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Abstract: One considers diagonal Pad~ approximants about m of functions of the form 

f ( z ) = f 2  ( z - x )  lw(x )dx ,  z ~ [ - 1 , 1 ] ,  
1 

where w is an integrable, possibly complex-valued, function defined on [ - 1 ,  1]. 
Convergence of the sequence of diagonal Pad4 approximants towards f is established under the condition that 

there exists a weight ~o, positive almost everywhere on [ - 1, 1], such that 

g(x) = w(x)/,o (x) 

is continuous and not vanishing on [ - 1, 1]. 
The rate of decrease of the error is also described. 
The proof proceeds by establishing the link between the Pad6 denominators and the orthogonal polynomials related 

to ~o, in terms of the Toeplitz matrix of symbol g(cos 0). 
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1. Introduction 

The diagonal n th Pad6 approximant about ~ of the series 

f ( z ) =  E Ck Z-k-1 (1) 
k=0 

is a rational function Q./P., with the degrees of Q. and P. being not greater than n, P. ~ 0, 
and 

P n ( z ) f ( z ) - Q . ( z ) = O ( z  -"-1) when z ~ o c .  (2) 

When one expresses that condition with representations Q . ( z ) = v .  ~ _ n - ~  ,_.k=Oqk z and P.(z)= 
~ n  n - k  m k=oPk z , one finds immediately q0 = 0, qm+l = ~k=oCklm-k, m = 0, 1 , . . . ,  n -- 1, giving Q. 
when Pn is known, and 

n 

Y'~ Cm_n+kPn_ k = 0, m = n, n + 1 . . . .  ,2n - 1, (3) 
k=0 

the typical Pad6 set of linear homogeneous equations for the coefficients of P.. 
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This is slightly at variance with most Pad6 approximants definitions (as the classic [5]), 
especially because Qn has not a chance to reach the degree n, and could even have a degree less 
than n - 1, as there is no condition that prevents the first Ck'S in (1) from vanishing. The reason 
for the (still formal) writings with negative powers (1) and (2) is that the Pad6 denominators will 
be linked to orthogonal polynomials without annoying changes of variable (such as xnP(1/x), 
etc.). However, Pad6 approximants are basically functions of sequences of coefficients, and their 
properties are still valid here (we are dealing precisely with the [n - 1/n] Pad6 approximant of 
{ Co, cl, ... }). In particular, the function Q,/Pn (properly defined at the zeros of Pn) is unique, 
independently of the rank of the matrix of (3). 

We will return very soon to a thorough discussion of sets of linear equations equivalent to (3), 
but let us introduce first a special class of functions to be investigated. 

It is extremely difficult to establish something on the convergence of sequences of diagonal 
Pad6 approximants of a function f under general conditions like "let f be holomorphic [or 
meromorphic] in some region", even if one accepts weak versions of convergence, as convergence 
of subsequences, or convergence in capacity (or both). Lubinsky set himself the formidable task 
of proving or disproving famous conjectures built in the 1960s, when Pad6 approximants became 
heavily used in physical calculations (see [2, §6.7]). Cf. [20,21] for a recent review and further 
advances. 

It seems that progress can be made when f is defined in the whole complex plane, up to a 
finite number of exceptional points: classes of entire functions, functions with a finite number of 
some kind of essential singularities, functions with a finite number of branch-points (in which 
case the appropriate domain of f is a Riemann surface [30]), or even functions analytic outside a 
set of vanishing capacity [36,37,39]. 

Other manageable classes of functions are defined through strong monotonicity properties of 
their sequence of coefficients { Ck }: this includes the Stieltjes class, the Schoenberg class, and. . .  
that's all! (see [2, Chap. 5; 12]). 

One can then take one of these successful classes of functions and try to extend them by more 
or less infinitesimal steps. 

This will be done here, starting from Stieltjes (or Markov) class 

f ( z ) =  f E ( z - t ) - l  da(t), zfEE 

where a is a bounded increasing function of real support E. 
The importance of such functions is well known, they may be generated from spectral 

investigations of self-adjoint operators H by f(z) = (COo, (z - H)-l~0)  (see [8,11,14]). They are 
also related (up to changes of variables) to Herglotz and Nevanlinna classes of functions. If we 
restrict ourselves to diagonal Pad6 approximants, convergence is ensured if E is bounded (if not, 
one must study the determinateness of the moments problem and related questions [19, p. 310]). 
One can then always suppose that E is in [ - 1 ,  1]. 

