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It is the purpose of this paper to go somewhat deeper into the structure of 
fuzzy topological spaces. In doing so we found we had to alter the definition 
of a fuzzy topology used up to now. We shall also introduce two functors 3 
and i which will allow us to see more clearly the connection between fuzzy 
topological spaces and topological spaces. Finally we shall introduce the 
concept of fuzzy compactness as the generalization of compactness in topology. 
It will be shown in a following publication that contrary to the results obtained 
up to now, the Tychonoff-product theorem is safeguarded with fuzzy com- 
pactness. 

1. FUZZY TOPOLOGICAL SPACES 

Let E be a set and I the unit interval. 
In [3] C. L. Chang defines a fuzzy topology on E as a subset 6 C P such 

that 

(i) 0, 1 E 6, 

(ii) VP, vE6 * ~1 h vE6, 

(iii) V(P~)~~~ C S => supjEJ pLi E S. 

Several articles on the subject all involve this definition. Amongst these the 
most important ones are [3, 6, 11-141. 

Although most results obtained in this work remain valid with Chang’s 
definition (as can be seen from our former publications [8 and 91) we would 
like to suggest an alternative and more natural definition. This involves the 
changing of condition (i) namely: 0, 1 E S to (i)’ Vol+constant 01 E 6. There are 
several reasons why the latter is to be preferred. 

Intuitively it is clear that the general idea of the theory would involve this 
change. But then there are mathematically more sophisticated reasons 
available as well. Indeed 

(1) It follows at once from the definition of w in 2, that every topo- 
logically generated fuzzy topology fulfills condition (i)‘. 
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(2) It is easily seen that with Chang’s definition constant functions 
between fuzzy topological spaces are not necessarily continuous. This can 
only be true in general if one uses the alternative definition. This is of course 
the most important argument in favor. 

(3) The definition of fuzzy-compactness in Section 4, also suggests the 
alternative. 

In view of all this we now put 

DEFINITION 1.1. 6 C IE is a fuzzy topology on E iff 

(i) VLY. constant, 01 E 6, 

(ii) VP, v E 6 * p h v E 6, 

(iii) V(c~j)~~~ C 6 => supjeJ pj E 6. 

It is this concept of fuzzy topology that will be used throughout the sequel. 
Chang’s definition we will refer to as quasi fuzzy topology. 

The fuzzy sets in S are called open fuzzy sets. A fuzzy set p E P is called 
closed iff pc is open. The closure and interior of a fuzzy set p E IE are defined 
respectively 

F = inf{v: v > p vc E a}, 

p = sup{v: v < /L v E s>. 

It is easily seen that p is the smallest closed fuzzy set larger than p and that 
fi is the largest open fuzzy set smaller than p. 

DEFINITION 1.2. An operator 4: P + IE is a fuzzy closure operator iff 

(9 $(a) = 01 V0l constant, 

6) 9%) 3 P vp E IE, 

(iii) 544 v #(v) = 9% v v> vp, v E IE, 

(iv) VWPN = 46-4 vp E IE. 

A fuzzy interior operator is defined dually, i.e.: An operator 9: P -+ IE is a 
fuzzy interior operator iff 

0) 464 = a: t/or constant, 

(ii) 4(P) G CL v/L E IE, 

(4 4h-4 * 464 = d(v * 4 v/L, v E P, 

(iv> ~WPL)) = 4&l vp E IE. 

It is easily seen that the operators - and ’ are respectively a fuzzy closure 
operator and a fuzzy interior operator. Thus we see that with a fuzzy topology 
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we can associate a fuzzy closure operator (resp., a fuzzy interior operator). 
Vice versa with a given fuzzy closure operator (resp., fuzzy interior operator) 
we can associate a fuzzy topology in the following way. Let 4 be the fuzzy 
closure operator (resp., 0 the fuzzy interior operator), then the associated 
fuzzy topology is given by 

(rev., s(e) = {p: B(p) = ~1). 
It is easily seen that these associations are reflexive in the sense that the 

associated fuzzy topology of - (resp., “) in some fuzzy topology 6 is 6 itself, 
and that the associated fuzzy closure (resp., fuzzy interior operator) asso- 
ciated with the fuzzy topology of some fuzzy closure operator # (resp., fuzzy 
interior operator 0) is * (resp., 0) itself. 

