introduce the exponential-operator
technique of the many-body coupled-cluster (CC) method [12,13].
An eigenstate |ψ(P )〉 is written as

√
ZeT |φ(P )〉, where |φ(P )〉

is limited to one or a few Fock sectors with the lowest num-
ber(s) of constituents, the valence sector(s). The operator T is
a sum of operators that increase particle number but conserve
momentum P , the angular momentum component2 J z , and all
relevant quantum numbers, such as charge and baryon number.
The factor

√
Z is a normalization factor, such that 〈φ(P ′)|φ(P )〉 =

〈ψ(P ′)|ψ(P )〉 = δ(P ′ − P ). We then construct an effective eigen-

value problem in the valence sector, P vP−|φ(P )〉 = M2+P 2⊥
P+ |φ(P )〉,

where P− ≡ e−TP−eT and P v is a projection onto the valence
sector. Equations for the functions that determine T are found by
the orthogonal projection (1 − P v)P−|φ(P )〉 = 0. Up to this point,
no approximation has been made, and the problem remains infi-
nite, because there are infinitely many contributions to T .

To have a finite set of equations, we truncate T to a few oper-
ators and truncate the projection 1 − P v in a consistent way, such
that just enough equations are produced to be able to solve for the
functions in the truncated T operator. For example, if T can cre-
ate one additional particle above the valence state, 1 − P v projects
onto only this additional Fock sector. After truncation, we have a
finite set of nonlinear equations for the functions in T , coupled to
the valence-sector wave functions, and a valence-sector eigenvalue
problem where the effective Hamiltonian depends on the functions
in T . The former are essentially auxiliary equations that help de-
fine the latter.

What is not truncated is the exponentiation of T , and thus the
full Fock space can be retained, though the wave functions for
the higher Fock sectors are clearly only approximate. The effec-
tive Hamiltonian is computed from its Baker–Hausdorff expansion
P− = P− + [P−, T ] + 1

2 [[P−, T ], T ] + · · · . Only a finite number
of terms contributes, because each factor of T increases the num-
ber of particles created, eventually exceeding the truncation of
(1 − P v).

Although this light-front coupled-cluster (LFCC) method uses
the mathematics of the traditional CC method [12–14], it is quite

1 For external photon emission, the truncation does not apply and the Ward iden-
tity is preserved. Without vacuum polarization, the plus component of the dressed-
electron current is not renormalized [10,11].

2 The other two components of angular momentum are not kinematic [2]. The
eigenstates of the Hamiltonian will in general be linear combinations of eigenstates
of J 2. Determination of the J 2 eigenstates is a separate dynamical problem.
different conceptually. In fact, the name coupled cluster does not
really apply, but we use it to acknowledge the origin of the LFCC
method. The CC method is applied to a single Fock sector, with a
large number of constituents. The T operator builds correlated ex-
citations onto a Hartree–Fock type ground state. Within products
of T there are no contractions, because every term in T annihilates
one or more of the single-particle states in the ground state and
creates one or more excited states. In the LFCC method, the va-
lence sector has a small number of constituents, and the method
of solution of the eigenvalue problem here is left unspecified. The
terms of the T operator do include annihilation, because the pos-
itive light-front momentum P+ cannot be conserved unless one
or more particles are annihilated to provide momentum for those
that are created. As a consequence, powers of T include contrac-
tions, but these are needed in order that T to some power not
annihilate the entire valence state, which would effectively trun-
cate the exponentiation of T .

In addition to the fundamental mass eigenvalue problem, the
LFCC method must also contend with the evaluation of matrix
elements of operators, in order to be able to extract physical quan-
tities from the LFCC eigenstates. This is nontrivial, because a di-
rect calculation of the normalizing factor

√
Z is impractical, due

to the infinite set of terms in the sum over Fock states within
〈φ(P )|eT †

eT |φ(P )〉. This same issue arises in the traditional CC
method [13], and there a technique exists for expectation val-
ues which can be adapted for the LFCC method and extended to
include off-diagonal matrix elements. Some care must be taken,
however, in that the LFCC method uses momentum eigenstates
with Dirac-delta normalization, unlike the unit normalization of
the standard CC states. The normalization factor

√
Z is introduced

to avoid division by 〈ψ(P ′)|ψ(P )〉 = δ(P ′ − P ) in the computation
of expectation values.