In what follows, the form under investigation will be 

f(z)=f' ( z - x ) - l w ( x ) d x ,  z f f [ - 1 , 1 ] ,  (4) 
- 1  

where w is allowed (with many restrictions that will be explained) to take complex values. 
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These forms may appear when one investigates functions analytic on C \ [ - 1 ,  1] with 
f(ov) = 0: such a function can always be written 

f ( z ) = ( Z v i ) - l  f c ( z - t ) - l f ( t ) d t ,  z ~ [ - 1 , 1 ]  

from Cauchy formula, where C encloses [ - 1 ,  1] but not z. Now, if f is regular enough when z 
approaches [ - 1 ,  1], C may shrink to upper and lower sides of [ - 1 ,  1], giving 

f ( z )  = f j l ( Z -  t ) - l ( f _ ( t ) - f + ( t ) ) / ( 2 v i )  dt, 

where f+(t) and f_(t) are the limits of f ( t  +_- ic) when ~ ~ 0 (see [12, p. 247-248; 8, Chap. 1]). 
Now, if one wants to approximate f ( z ) =  (q'0, ( z -  H)  1~0 ) when H is not a self-adjoint 

operator, as in relaxation or dissipative problems [11,14] where H = H 1 - i H  2 with H 1 and H 2 
self-adjoint and H 2 semipositive definite, complex representations may also be expected. It is 
easy to show that such an f (z)  satisfies Im f (z)  < 0 when Im z > 0 (solve (z - H)  ~ = ~o in the 
domain of H and write f (z)  = ((z - H ) f ,  ~b) = (tp, (z - H+)+)).  A series (1) still holds with 
complex c k = (q'0, H%0), but the existence of a form like (4) is still not clear (relaxation moment 
problem [11,14]). 

Diagonal Pad6 approximants of functions of the form (4) have been studied by Nuttall and 
Wherry [31]. One of their theorems is based on properties of the function w(t)/w(t) ,  with 
~0(t) = ( 1 -  t2) -1/2 and the method of proof relates the denominators P, to the first kind 
Chebyshev polynomials. Very similar techniques will be used here, but with a somewhat broader 
choice of comparison weight functions ~. 

Much more general situations are considered by Stahl [33,34], as far as the support of w is 
concerned (actually, w(t) dt can be extended to a measure dt~(t), but this does not seem to be 
very useful here). From a simple case treated in [35], one learns that w should avoid 0 in some 
way . . . .  

2. Matrix expression of diagonal Pad6 approximants 

We take again the problem of the determination of the polynomials Pn and Qn in (2). Instead 
of using the basis (xk) ,  it will be found much more convenient to express Pn and Q, as 
combinations of polynomials Hk, k = 0, 1, 2 , . . . ,  where H k will be a suitably chosen polynomial 
of exact degree k: 

P n ( z )  = + . . .  ( 5 )  

The expansion about m of P,(z)f(z)  could be obtained by returning to powers of z, which 
would involve directly the ck's of (1), but it is good practice [4,7] to introduce the following 
functional first defined on the space of polynomials: 

c(x k)=ck,  k=O, 1,... 

and it is not hard to guess that the values c(flk) will become our building blocks. Moreover, the 
representation (4) allows to define c on the class of bounded functions: 

fl = ep(t)w(t)dt,  eoeL~, 
-1 
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and that f ( z )  itself can be expressed as 

/(z) = c((z-  t)-l), 
a writing that is only formal, should (4) not be available [4,7]. Then, 

Qn(Z) = C ( ( Z - - t ) - l ( p n ( z ) -  mn(t))), 

P . ( z ) f ( z )  - Q. (z )  = c ( ( z - t ) - l P n ( t ) )  

follow easily. Expansion in negative powers of z gives 

Q.(z)-- E 
k=0  

so that if we want  to have (2), Pn must be orthogonal to any polynomial of degree less than n, 
with respect to c, that is to w. This connection between Pad6 denominators and general, or 
formal orthogonal polynomials (not restricted to a positive weight) is well known (cf. [5,4,7,... ]), 
as well as the consequence for the error 

f ( z )  , Qn(z) /Pn(z  ) = c ( ( z - t ) - ' ( P n ( t ) ) 2 ) / ( P ~ ( z ) )  2 
1 - 1 (  = f _ l ( Z - t )  P n ( t ) ) 2 w ( t ) d t / ( P , ( z ) )  2. (6) 

The orthogonality relations are therefore 

c(n , , ,P . )=  ~ c ( f l m n k ) % _ k , . = O ,  m = O , . . . , n - - 1 .  (7) 
k=0  

If we take Hk(x  ) = x k, this is exactly (3). One could also deduce (7) from (3) by equivalence 
transformations (multiplications by triangular matrices). The reason for choosing a general basis 
{Hk} is that it will be possible to get a matrix [c(HmHk) ] more 'readable' than [Cm+k] with 
respect to approximate inversion. Also, condition number reduction can be invoked [10, Section 
3 and 4]. Indeed, let us define the matrix 

n 1 
Mn = [ C( HmI-lk )l,,~,k=O . (Sa) 

The discussion of the behaviour of P. through its coefficients 7rj,. will necessarily involve the 
inversion of M.. This task of estimating the elements of (M.)-1 is hopeless for Hankel matrices, 
hypersensitive to perturbation, as well known [12, p. 344]. 

On the opposite, if the polynomials Hk's are already orthogonal with respect to a weight 
function ~0 on [ - 1, 1], and if w is 'not too far' from ~0, the matrix M. will be 'not too far' from 
a diagonal matrix, and the discussion of (7) will be easy. The next sections are devoted to more 
accurate versions of this idea. 