DEFINITION 1.3. A subset u C 6, where 6 is a fuzzy topology on a set E, 
is a base for 6 iff 

VCLES, 3(/&J c u s.t. p = sup & . 
id 

DEFINITION 1.4. A subset cr’ C 6 is a subbase for 6 iff the family of finite 
infima of members of u’ is a base for 6. 

2. THE FUNCTIONS w AND L 

There is a natural way to associate a fuzzy topology with a given topology 
and vice versa. Put Y(E) the set of all topologies on E and Y/“(E) the set 
of all fuzzy topologies on E. On [w we consider the topology F+ = {]a, co[: 
01 E I%} u ($}. The topological space one obtains giving I the induced topology 
we denote I, . 

We then define the next two mappings 

L: W’“(E) ---f F(E): 6 --f L(S) 

where L(S) is the initial topology on E for the family of “functions” 6 and the 
topological space 1, . 

w: 9-(E) + W(E): .7 ---f w(Y) 

where W(F) = V(E, 1r), the continuous functions from (E, F) to I, . 
It is trivial to check that w(F) is indeed a fuzzy topology since it is the set 

of all lower semicontinuous functions from (E, 9) to the unit interval 
equipped with the usual topology. 
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If 6 E W(E) equals w(Y) for some F E F(E) we say that S is topologically 
generated. 

PROPOSITION 2.1. 

(i) L 0 w = idfcE) , 

(ii) L and w are respectively an isotone surjection and an isotone injection, 

(iii) w 0 L(S) is the smallest topologically generated fuzzy topology which 
contains S. We denote it by 8. 

(iv) S is topologically generated ;sf 6 = 8. 

Proof. This is straightforward. 

THEOREM 2.2. (E, 6) is topologically generated zff for each continuous 
function f E %?(I? , Ir) and for each v E 6 also f 0 v E S. 

Proof. The only if part is trivial. Suppose p E 8. Since a base for L(S) 
is provided by the finite intersections 

fj ‘i’(lci Y l]) Vi E 6, Ei El; 
i=l 

this is equivalent to saying VE E I, Vx E /.L-~(]c, 11) 3 a finite set I,,, such that 

x E iGQ = 41% T 11) c F’(k, 11). 

Now fix x and let p(x) = k, then VJE < k, , 31C finite such that 

x E n vi'(16i, 11) CP~'(]C 11). 
iEI, 

Then VE < k, and Vi E 1, put 

Pi,r = ~Xl~,,ll o vi; 

then pisB E 6 and clearly 

Pi,dY) = E *‘i(Y) > Ei 

= 0 * Vi(Y) < Ei . 

Put v,” = infi,,, pLi,r E 6 then clearly too 

v,"(y) = E * Vi(Y) > Ei ViE& 

=O-=3jEIE, Vi(Y) < Ej * 
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Thus v,%(y) = E Z- &J) > E and V.E < k, , vEz < CL. Now it is easily seen 
that 

p = sup sup YE2 E 6. 
reE c<k, 

3. FUZZY CONTINUITY 

Let (E, 6) and (F, y) be fuzzy topological spaces and f a function from E 
to F. In [3] Chang defines f fuzzy continuous iff 

vv E Y, f-‘(v) E 6. 

It is shown that this is equivalent to 

vv E IF, vc E Y, f-yv)C E 6. 

The fact that we use an alternative definition of fuzzy topological space 
obviously alters nothing to this result. As a matter of fact all results of [3 and 
111 on this concept remain valid. 

DEFINITION 3.1. We shall say that a function 

f:E,L+F,y 

is continuous iff f: E, ~(8) + F, L(Y) is continuous. 

PROPOSITION 3.1. Consider the next properties for a function g: E, 6 + F, y 

(i) g is fuzzy continuous 
(ii) g is continuous 

(iii) g: E, 8 --f F, 7 is fuzzy continuous 
(iv) g: E, 8 + F, y is fuzzy continuous 

then (i) =x (ii) 0 (iii) c> (iv). 