For an operator Ô we write the expectation value 〈Ô 〉 in the
state

√
ZeT |φ(P )〉 as 〈Ô 〉 = Z〈φ(P )|eT †

Ô eT |φ(P )〉 and define O =
e−T Ô eT and
〈
ψ̃(P )

∣∣ = Z
〈
φ(P )

∣∣eT †
eT = √

Z
〈
ψ(P )

∣∣eT , (1)

so that 〈Ô 〉 = 〈ψ̃(P )|O |φ(P )〉. By construction, we have
〈
ψ̃

(
P ′)∣∣φ(P )

〉 = 〈
ψ

(
P ′)∣∣ψ(P )

〉 = δ
(

P ′ − P
)

(2)

and

〈
ψ̃(P )

∣∣P− = √
Z
〈
ψ(P )

∣∣eT e−T P−eT = M2 + P 2⊥
P+

〈
ψ̃(P )

∣∣. (3)

Thus, 〈ψ̃(P )| is a left eigenvector of the (necessarily) non-
Hermitian P− , with the same mass eigenvalue, normalized such
that the projection onto the valence state is a simple momentum-
conserving delta function. Therefore, an expectation value is com-
puted by constructing the effective operator O from a Baker–
Hausdorff expansion, solving the left-hand eigenvalue problem,
and evaluating the inner product 〈ψ̃(P )|O |φ(P )〉. As for P− , only
a finite number of terms in the Baker–Hausdorff expansion of O
will contribute. The extension to off-diagonal matrix elements is
straightforward.

The left-hand eigenvalue problem must be truncated to an
extent consistent with the truncation of T , such that 〈ψ̃(P )| is
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Fig. 2. Graphical representation of the model Hamiltonian operator P− defined in Eq. (4) of the text. Each graph represents an operator that annihilates one or more particles
on the right and creates one or more to take their place. The crosses refer to light-front kinetic-energy terms.
Fig. 3. Graphical representation of the truncated T operator.

limited to the Fock sectors of the valence state plus those created
by application of T . To understand the truncation, consider the fol-
lowing. Define an operator L = (1 − P v)ZeT †

eT Pφ , with Pφ the
projection onto the valence eigenstate |φ(P )〉. Because of the pro-
jection operators, eL is simply 1 + L. The left-hand eigenstate can
then be written as 〈ψ̃(P )| = 〈φ(P )|eL† + Z〈φ(P )|eT †

eT (P v − Pφ)†.
We see, then, that L plays the role of T , and therefore should
be truncated in the same way. The truncated left-hand eigenvalue
problem creates a finite set of linear equations for the wave func-
tions of 〈ψ̃(P )|.

3. Model application

To illustrate the method, we apply it to a simple model where
an analytic solution is known [15]. The model is a light-front ana-
log of the Greenberg–Schweber model [16] for a static fermionic
source that emits and absorbs bosons without changing its spin. In
updated notation, the Hamiltonian given in [15] can be written as

P− =
∫

dp
M2 + M ′

0 p+

P+
∑

s

b†
s(p)bs(p)

+
∫

dq
∑

l

(−1)l μ
2
l + q2⊥
q+ a†

l (q)al(q)

+ g

P+

∫ dpdq√
16π3q+

∑
ls

(
p+

p+ + q+

)γ

× [
a†

l (q)b†
s(q)bs(p + q) + b†

s(p + q)bs(p)al(q)
]
, (4)

where a†
0 creates a “physical” boson of mass μ0, a†

1 creates a Pauli–

Villars (PV) boson of mass μ1, and b†
s creates the fermion with

mass M and spin s. The parameter γ can take any positive value;
as shown in [15], it controls the longitudinal endpoint behavior
of the wave functions. The PV boson provides the necessary ultra-
violet regularization, to define the self-energy M ′

0. To accomplish
the regularization, the PV boson is assigned a negative norm.3 The
(anti)commutation relations are

{
bs(p),b†

s′
(

p′)} = δss′δ
(

p − p′),
[
al(q),a†

l′
(
q′)] = (−1)lδll′δ

(
q − q′). (5)

A graphical representation of the Hamiltonian is given in Fig. 2.
The model is not fully covariant, which hides some of the power
of the LFCC method, but is sufficient to show how the method can
be applied.