Final algebraic aspects include that, if det M. e 0, P. (called a regular orthogonal polynomial 
[7, p. 47]), has exact degree n and is uniquely determined up to a nonzero multiplicative factor, 
say %,.; and that, if both det M. and det M.+ 1 =~ 0, P. is not orthogonal to itself: 

h . = c ( P ~ ) - = % , , , c ( n , , P , , ) = ( % , . )  2 det M.+ l /de t  M. 4=0. 

The approximant itself has a very elegant expression, due to Nuttall (see [4, p. 17] with v - P.) 

Q.( z ) /P . (  z ) = izT( zM. - N.)-al-t (9) 
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where ~T (the transposed of/~) is [c(H0), . . .  ,c(Hn_l)  1, and where 

Nn= [c ( tnm( t )Hk( t ) ) ]  n-1 m , k = O "  

27 

(8b) 

3. Infinite matrices as operators on l 2 

Convergence is linked to some concept of limit which would allow to conclude that ( zM n - 
Nn)-1 ~ ( zM - N ) -  1 when n ~ ~ ,  where M and N are the infinite matrices 

M=[c(HmH~)lm,k=o, N = [ c ( t n m ( t ) H k (  ))]m,k=0" (10) 

This asks for a preliminary careful definition of algebraic operations on infinite matrices. 

Theorem 3.1. A bounded linear operator on the space 12 of complex square summable sequences 
x = {x~}~=l, l[ x [[2 = F~= 1 ix k [2 < 0% can always be represented by an array {am, k}m~,k=x of 
complex numbers in such a way that 

OQ 

Ax / a kxk t vxo,2 
k = l  m = l  

with [1A [I = suplrxl141 [I Ax l[ < 00; this representation is unique. 

Theorem 3.2. The algebra of the infinite matrix representations of bounded linear operators on l 2 is 
the natural extension of the usual matrix algebra: 

A+B={am,k+bm,k}2,1~=a , [[A+B[[ ~ I[All+[IBll ;  

AN = am,jbj,k re,k=1' II AN II II A II [I B II. 

The proofs can be found in many textbooks of functional analysis, sometimes as exercises. 
Kantorovitch and Akilov [17], Chapter 6, §1; and, Chapter 10, §1] give a detailed exposition 
aimed at numerical analysis applications. Of course, the subject is treated with considerable 
extension in specialized works on sequence spaces (see references to Cooke, McDuffee, K/Sthe 
and Toeplitz, Zeller.. .  in [22]); the key ideas go back to Schur, Landau, F. and M. Riesz, 
Hilbert, Hellinger and Toeplitz in the early 1910s. 

Definit ion 3.3. A Toeplitz matrix in Grenander and Szeg/5's sense is an infinite matrix of the 
form 

Tos ( f ,  (~k}, d/~) = (t)~m~--~q,k(t)dl~(t) 
k , m = l  

where/~ is a positive measure on S, { q'k } is a complete orthonormal sequence of Lz(d/~ ), and f 
(the symbol of T) is a bounded function. 
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Theorem 3.4. For fixed ( Oh } and d/z, the algebra of Toeplitz matrices in Grenander and Szegg' s 
sense is the algebra of their symbols: 

Tos( f+g,  {0h}, d/z) = Tos(f, (0k}, d/z) + Tos(g, {0k}, d/z), 

Tos(fg, {Ok }, d/z)= Tos(f , { 0k}, d/z)Tos(g, ( 0h }, d/z). 

Moreover, I[ Tos(f, {Oh}, d/z)1[ = II f l[ o~- 

The proof is in Grenander and Szeg~5's book [13, Chapter 8]. It is essentially based on Parseval 
relations. A useful by-product is an interpretation of Tx: associate to the sequence x ~ l 2 the 
(generalized) Fourier series X(t)= Ek~oXhOh(t). Then Tx is nothing else than the sequence of 
the Fourier coefficients of fx:  

OQ 

E (rGs(f, {Ok}, d/z(t)= d/z(t), 
k = l  "S "S 

m = l , 2 , . . . .  
Now, here is why this special class of matrices is useful in Pad6 approximation: 

Remark 3.5. When c ( 0 ) =  f l_ao(t)w(t)dt and {Hk} is the sequence of the orthonormal 
polynomials related to a nonnegative function o~, the matrices M and N of (10) are Toeplitz 
matrices in Grenander and SzegiS's sense of symbols g(t) = w(t)/a~(t) and tg(t). In particular, if 
0 < C a < [g(t) [ < C2 < m on - 1  ~< t ~< 1, z M -  N is invertible when z ~ [ - 1 ,  1], and one has 

f ( z )=/ZT(zM-N)-a /Z ,  z ~  [ - 1 ,  1]. (11) 

It may seem that a big step has been achieved, as the matrix formula (9) has a meaning when 
n = oe. But nothing more has been done: (9) gives a matrix form of the nth diagonal Pad6 
approximant of f, (11) is the matrix form of f itself. Convergence of the matrix forms is no more 
obvious than convergence of the functional forms. The issue is that the finite matrices of (8a, b) 
are obtained from the infinite matrices of (10) after multiplication by projectors 

En=[Ukrk,m]k,m=l, (12 )  

wi thu  a = u  2 . . . . .  u , = l a n d u h = 0 f o r k > n :  

z M , - N , = E , ( z M - N ) E , .  