Proof. This is straightforward. 

Now let us denote V(E, F) the set of all continuous functions from (E, S) 
to (F, y) and %JE, F) the set of all fuzzy continuous functions from (E, 8) 
to (F, y) then we have 

COROLLARY 3.2. If 6 is topologically generated then 

%‘(E, F) = V,JE, F). 

Proof. Trivial from 3.1. 
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The converse of this corollary is not true as is shown by the next: 

COUNTEREXAMPLE. Let E = I and F arbitrarily. Let 6 be the fuzzy topo- 
logy on E with subbase 

(01: 01 constant} u {identity} 

and let y be the discrete fuzzy topology on F, i.e., y = IF. 
Clearly L(Y) is discrete and, as it is easily checked, L(S) is connected. Thus 

we have that 

V(E, F) = {constant functions from E to F}. 

From Proposition 3.1 it follows that always 'iX,(E, F) C V(E, F) and since 
constant functions are fuzzy continuous we have g,,,(E, F) = %(E, F). Yet 6 
is not topologically generated since ~(8) = 9ril and $?(I,. ,I,) is a much 
larger class than merely 6. 

Now we can consider the category of fuzzy topological spaces and fuzzy 
continuous mappings in the same way as the category of topological spaces 
and continuous mappings. It is easily seen that the functions w and L defined 
in 2 induce two covariant functors between these categories. Indeed let V 
be the category of topological spaces and 9 the category of fuzzy topological 
spaces and put 

defined by &(E, y) = (E, w(y)) and S(j) = f and 

defined by i(E, 6) = (E, l(S)) and i(f) = f. 
Furthermore it follows immediately from Corollary 3.2 that a($?) is a full 

subcategory of 9. 

4. FUZZY COMPACTNESS 

In [3] Chang gives a definition of compactness for quasi fuzzy topological 
spaces which formally is the same one as for topological spaces. This defini- 
tion has also been used in [6] and [12]. With this definition though one does 
not have that if (X, .7-) is a compact space (X, w(y)) is compact. Indeed not, 
consider the next 
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COUNTEREXAMPLE. Let (X, .Y) be the unit interval I with the usual 
topology. Then Vx E 1, x # 0, x # 1, let Ye be the fuzzy set defined by 

VI(Y) = 0, VY E [o’;] tJ [F, 11 , 

vZ is linear on [f, Z] and on [x, 91. 

For 

x=0 Put %‘o(Y) = -Y + 1 VY EI, 

x=1 put VI(Y) =Y VYEI. 

Then clearly Vx E 1, v2 E w(Y), and 

but no finite subfamily has this property. 
Therefore we introduce here an other form of compactness which we 

believe to be the correct one. 
Let (E, 6) be a fuzzy topological (or quasi fuzzy topological) space. 

DEFINITION 4.1. A fuzzy set v E IE is fuzzy compact iff for all family 

/3 C 6 such that su TV 3 v 
UE if 

and for all E > 0, there exists a finite subfamily j$, C /I such that 

Using this concept of fuzzy compact fuzzy set we now have 

DEFINITION 4.2. The fuzzy topological (or quasi fuzzy topological) 
space (E, 6) is fuzzy compact iff each constant fuzzy set in (E, S) is fuzzy 
compact. 

Before proceeding, let us compare this definition with the former one’s 
in [3, 6, and 121. We remark that Chang’s definition of compactness which 
we shall refer to as quasi fuzzy compactness only makes sense in the class of 
quasi fuzzy topological spaces. Indeed, no fuzzy topological space can be 
quasi fuzzy compact. Therefore whenever we use the concept of quasi fuzzy 
compactness the underlying space will be assumed taken out of the class of 
quasi fuzzy topological spaces. Otherwise all results would be vacuous. 
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Now the only relation to be found is that if (E, 6) is a quasi fuzzy compact 
space then the constant fuzzy set lE is fuzzy compact. This last property is a 
concept we have already introduced in [8 and 91. To distinguish between it 
and Definition 4.2 we now put 

DEFINITION 4.3. The fuzzy topological (or quasi fuzzy topological) space 
(E, 6) is weakly fuzzy compact iff lE is fuzzy compact. 