We truncate the T operator to include only boson emission
from the fermion, as represented in Fig. 3,

3 In [15], the PV cancellations were arranged by use of an imaginary coupling
rather than a negative norm.
T =
∑

ls

∫
dq dp tls(q, p)a†

l (q)b†
s(p)bs(p + q), (6)

with tls the operator functions to be determined. The effective
Hamiltonian P− is constructed from its Baker–Hausdorff expan-
sion. A graphical representation of the first two commutators is
given in Fig. 4. The expression for P− is

P− =
∫

dq
∑

l

(−1)l μ
2
l + q2⊥
q+ a†

l (q)al(q)

+
∫

dp
∑

s

b†
s(p)bs(p)

[
M2 + M ′

0 p+

P+

+ g

P+
∑

l

(−1)l
∫ dq√

16π3q+

(
p+ − q+

p+

)γ

× θ
(

p+ − q+)
tls(q, p − q)

]

+ g

P+

∫ dp dq√
16π3q+

∑
ls

(
p+

p+ + q+

)γ

b†
s(p + q)bs(p)al(q)

+
∫

dp dq
∑

ls

a†
l (q)b†

s(p)bs(p + q)

×
{

g

P+
1√

16π3q+

(
p+

p+ + q+

)γ

+
(

μ2
l + q2⊥
q+ − M ′

0q+

P+

)
tls(q, p)

+ g

2P+

∫ dq′√
16π3q′+

×
∑

l′
(−1)l′

[
θ
(

p+ − q′+)( p+ − q′+

p+

)γ

× {
tls(q, p)tl′s

(
q′, p − q′) + θ

(
p+ + q+ − q′+)

× tls
(
q, p − q′)tl′s

(
q′, p + q − q′)}

− 2θ
(

p+ + q+ − q′+)( p+ + q+ − q′+

p+ + q+

)γ

× tls(q, p)tl′s
(
q′, p + q − q′)]}

+ g

P+

∫ dp dq dq′√
16π3q+ θ

(
p+ + q+ − q′+)

×
∑
ll′s

a†
l′
(
q′)b†

s
(

p + q − q′)bs(p)al(q)

×
[
θ
(

p+ − q′+)( p+ − q′+

p+ + q+ − q′+

)γ

tl′s
(
q′, p − q′)

−
(

p+

p+ + q+

)γ

tl′s
(
q′, p + q − q′)], (7)

where we list only terms that connect the lowest Fock sectors. No-
tice that the self-energy contribution M ′ is the same in all Fock
0
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Fig. 4. Graphical representation of the operators (a) [P−, T ] and (b) [[P−, T ], T ]. The crosses indicate light-front kinetic-energy contributions. The self-energy loops in the
fourth diagram of (a) and the first and second diagrams of (b) make identical contributions, with no Fock-sector or spectator dependence.
sectors and that Fig. 4(b) contains all three of the diagrams anal-
ogous to those for the Ward identity in QED, as discussed in the
Introduction, with no truncation in particle number.

The valence state is the bare-fermion state |φσ (P )〉 = b†
σ (P )|0〉.

The projection 1 − P v is truncated to the one-fermion/one-boson
sector. The full eigenstate is |ψσ (P )〉 = √

ZeT |φσ (P )〉, where we
have generalized the basic construction to have one T operator for
both spins σ = ± and will solve for both states simultaneously.
This allows contractions in powers of T to include sums over both
spins. The truncated left-hand eigenvector is

〈
ψ̃σ (P )

∣∣ = 〈
φσ (P )

∣∣
+

∑
ls

∫
dq θ

(
P+ − q+)

lσ∗
ls (q, P )〈0|al(q)bs(P − q),

(8)

where lσls is the left-hand one-fermion/one-boson wave function.
Due to the lack of covariance in the model, these states are all
limited to having a fixed total transverse momentum �P⊥ , which
we take to be zero.

The eigenvalue problem in the valence sector P vP−|φσ (P )〉 =
M2

P+ |φσ (P )〉 becomes

M2 + M ′
0 P+

P+
∣∣φ±(P )

〉

+ g

P+

∫ dq√
16π3q+ θ

(
P+ − q+)( P+ − q+

P+

)γ

×
∑

l

(−1)ltl±(q, P − q)
∣∣φ±(P )

〉

= M2

P+
∣∣φ±(P )

〉
, (9)

which reduces to a determination of the self-energy

M ′
0 = − g

P+

∫ dq√
16π3q+ θ

(
P+ − q+)( P+ − q+

P+

)γ

×
∑

l

(−1)ltl±(q, P − q). (10)

In the one-fermion/one-boson sector, we have

(1 − P v)P−∣∣φ±(P )
〉 = 0

or∫
dq θ

(
P+ − q+)∑

a†
l (q)b†

±(P − q)|0〉

l

×
{

g

P+
1√

16π3q+

(
P+ − q+

P+

)γ

+
(

μ2
l + q2⊥
q+ − M ′

0q+

P+

)
tls(q, P − q)