In general, even if an infinite matrix A is invertible, it does not follow that A-a is the limit of 
the inverses (E, AE,)-1 when n ~ ~ .  An infinite number of these inverses could even not exist: 
think of an invertible skew symmetric infinite matrix, for instance. 

4. Convergence of approximate inverses 

This section is devoted to conditions ensuring (An) -a ---, A- l ,  as this will be translated in 
convergence of Pad6 approximants. 

First, here are some precisions on the tools that will be used: 

Definitions 4.1. (i) Weak convergence of sequences of 12x (n) towards x ~ l 2 holds if y'rx(")= 
F~ ~ ykx(k ") ~ yTx when n ~ oc, for any y ~ l 2. k= l  
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(ii) Strong or ordinary convergence of sequences of 12x (n) --* x ~ l 2 holds if 1[ x - x (n) ]1 ~ 0 
when n ~ m. 

(iii) Strong, or ordinary convergence of bounded linear operators on lZAn ~ A  holds if 
Anx --*Ax for any x ~ 12. 

(iv) Norm convergence of bounded linear operators on l 2 holds if ][ A -  A n]r---' 0 when 
f/ ---) ~ .  

Remarks 4.2. (i) The first definition uses the fact that bounded linear forms on l 2 can always be 
represented by a sequence y ~ l 2 in such a way that the value of the form at x is y f x  = ~k~=lykXk. 
There is of course a more popular representation of forms o n  l 2 by sequences z such that the 
value of the form at x is the scalar product (z, x) = Zk~ 15kXk but complex conjugates appear 
nowhere in Pad6 constructions. This is the basic reason why the present study is restricted to real 
Toeplitz matrices in Grenander and Szeg~5's sense, and therefore to integral forms (4) limited to 
real sets of integration. An extension to complex sets of integration should be most useful [30]; 
see also L6pez [19, p. 312] encountering the same difficulties. 

(ii) As remarked by Widom [41, p. 338], the 'strong', or ordinary convergence of operators is 
the counterpart of the weak convergence of sequences. Everything would be easy with norm 
convergence but this occurs practically only with compact operators, as it will be shown. The 
reason why norm convergence will normally not be allowed is that the sequence of projectors E n 
(12) tends only in the ordinary sense towards the unit matrix I = [6re,k] and this implies that the 
limits M, ~ M and N~ --, N are usually not reached in the norm sense. However, it can be said 
that the norms of the bounded operators A n are uniformly bounded: 1[ A n ]1 ~ C, if A n ---, the 
bounded operator A (Banach Steinhaus theorem; see [17 Ch. 10, §1, Theorem 2] for a typical 
application). 

The problem is therefore to e n s u r e  (A~7)-1---~ A-1 when An ~ A in the ordinary sense. The 
answer is given by Kantorovitch's theorem [16; 17, Ch. 14] given here in its generality. 

Theorem 4.1. Let A be a bounded linear operator of a normed linear space X onto a normed 
linear space Y. Consider a sequence of bounded invertible operators { A n } of X onto Y such that 
A n ~ A (consistency), with uniformly bounded inverses: I1 (An) -111 ~< C (stability). 

Then, A -  1 exists and (An)-1 ~ A 1 when n ---, ~c (convergence). 

Proof. The proof is so simple that it is recalled here: one must show that, for any y ~ K the 
sequence ((A n)- ly  } has a limit in X. As A acts onto Y, there is at least one x ~ X such that 
Ax =y. Let us study the sequence ( ( A n ) - ~ y -  x}. One has ( A n ) - l y - x  = ( A n ) - l [ y - A n x ]  = 
(A n)- l [Ax - A n x  ]. Now, by the consistency condition, the norm of the second factor converges 
towards zero, so that x is indeed the (therefore unique) limit of ( A , ) - l y ,  thanks to the stability 
condition. [] 

If X and Y are Banach spaces, it is not necessary to check that A acts onto Y: this a 
consequence of the stability condition and completeness of X. The theorem is then summarized 
by the well known sentence: "if consistency holds, stability is equivalent to convergence" 
((An) -1 ~ A  1 implies I](An) -1 ]1 ~< C, from Banach-Steinhaus theorem). 

It will be necessary to change some details of the theorem, because the range of the matrices 
M n and N n is not the whole space 12, but only a part of it, and even a finite-dimensional 
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subspace in the cases of interest. We will therefore consider the sequence of approximations 
A n = EnAEn,  where E n is a linear projector o n  l 2 (i.e., (En) 2 = En). With the special choice (12), 
E n A E  n appears as an infinite matrix filled with zeros with the exception of the n, n upper left 

E n A E n 

i- 
a1 ' 1  • . . al ,  n 

an,  1 • . . an,  n 

0 . . .  0 

block: 

0 0 

0 0 

0 0 
If E n A E  n is one-ton-one o n  En 12, it is natural to note (EnAEn)  -1 the operator reverting the 
connection. This last operator is of course only defined o n  En 12. If E n is self-adjoint (orthogonal 
projector), the connection with the Moore-Penrose pseudoinverse is of interest (cf. [25, eqs. 
(30)1). 

