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Abstract--Sarafyan and others have recently developed novel explicit Runge-Kutta methods. Associated 
with each method is an imbedded polynomial which interpolates the Runge-Kutta method and which is 
itself a Runge-Kutta approximation at non-meshpoints. In this paper, we show that the interpolation 
polynomials possess the desirable stability properties of the Runge-Kutta methods. 

Consider the initial-value problem 

1. I N T R O D U C T I O N  

(t) = f ( t ,  y (t)), 

Y (to) = Y0. (1) 

Sarafyan and co-workers have developed continuously imbedded explicit Runge-Kut ta  methods 
for solving problem (1). Each such method is an (m + 1)-stage Runge-Kut ta  method of  the form 

y.+ |  = y. + ~ ~iki, (2) 
i = O  

where 

and 

k o = h f ( t . ,  y , )  (3) 

k j =  bjiki , j = l  . . . .  ,m,  (4) 

where h is the integration stepsize. 
Denote by r the order of method (2)-(4). Associated with method (2)-(4) is an imbedded 

polynomial 

r - - |  

p , + l ( c ) = y , + ~ ( t , + c h ) = y , +  ~ Tic ~, (5) 
i = 1  

for which p ,+t ( l )  yields y ,+ |  in expression (2), and for which p,+|(c)  is a Runge-Kut ta  
approximation of  order r - 1. Expression (5) is constructed in a manner which gives 7~ as a linear 
function of  the weights k0 . . . . .  k,,, 

(71 . . . . .  7r- I ~  T = A(k0 . . . . .  krn) T, (6) 

where A is an (r - 1) x (m + 1) matrix. 
Such interpolants are particularly useful for handling the problem of  dense output  and for 

rootfinding purposes [1]. (The methods given below along with other, as yet unpublished, methods 
of  Sarafyan have been implemented in software and evaluated. Results [2] will be reported 
elsewhere.) However, it is of  interest to investigate the stability properties of  the imbedded 
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2. A B S O L U T E  STABILITY OF THE I M B E D D E D  P O L Y N O M I A L S  

The stability of  method (2)-(4) may be studied in the usual manner by applying it to the model 
equation 

3~ = ).y, (7) 

where ;t is a complex constant. The solution satisfies 

Y.+I = ~Zm+ l(Gt) Yn, (8) 

where ~t = h2 and the characteristic polynomial 7r~ +l is given by 
m + l  

nm+,(0t)= E d'~i (9) 
i = 0  

and d~ (i = 0 , . . . ,  m + 1) is determined by applying method (2)-(4) to equation (7). 

It is straightforward to show that 

d o = l  

d l =  ~ 0ti 
i = 0  

d k = ~ O~iCi.k_ 2 (k = 2 . . . . .  m + 1), (10) 
i=k-I  

where 

and 

k - l  

Ck,o = E bki ( k  = 1 . . . .  , m )  
i = 0  

k - I  

Ckj= ~ bk, Cij_, (k = 2  . . . . .  m; j =  1 . . . . .  k -  1). (11) 
i=j 

The region of  absolute stability for method (2)-(4) is then the set of  points ~ in the complex plane 
for which [~m+ l(~)l < 1. Interestingly, Methods 1 and 2 have relatively large regions of  absolute 
stability. In particular, the length of  the real stability interval for Method 1 is approx. 3.38. (The 
length of  the corresponding interval for the well-known fifth-order Runge-Kutta-Fehlberg method 
[5] is 3.67.) The length of  the real stability interval for Method 2 is 5.58. 

A reasonable question to ask is whether the polynomial approximation (5) has stability 
properties similar to those of  method (2)-(4), that is, whether the polynomial will also decay for 
0 < c < 1, or whether oscillations in the polynomial will propagate in an unstable fashion. Since 
the polynomial is itself a Runge-Kut ta  approximation, its stability may be studied in a manner 
similar to that for method (2)-(4). When applied to the model problem (7), approximation (5) also 
has a solution of  the form (8), 

Yn+ ~(t, + ch ) = 7tm+ ~(c, ~) y~ (12) 

for each c where the characteristic polynomial ~m+ ~(c, ~) now depends on c. For a given value of 
c, the characteristic polynomial satisfies equations (10) and (1 l) with cti in expressions (2) and (10) 
replaced by 

r - - l  

Z aj.,+,cJ. 
j=l 

Thus, for each value of  c, there is an associated region of  absolute stability determined by the 
polynomial (5). 