+ g

2P+

∫ dq′√
16π3q′+

×
∑

l′
(−1)l′

[
θ
(

P+ − q+ − q′+)( P+ − q+ − q′+

P+ − q+

)γ

× {
tl±(q, P − q)tl′±

(
q′, P − q − q′)

+ θ
(

P+ − q′+)
tl±

(
q, P − q − q′)tl′±

(
q′, P − q′)}

− 2θ
(

P+ − q′+)( P+ − q′+

P+

)γ

× tl±(q, P − q)tl′±
(
q′, P − q′)]}

= 0. (11)

Thus, the contents of the outer curly brackets must sum to zero.
This will occur if the function tls is

tls(q, p) = −g√
16π3q+

(
p+

p+ + q+

)γ q+/P+

μ2
l + q2⊥

. (12)

The fact that the self-energy M ′
0 is the same in the valence sec-

tor and the one-fermion/one-boson sector plays a critical role; the
expression (10) obtained in the valence sector is exactly what is
needed to obtain the necessary cancellations in (11). The self-
energy can be computed from Eq. (10) as

M ′
0 = g2

16π3 P+
ln(μ1/μ0)

γ + 1/2
, (13)

which agrees with the result in [15]. In fact, with tls as given
above, the exponential operator eT generates the exact solution
given in [15].

The solution for tls provides the input to the left-hand eigen-
value problem, 〈ψ̃±(P )|P− = M2

P+ 〈ψ̃±(P )|. The effective Hamilto-

nian P− simplifies considerably; the square bracket in the b†b
term becomes just M2/P+ and the entire a†b†b term, which corre-
sponds to the curly brackets in (11), is zero. The remaining terms
in P− yield the following integral equation for the left-hand wave
function:

g

P+
1√

3 +

(
P+ − q+

P+

)γ

δs± + μ2
l + q2⊥
q+ l±ls (q, P )
16π q
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−
(

g

P+

)2 ∫ dq′√
16π3q+ θ

(
P+ − q′+)√ q′+

16π3

×
∑

l′
(−1)l′ 1

μ2
l′ + q′2⊥

l±l′s
(
q′, P

)

×
[
θ
(

P+ − q+ − q′+) (P+ − q+ − q′+)2γ

(P+ − q′+)γ (P+ − q+)γ

−
(

P+ − q+

P+

)γ (
P+ − q′+

P+

)γ ]
= 0. (14)

Following the pattern of the inhomogeneous term, we can seek a
solution of the form

lσls (q, P ) = δσ s
−g√

16π3q+

(
P+ − q+

P+

)γ q+/P+

μ2
l + q2⊥

l̃
(
q+/P+)

. (15)

Substitution yields a one-dimensional integral equation for l̃(y),

l̃(y) = 1 + g2

16π2

μ2
1 − μ2

0

μ2
0μ

2
1

×
1∫

0

dy′(1 − y′)2γ
y′[(1 − y)2l̃

(
y′(1 − y)

) − l̃
(

y′)]. (16)

This equation can be solved iteratively, to generate an expansion
in powers of g2, or numerically. A Gauss–Jacobi quadrature will
convert the integral equation into a linear system for the values
of l̃ at the chosen quadrature points. The solution then provides
the rest of the information needed for the computation of matrix
elements.

To consider a particular matrix element as an example, we
compute the Dirac form factor for the dressed fermion from a ma-
trix element of the current J+ = ψγ +ψ . The current couples to a
photon of momentum q. With our normalization, the matrix ele-
ment is generally [17]

〈
ψσ (P + q)

∣∣16π3 J+(0)
∣∣ψ±(P )

〉

= 2δσ± F1
(
q2) ± q1 ± iq2

M
δσ∓ F2

(
q2), (17)

with F1 and F2 the Dirac and Pauli form factors. In the present
model, the fermion cannot flip its spin; therefore, F2 is zero, and
we investigate only F1.

In the LFCC method, the form factor is given by the matrix ele-
ment

F1
(
q2) = 8π3〈ψ̃±(P + q)

∣∣ J+(0)
∣∣φ±(P )

〉
, (18)

with J+(0) = J+(0)+[ J+(0), T ]+ · · ·. For this model, there are no
contributions from fermion-antifermion pairs, so that

J+(0) = 2
∑

s

∫ dp′
√

16π3

∫ dp√
16π3

b†
s
(

p′)bs(p), (19)

and only the first two terms of the Baker–Hausdorff expansion
contribute to the matrix element. The second term is

[
J+(0), T

] = 2
∑

ls

∫ dp′
√

16π3

∫ dp√
16π3

×
∫

dq′[tls
(
q′, p

) − tls
(
q′, p′)]a†

l

(
q′)b†

s
(

p′)bs(p).