Theorem 4.2. Let  A be a bounded invertible operator on 12. Let  ( E  n } be a sequence o f  linear 
projectors tending to the identity operator: E n ~ I when n ~ oo. I f  [[(EnAEn) -1 [[ <~ C when n is 
large enough, then 

( E n A E n ) - I E n ~ A  -1 w h e n n ~ o o .  

Indeed, one just has to write, for any x ~ l 2, 

( E n A E  n )-1En x _ A - i x  -- ( E n A E  n ) -  1[ En x _ E n A E n A  _ i x ] + ( En _ I ) A - i x  
( -1 

-- E n A E , )  E n [ A - A E n ] A - l x + ( E n - I ) A - l x  

and to remark that each term tends towards 0. 
The theorem is also given by Widom [41, Theorem 7.1]. 
Now, if A has all the nice properties, we try to find neighbouring matrices (operators) sharing 

them. The important subclass of bounded compact operators (or completely continuous oper- 
ators) will be found very useful. Instead of giving a definition followed by numerous conse- 
quences, only the properties which will be used later on are stated here: 

Property 4.3. A compact operator on l 2 transforms any weakly convergent sequence o f  l 2 into a 
strongly convergent one; multiplication by a compact operator transforms ordinary convergence o f  
operators into norm convergence: i f  K i s  compact,  then 
- i f y T x ( n ) ~ y T x f o r a n y y ~ 1 2 ,  then [ ] K x ( n ) - K x l l - - - * 0 ,  
- i r A  n ~ A bounded on l 2, then [I KAn - KA 11 and [[ A n K  - A K  1[ ~ 0. 

The derivation is basically in Kantorvitch and Akilov [17, Chapter 10, §1]. Widom's [41, §8] 
starting point is to define the compact operators as the closure of the finite rank operators with 
respect to the norm topology. One can indeed recognize a compact operator K by 

[[ K -  E n K  [[ , I[ K -  KEn [ [ and [I K -  EnKEn ][ ~ O w h e n n - ~ o o  

where E n is the finite rank projector (12) (also in [17, Chapter 10, §1, Theorem 1]). For instance, 
a band matrix whose elements tend to zero 

Kin,k=0 if  l k -  m [ > d; Km,k ~ O w h e n m a n d k ~ ,  ] k - m [ <~ d 

represents a compact operator. 
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Theorem 4.4. Let A be a bounded operator on l 2 and ( E~ } a sequence of projectors tending towards 
the identity operator. Moreover, let us suppose that II( E, AE~) -1 II ~< C for n large enough (so that 
A is invertible and (EnAEn) -1 ~ A  1). 

Then, if K is compact, II(En(A + K)E~) 1]1 <~ C' for n large enough if and only if A + K is 
invertible. 

The new information given by this theorem is a class of operators for which there is no 
spuriously singular behaviour of the approximate inverses: if B 1 is bounded (B = A + K), then 
the stability property will hold for the (EnBE n)-l 's ,  whereas, up to now, this stability property 
had to be put in the hypotheses. 

Proof. as just remarked, the new feature to be proved is that invertibility of A + K implies the 
uniform boundedness of the approximate inverses (En(A + K)En) -1. Let us show that, for any 
y ~ En 12, it is possible to solve E , ( A  + K ) E , x  =y,  provided n is large enough, and that a 
relation [I x I1 ~< C'  II Y l] holds, with C' independent of n. Indeed, the equation for x is also 
( I +  (E,  AE~)-1EnKE,)x  = (EnAEn)- ly .  From the Properties 4.3 of the compact operator K, 
this last equation can be written ( I  + A-1K + An)x = z ("), where II An II --' 0 when n ~ m. The 
equation can therefore be solved from the value of n for which II,a n II < 1 / I I ( I + A - 1 K )  -1 II 
onwards. And as z (~) ~ A -ly, II x II < (1 + A - 1 K ) - I  II II A-1  II (1 + !1 Y II, with arbitrary e > 0, 
provided n is large enough. [] 

Our study of the approximate inverses needed in (9) will indeed exhibit z M -  N as a 'nice' 
matrix augmented by a compact matrix. Toeplitz matrices enter now the stage. 

5. Relation with Toeplitz matrices 

Let us return to the matrices M and N of (10) with the hypothese that the polynomials //m 
are orthonormal with respect to a weight function ~0 on [ - 1, 1]. As well known, such polynomi- 
als satisfy a three-term recurrence relation 

OLmllm_ l( X ) - - ( X - -  ~rn) l~m ( X ) -]- OLm+ ll~f m+ l ( X ) = 0 (13) 

where the/3m's are real and the am'S are positive. 