Then we have that if (E, 6) is quasi fuzzy compact it is weakly fuzzy com- 
pact. 

From now on, unless otherwise stated, all spaces will be fuzzy topological 
according to Definition 1.1. 

THEOREM 4.1. The fuzzy topological space (E, w(r)) is fuzzy compact a# 
the space (E, Y) is compact. 

Proof. Let p C w(Y) be such that sup,,a p > 01 > 0 and E such that 
cd>E>O. 

VpEp put pt=p++, and [O, a] = I, . 

Then VP E 8, S(pf) = {(x, r): p<(x) > r} is an open set in E x R and 
Upcp -%4 3 E x 4 . 
Since E x 1, is compact there exists a finite subfamily /3a C /3 such that 

u B$) 1 E x 1E and then clearly 
La#) 

2, p > (Y - E 
0 

For the converse suppose 9 C Y is an open cover of E, then 

sup X,4 = 1 
AE.9 

where xa is the characteristic function of A. 
Choose E E IO, I[ then it follows from the fuzzy compactness of (E, w(Y)) 

that there exists a finite subset a0 C B such that 

sup XA 3 1 - E. 
AEI, 

It is clear that g,, is a finite subcover of g. 
From this proof (or see e.g. [8]) it is perfectly clear that the same result 

holds if we replace fuzzy compactness by weak fuzzy compactness. 
In [3] Chang proves that if f is a surjective fuzzy continuous function from 

(E, 6) onto (F, y) and if (E, 6) is quasi fuzzy compact then so is (F, 7). The 
same holds for fuzzy compactness and we prove the more general result. 

PROPOSITION 4.2. If f : (E, 6) --f (F, y) is fuzzy continuous and v is a fuzzy 
compact fuzzy set iii (E, 6) then f (v) is fuzzy compact in (F, y). 
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Proof. Let p C y be such that 

Z$ P >fW 

then it is easily shown that ( f-l(p)),,a fullfills 

Since (f -l(p))pcs C 8 an d Y is fuzzy compact this implies that for any E > 0 
there exists a finite subfamily p,, C /3 such that 

Now it is immediately clear that 

From the fact that, if f is onto, each constant fuzzy set on F is the image 
through f of the constant fuzzy set on E with the same value we have the 
following. 

COROLLARY 4.3. If (E, S) is fuzzy compact and f a fuzzy continuous 
mapping from (E, 8) onto (F, y) then (F, y) is fuzzy compact. 

Proof. Trivial. 
Before coming to another important result we would like to show an 

equivalent condition for fuzzy compactness which is worth noticing. 

PROPOSITION 4.4. (E, 6) is fuzzy compact iff V/3 C 6 and Vor > 0 such 
that SUP,,~ p >, 01 and Vk > 1 there exists a jnite subfamily /I0 C ~ such that 

Proof. If (E, 6) fulfills the condition of the theorem and /3 C 6 such that 
SUP,,~ p 3 01 and E > 0 then k = a/(a - c) will do. 

In case (E, S) is fuzzy compact and /I C 6 is such that sup,,s p > 01 and 
k > 1 then E = OL - a/k will do. 

An analogous criterion holds for weak fuzzy compactness if one replaces 
everywhere 01 by 1. 

If (E, 6) is a fuzzy compact space it is not necessarily so that each closed 
fuzzy set is fuzzy compact. We shall give a counterexample of this and some 
other phenomena after Theorems 4.6 and 4.7 but first we show 

PROPOSITION 4.5. If (E, 8) is a topologically generated fuzzy compact space 
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i.e. there exists a compact topology F such that 6 = u(S) then every closed 
fuzzy set is fuzzy compact. 