What  is of  interest is to determine the size of  these stability regions for 0 < c < 1 relative to the 
size of  the region for c --- 1. This may be done in the usual manner by numerically calculating the 
regions. This was done for Methods 1 and 2 by calculating the regions (using increments of  0 = 1 o 
to determine the boundaries of  the region) for several values of  c and noting the maximum 
reduction in the length of  the ray corresponding to 0 contained within the stability region. The 
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results are quite interesting. For  Method 1, the value of  c thus determined is approx, c = 0.8 for 
all values of  0. (c = 0.75 gives slightly smaller ray lengths for 0 near 90°.) The maximum reduction 
in any length is approx. 16%. (For most values of  c, the corresponding regions are larger than the 
region for c = 1.0. They are roughly twice as large for c = ½.) The stability for values of  c between 
0 and 1 is thus, not significantly worse than for c = 1.0 for this method. 

The results for Method 2 are even more interesting. For  this method, c = 1.0 yields the smallest 
region in most cases. For  0 near 90 °, c -- 0.2 yields slightly smaller ray lengths. The maximum 
reduction in length is approx. 5%. The polynomial interpolant thus behaves in the same manner 
as does the solution for Method (2)-(4) for cases of  practical interest. We mention that Sarafyan 
has developed other as yet unpublished continuously imbedded methods (specifically, a seven-stage, 
fifth-order method and an eight-stage, sixth-order method) and has kindly permitted the author 
to study the stability of  these methods. For  the fifth-order method, c = 0.9-1.0 gives the smallest 
regions, with a maximum reduction of  approx. 24%. For  the sixth-order method, c = 1.0 gives the 
smallest ray length up to about 68°; thereafter, c = 0.75--0.80 gives the smallest length, with a 
maximum reduction of  approx. 17 ° near 0 = 90 °. 

For  each of  the methods considered, the stability regions for 0 < c < 1 are at worst only slightly 
smaller than the region for c = 1.0. Thus, only a small reduction in the stepsize is required to ensure 
the stability of  the interpolated solution. Refs [3, 4] give other imbedded methods that may be used 
with Methods 1 and 2 for error estimation purposes. Since these methods also have associated 
imbedded polynomials, it is, in fact possible to use values of  c # 1.0 to estimate the error. For  
example, the code described in Ref. [1] optionally uses the maximum difference between the 
imbedded polynomials to control the local error. The above stability results illustrate why this more 
stringent criterion is not unnecessarily restrictive. 

3. S U M M A R Y  

In this paper, two continuously imbedded Runge-Kut ta  methods were considered. By studying 
the absolute stability of  the associated imbedded polynomials, it was seen that the polynomials 
possess the desirable stability characteristics of  the basic Runge-Kut ta  methods. This enhances 
their attractiveness for problems requiring interpolation for output and other tasks such as 
rootfinding. 

R E F E R E N C E S  

1. S. Thompson, Rootfinding and interpolation with Runge-Kutta-Sarafyan methods. Trans. Soc. Comput. Simuln 2(3), 
207-218 (1985). 

2. S. Thompson, Implementation and evaluation of Sarafyan's continuously imbedded Runge-Kutta methods. Report 
No. ORNL/TM-10257, Oak Ridge National Lab., Oak Ridge, Tenn. (in press). 

3. D. Sarafyan, Continuous approximate solution of ordinary differential equations and their systems. Comput. Math. 
Applic. 10(2), 139-159 (1984). 

4. C. Outlaw, L. Derr and D. Sarafyan, A sixth order imbedded Runge-Kutta algorithm with continuously variable 
weights. Comput. Math. Applic. 12A(6), 815-824 (1986). 

5. L. F. Shampine, Stability regions for extrapolated Runge-Kutta and Adams methods. Report No. SC-RR-72-0223, 
Sandia Labs, Albuquerque, N.M. (1972). 