Lemma 5.1. I f  the coefficients Olm and ~m of (13) satisfy 

OLm-'9'12, ~m-->O whenm---,vc (14) 

and if w/~o = p is a polynomial of degree d, then M and N are band matrices whose elements have 
limits in such a way that 

m+d 
~ Mm,k ei(k m)O___~p(cos 0), 

k=m d 
m+d+l 

~_~ Nm, k e i(k-m)° ~ cos Op(cos O) 
k = m - I  - d  

when m ~ oc. 
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The proof is elementary [22], using the facts that M and N are Toeplitz matrices in Grenander 
and Szeg~5's sense of symbols p(t )  and tp(t) (from Remark 3.5), that the TGs matrix of symbol t 
is the tridiagonal matrix of the a 's  and the fl's, and that M and N are polynomial functions of 
this matrix. 

D e f i n i t i o n  5.2. An ordinary Toeplitz matrix of symbol f ~ Lo~[- ~r, "rr] has the form 

T ( f )  = [am_k]°~,k=l, 

where f(O) = ~,°2_o~a k e ik° (at least formally). 

Remark 5.3. Under the conditions of Lemma 5.1, xM - N = T((x - cos 0)p(cos 0)) + K, where 
K is compact. 

Of course, one progresses slowly towards an application of Theorem 4.4, but ordinary Toeplitz 
matrices must not be confused with the following definition. 

D e f i n i t i o n  5.4. The doubly infinite Toeplitz matrix of symbol f ~ Lo~[-~r, v] has the form 

7~(f) [ l ~ = am-k  rn,k=-oe, 

where riO) = ~o~a  k eikO. 

There is nothing fundamental in using indexes going from - ~  to m, one could use odd and 
even indexes (and sines and cosines in the Fourier expansion of f) .  As {(2~r) -1 exp(ik0)}, 
- oc < k < ~z, is a complete orthonormal set of L2[-'rr, v], T is a Toeplitz matrix in Grenander 
and Szeg~5's sense, so that it is invertible only if f-1 ~ L ~ [ - ~ ,  ~]. 

Things are not so simple with 'ordinary' Toeplitz matrices, where one must consider the 
following theorem. 

Theorem 5.5. Let f be continuous and periodic (i.e,, f ( -  ~r) = f(~r). The ordinary Toeplitz matrix 
T ( f )  is then invertible only if log f is also continuous and periodic. 

Then, with the two expansions 

1 / f ( O ) = O l ( e i ° ) o 2 ( e - i ° )  = ~k eik° TIk e ikO 

(Wiener-Hopf factorization), obtained by exponentiating separately the parts with positive and 
negative powers of exp(iO) in the Fourier series of - l o g  f ,  one has the triangular factorization of 
T-a: 

min(k, m) 
(T(f))k-,lm = E ~k j~lm j. 

j=l 

formally (element-wise), as the triangular factors could be unbounded. 

This is only a special result in Toeplitz operators theory, that one can study in Douglas [6, 
Chapter 7, theorem 7.26 and 7.27] or Widom [40, Theorem 5]. Remark that the Wiener-Hopf 
factors are bounded if the Fourier series of log f is absolutely convergent, but the theorem holds 
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without this condition. Bourgain [3] has shown a way to construct bounded factors but they 
could contain Blaschke products and have zeros in the unit disk, whereas 01 and 02 must be 
analytic without zero in the unit disk. The periodicity condition for log f can be translated by 
W =  0, where W is the winding number about the origin of the curve { riO)}, -'rr ~< 0 ~< ~r. 

Remark 5.6. If a_ k = a k, k >~ 1, the conditions of Theorem 5.5 are fulfilled if f is continuous and 
does never vanish on [ - v ,  "~] (see the remark in [40, p. 198]). 

And at last, here is a theorem giving conditions for T ( f )  to be 'a  nice' matrix. 

Theorem 5.7. Under the conditions of Theorem 5.5 on f ,  one has 

(EnT ( f ) E n ) - I  <~ C, n large enough, 

where ( E,) is the sequence of finite rank orthogonal projectors (12). 

The proof [1; 41, §6] makes a clever use of Theorem 4.4, where Hankel matrices play the role of 
compact perturbations. Here is a short sketch of Ambarcumjan's  proof: write 

- v o  0 1 ac 

7~(f) -- 0 
1 
O0 H 1 T( f ) 

H a and H 2 are Hankel matrices that represent  compact operators, thanks to the continuity 
condition of f (see [41, Theorem 9.1]). T and T -  H 1 - H 2 are both invertible (the second one is 
reduced to two diagonal blocks equivalent to T), so that if one is 'nice', so will be the other. Let 
us work with projectors _En, similar to (12) but keeping also elements with negative or zero index. 
Then, the matrices EnTE, have uniformly bounded inverses, as they are all equivalent to T 
(acting on [x~, x~_ 1, ._., x 1, x 0' x_ 1, . . .  ]W)! Therefore, the same holds when n is large enough 
for E , ( T -  H 1 - H2)E n and for its finite diagonal block EnTE, . . . .  