Proof. Consider 01, ~8 E w(F) and /3 C w(F) such that ~up,,~s p 3 0~. 
Since 1 - 01 E w(F) we have that 

@(a) = {(x, 7): a(x) < r} is open in ExI 

thus @(a)” is compact. Now choose E > 0 and put again 

Clearly uueB 9(~‘) 3 %(a)“, thus th ere exists a finite subset p,, C /3 such that 

u m-4 3 we 
WBg 

and clearly too sup,,s,p > 01 - E. 
The next theorem is a fuzzy form of Alexander’s subbase lemma. It proves 

useful1 in the study of products of fuzzy compact spaces and in several 
counterexamples. 

THEOREM 4.6. (E, 6) is fuzzy compact ;sf for any subbase u for 6, for any 
/3 C (T and for any a! > E > 0 such that sup,,a p > 01 there exists a Jinite 
subset &, C /3 such that 

sup/.L>ci-6. 
A&O 

Proof. The only if part is trivial; let then u be a subbase for 6. It is clear 
that (23, 6) is fuzzy compact iff V/3 C 6 such that there exist (Y > E > 0 such 
that 

it follows that 

Put 

Clearly $5 is of finite character and thus it follows from the Tukey lemma that 
for each family /3 E V there exists a maximal family /! E V containing /3. 

Now one can easily show that if p F/? such that 

~1 ,...I yn ~8 and PaYI” .-* A yn =s 3, Ykd. 

Now let fi E W then there exists a family p maximal in V and containing /3. 
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Consider /? n (T. It is clear from the assumptions of the theorem that 

We shall show that sup /? < sup /? n o. 
VP E/? and Vx E E such that p(x) > 0 and Va > 0, a < p(x) 3vla,..., vna E u 

such that 

via A *.. A v,a < p and “IW A s-0 h vna(x) > p(x) - a. 

Since p E /!! and fl is maximal some vya E /!!. 
Thus Va > 0, 3vka, vRa(x) > p(x) - a and vka E p n u. 
Now fix X. Then VP EP, p(x) > 0 and Va > 0, a < p(x) there exists 

vaEpna such that P(x)>~(x)-aaVp~p 

SUP(P~ u)(x) 2 P.(X) j. SupBn 0 2 Supfl. 

This implies sup fl 2 01, which in turn implies sup /3 & 01. Thus (E, 6) is 
fuzzy compact. 

A perfectly analogous result holds for weakly fuzzy compact spaces, and 
this makes it possible to show that weak fuzzy compactness is not maintained 
when taking arbitrary products, but is preserved for finite products, as we 
shall prove in a following publication. 

THEOREM 4.7. (E, 6) is weakly fuzzy compact i$ for any subbase u for 6 
and for any /3 C u such that supUEB TV = 1 and for all E > 0 there exists a finite 
subset & C fi such that 

sup/L>.--. 
llG+l 

Proof. Analogous to that of Theorem 4.6. 
Now let us look at some 

COUNTEREXAMPLES 

Obviously if (E, b(S)) is compact (E, S) is fuzzy compact. The converse is 
not necessarily true. Indeed not, let E = I and let 6 be the fuzzy topology 
with subbase 

(0~: 01 constant} U {v E IE: v(x) = x or 0, Vx E E} U {x0} 

where x,, is Dirac function in 0. 
It is easily seen that (E, S) is fuzzy compact but t(S) is discrete. 
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This shows at the same time that the continuous image of a fuzzy topo- 
logical fuzzy compact space needn’t be fuzzy compact. Consider hereto (E, 6) 
fuzzy compact such that (E, 8) is not fuzzy compact and 

id: (E, 6) --f (E, 8). 

As mentioned before Proposition 4.5 we will now show that if (23, 6) is fuzzy 
compact and TV closed in E, p needn’t be fuzzy compact. 

Let E = I and let 6 be the fuzzy topology with subbase 

{LX: 01 constant} U {pn: 71 e N} U {p, pc} 

Vn e N CL&) = $7 ‘dXE [O, 4 - l/n + l] u [$ + I/n + 1, I], 

zzz 0 elsewhere; 

p(x) = g, Qx # 4; 

= 0, x = 4. 

Then using Theorem 4.6 one can easily check that (E, 6) is fuzzy compact. 
Yet TV is closed and 

sup t-+x = CL neN 

but for any c > 0, E < fr no finite subfamily of the (p,JnoN covers (CL - G) v 0. 
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