(20)
The first term contributes 1/8π3 to the matrix element; the sec-
ond contributes

〈
ψ̃±(P + q)

∣∣[ J+(0), T
]∣∣φ±(P )

〉

= 1

8π3

∑
l

(−1)l
∫

dq′θ
(

P+ + q+ − q′+)
l±l±

(
q′, P + q

)

× [
θ
(

P+ − q′+)
tl±

(
q′, P − q′) − tl±

(
q′, P + q − q′)]. (21)

Because the model limits calculations to a fixed total transverse
momentum, we calculate the matrix element in a frame where �q⊥
is zero and q+ is not.4 With α ≡ q+/P+ and P ′ = P + q, we have

q2 = (
P ′ − P

)2 = 2M2 − P ′+ P− − P ′− P+

= 2M2 − M2(1 + α) − M2

1 + α
= − M2α2

1 + α
. (22)

On substitution of the solutions for the wave functions and evalu-
ation of the transverse integral, the form factor can be written as
a function of α

F1
(
q2) = 1 + g2

16π2
(1 + α)

μ2
1 − μ2

0

μ2
0μ

2
1

×
[ 1/(1+α)∫

0

dy l̃(y)y(1 − y)γ
[
1 − (1 + α)y

]γ

−
1∫

0

dy l̃(y)y(1 − y)2γ

]
. (23)

The PV dependence is easily removed in the limit of an infinite PV
mass (μ1 → ∞). If l̃ is computed in quadrature, the integrals re-
maining in F1 can be computed from the same quadrature rule for
any chosen value of α. If l̃ is instead constructed as an expansion
in g2, F1 can also be constructed as an expansion. In any case, in
the limit of q2 → 0, we have from (22) that α = 0 and, because
the two integrals in (23) then cancel, F1(0) = 1, consistent with
the unit charge in the current J+ = ψγ +ψ .

4. Summary

We have proposed a new Hamiltonian method for the nonper-
turbative solution of quantum field theories that avoids Fock-space
truncations. The full eigenstate is constructed from the action of
an exponentiated operator T on a valence state |φ〉. This yields

a valence eigenvalue problem P−|φ〉 = M2+P 2⊥
P+ |φ〉, with P− =

e−TP−eT , and a set of auxiliary equations for the functions in T .
Expectation values are computed as 〈Ô 〉 = 〈ψ̃ |e−T Ô eT |φ〉, with use
of the left-hand eigenstate 〈ψ̃ |. The method then generates ap-
proximations by truncation of T rather than of Fock space.

The application to the simple model in Section 3 shows that
the construction of P− generates self-energy contributions that are
Fock-sector and spectator independent. Thus, the uncanceled di-
vergences that can arise from Fock-space truncations do not occur;
the self-energy is the same in every sector. The application also
shows that a simple approximation for the T operator can pro-
vide a very good approximation to the eigenstate; in this special

4 In [15] the matrix element was computed in a frame where q+ = 0. This could
be done because the wave functions of the exact solution were taken to be boost in-
variant. Here, although the right-hand eigenvalue problem has accidentally provided
the exact solution, we continue with the LFCC approximation in the calculation of
the matrix element, to provide a more complete illustration of the method.
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case, the eigenstate is exact. The calculation of a matrix element is
demonstrated in the calculation of a Dirac form factor.

The LFCC method is not limited to any particular theory or
model, nor to Pauli–Villars regularization. It should be applicable
to any regularized field theory. Work on an application to QED is
in progress, with some preliminary discussion given in [18]. For
theories with symmetry breaking and vacuum structure, modes of
zero longitudinal momentum [19] play some role and would re-
quire extension of the method to include them; in particular, the
contributions to the T operator would not require annihilation, and
the exponentiation would produce generalized coherent states. For
discrete light-cone quantization (DLCQ) [20,2], where longitudinal
momentum fractions are restricted to integer multiples of a funda-
mental amount 1/K , truncation to K particles is automatic; how-
ever, the method could still be applied as a way of reducing the ef-
fective dimension of the underlying matrix eigenvalue problem and
allowing higher resolution. Even the supersymmetric form of DLCQ
(SDLCQ) [21] should be amenable; instead of constructing P− from
a discretized supercharge Q − via P− = {Q −, Q −}/2

√
2, to re-

tain the supersymmetric spectrum, the effective Hamiltonian P−
would be constructed from effective supercharges Q − ≡ e−T Q −eT .
Thus, there is a wide range of applications to consider.
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