6. A convergence theorem for diagonal Pad6 approximants 

Here is an application of the preceding theory to complex weight Pad6 approximants: 

Theorem 6.1. Let f be the function 

f ( z ) = f _ l ( z - t ) - l w ( t ) d t ,  z ~  [ - 1 ,  I I ,  

where w is an integrable, possibly complex-valued, function. Suppose that there exists a real 
function ~o, integrable and positive almost everywhere on [ - 1 ,  1], such that 

g = w/~o 

is continuous and non vanishing on [ - 1, 1]. 
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Then, the diagonal Pad~ approximants Qn/P, about oo have the following properties: 
(i) When n is large enough, P, has exact degree n and is uniquely determined, up to a 

multiplicative constant. Moreover, 

f2 h , =  (P, ( t ) )2w( t )  dt-4:0. 
1 

(ii) The sequence of the diagonal Padd approximants converges towards f uniformly in any 
compact of C \ [ - 1 ,  1]. 

The following points are also of interest: 
(iii) With an appropriate choice of the multiplicative constant in P~, h, = 1, 

e . (  z ) / U . (  z - ( z 2 - 1 )  lj2) 

uniformly in any compact of C/[  - 1, 1], where the H, ' s  are the orthonormal polynomials related to 
oo, and where p is the analytic function without zero in the unit disk, satisfying formally 
p(exp(iO))p(exp(- i0)) = 1/g(cos 0). Moreover, 

fl ] p . ( t ) ] 2 l w ( t ) l d t ~ C < o o .  (15) 
- I  

(iv) When n is large enough, a three-terms recurrence relation 

a.+lPn+l(X) = ( x -  bn)Pn(x ) - anPn_l(X ) (16) 

holds, and one has 

a,--+½, b,-+O whenn--+a¢. (17) 

(v) One can bound the asymptotic rate of convergence by 

l i m s u p l f ( z ) - Q , ( z ) / P , ( z ) l l / " < ~ l z - ( z 2 - 1 ) l / 2 1 2 ,  z ~  [ - 1 ,  1]. 
/./---+ ~ )  

Remarks 6.2. (i) A special case of the theorem has been published in [22]. Remark that the 
arthitectural design of the theorem is as in Nuttall and Wherry [31, Section 2]. 

(ii) The requirement that g is continuous and does not vanish on [ - 1, 1] is strong, as it means 
that Ig] is bounded from above and from below: 0 < C a < l g ( x )  l <C2 < ~ -  In the real 
nonnegative case g(x)  >1 O, the theorem is still valid when g(cos 0) and 1/g(cos 0) are allowed 
to vanish like a (nonnegative) trigonometric polynomial at a finite number of points [24,28]. It 
seems here that something can be done if g vanishes or becomes infinite in such a way that the 
winding number of the curve { g(cos 0)} is still well defined (cusp or asymptote) in order to 
avoid the phenomenon of [35]. However, the techniques of proof of the present paper are still not 
powerful enough to handle these cases. In particular, all the "for n large enough" that permeate 
the theorems should be replaced by more accurate statements but see [42, Ch. 4]. 

In the real nonnegative case, continuity of g is not essential in [24; 27, §6.1, Theorem 27; 28] 
(Riemann integrability of g suffices). This is perhaps also a weakness of the methods of proof 
used here (think that complex Jacobi weights are not covered by Theorem 6.1, see also the 
remarks by Nuttall and Wherry [31, Section 4]. However, if g > 0 satisfies a Lipschitz condition 
on a part A of [ - 1 ,  1], it is possible to find asymptotic estimates of P,(x)  for x in A [24, III]. 
According to Paul Nevai [29], similar estimates could be found here. 
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(iii) Point (i) in Theorem 6.1 tells that all the Pn's are regular formal orthogonal polynomials 
[7, p. 47] provided n is large enough, and this implies the recurrence relation (16). For small 
values of n, some P,'s may fail to be regular, but a three-term recurrence relation linking regular 
P~'s still exists [7, p. 71] (see also [30, Lemma 7.1 and 7.2]), so that the diagonal Pad6 
approximants can always be obtained as approximants of a continued fraction. The property (17) 
allows then the use of continued fraction modification techniques [15,38] accelerating the conver- 
gence. Other continued fraction aspects are presented in [11,14,18]. 

(iv) The property (17) will be shown to follow from (14) which is the consequence of a recent 
deep result [32]: 

Rahmanov's Theorem. I f  ~ is integrable and positive almost everywhere on [ - 1 ,  1], then among 
other results, the related orthonormal polynomials H, ' s  are linked by a recurrence relation (13) 
whose coefficients a~ and fl, satisfy (14). 

This theorem, which represents a major advance in orthogonal polynomials theory, has been 
commented, simplified, extended in [23,28], among other works. It is also used in Pad6 theory in 
[19]. 

Proof of Theorem 6.1. In order to reach (ii), one must show that the matrix zM - N of (11) has 
the 'nice' property 

I[(g,, ( zM - N)  g, , )-  111 ~ C when n is large enough, 

where E, is the projector (12) taking the n first elements of a sequence of 12: 

EnX = (x1, X2, . . .  , Xn, O, 0 , . . . ) ,  

remark that [[ E. [[ = 1. More generally, this will be established for any matrix of the form 

A = [ f~lO( t)l-Im( t ) l l k j (  t )w(  t) dt] ~ 
/re,k=0 

where ~ is a continuous nonvanishing function on [ - 1 ,  1], and where the H, ' s  are the 
orthonormal polynomials related to ~. From the Definition 3.3 of Toeplitz matrices if Grenander 
and SzegS's sense, one has immediately 

A = Tos(0g, {17m) , ~o(t) dt) 

and, from Theorem 3.4, A has a bounded inverse. 
Now, we will extend the Lemma 5.1: under the conditions of the Theorem 6.1, 

A = T ( ~ ) + K  

where q)(0) = O(cos 0)g(cos 0) and K is compact. Indeed, one must show that I[ K -  E , K  [I ~ 0 
when n ~ oe (see Property 4.3), K being A - T(~). For any ~ > 0, there is a polynomial p such 
that [I ¢b - p  1[ o~ ~< say ½c, as ¢b is continuous on [ - 1 ,  1]. Also, IIB -AII  where B = TGs(p ) 
is a band matrix. Now, thanks to Rahmanov's Theorem (see Remark 6.2 (iv)), we are in a 
position to apply Lemma 5.1: B =  T(p(cos 0 ) ) + J ,  from Remark 5.3, where J is compact. 
Therefore (Property 4.3), there is a N such that, if n > N, [[ J -  E~J [[ ~ ½c, and we just have to 
write 

K -  E , K = A  - B + T(p )  - T(Cb)-  E , ( A  - B) + J -  E , J -  E , ( V ( p )  - T(rb)) 
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to ensure [1 K - E n K  II < E. As A and T(~/i) are invertible, I[(EnAEn) -1 [1 < C < ~ for n large 
enough follows from Theorems 4.4 and 5.7, together with (EnAEn) -1 --> A -I when n ~ ac. 

With q , ( t ) = z - t ,  z ~ [ - 1 ,  1], we have already the convergence of the sequence of the 
diagonal Pad6 approximants to f ( z )  at a fixed z. Uniform convergence on compacts could be 
deduced from uniform boundedness of I[(EnAE,) -111 with respect to z and Vitali's theorem, 
but a more direct proof will follow. 

In order to complete our information on the approximants, we consider first (7), i.e., the 
preceding problem with A = M, q,(t) = 1, M, = E, ME~. When n is large enough, II Mn 1 II ~< C 
< oo, in particular, d e t  Mn 4: 0. From the end of Section 2, this settles (i). 

For more details on the expansion (5) of P, in terms of the Hk's, let us consider the choice 
h ,  = 1, and we add to (7) the equation c(H,P,)  = E~:oc(HnH~)%_k,~ = 1 /%, , ,  so that we have 

M,,+aX =y, 

where x = [%,,%,n, % 1, ,%,, , . -- ,  %,~%,~]T and y = [0, 0 , . . . ,  O, 1] T. We know that the matrix 
Mn+ a can be written Mn+ 1 = E,,+lT(g(cos O))E,+ 1 + En+IKE,,+I, where K is compact. Turning 
the elements of M, + 1 upside down and left to right, the equation becomes 

( E n + I T ( g ( c o s  0))E~+ 1 + Jn+x)Z (n) = u, 

where z (~ = [%, ,%, , , . . . ,  %,~%,,]T and u = [1, 0, 0 . . . .  ]T. The Toeplitz part has been left un- 
changed, but now J,+l---> 0 when n--,  m! Indeed, the elements of J~+lx are the elements of 
En+IKEn+I[Xn, Xn_l,... , X0] T, and this last factor converges weakly towards 0. Now, as the 
z(")'s are uniformly bounded, one finds easily that they converge weakly towards 
(T(g(cos 0) ) ) - lu ,  i.e.: 

  (T-lu)j =  j,0, 

or with a symmetric factorization 01 = P2 = P: 

~ r j , , ~ j ,  w h e n n ~ o o ,  j = O ,  1 , . . .  

So, as far as high powers of z are concerned, 

P n ( z )  - ~OHn(Z)  -[- ~ l H n _ l ( Z )  + • . . .  

As the recurrence relation coefficients for the P~'s depend only on the high powers of z, (17) 
follows then easily from (14), (~0 ¢ 0 geometric mean of 1/g). From the uniform boundedness of 
the z (~) 's and the non vanishing of ~0, limit of %,~ when n -~ ~ ,  the uniform boundedness of 
F~1%,~ 12 follows. Then, from (5) and g ~ Lo~, (15) is established. 

Now, as P , / H n -  ~o + ~IH~-I/YIn + ~2H~-2/H~ .. . ,  and as the ratios H~ ~/H~ tend to- 
wards (z - (z 2 - 1)1/2) i when z is outside [ -  1, 1] (from Poincard's theorem [26], see also [9]), 
(iii) follows (the square root is such that [z - (z 2 - 1) 1/21 < 1). 

Finally, (v) and (ii) follow from (6), Perron's theorem [26,9] and (15). [] 

Conclusion 

Convergence of diagonal Pad~ approximants for a special class of functions has been 
established. The problem has been connected with convergence of projection methods of 
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operators.  Impor t an t  results in Toepli tz opera tor  theory have then been used. More  flexible 
correspondences  between Pad6 approximants  and  special operators  should be welcome. 
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