
 Procedia Computer Science 94 (2016) 347 – 352

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.08.052

ScienceDirect

The 11th International Conference on Future Networks and Communications
(FNC 2016)

Synchronizing device discovery on loss of update messages in the
pervasive middleware PalCom

Amr Ergawy*, Boris Magnusson

Department of Computer Science, Lund University, Ole Römers väg 3, Lund SE-223 63, Sweden

Abstract

PalCom is a pervasive middleware that enables users to combine the services on devices into useful configurations. Interconnected
PalCom devices can discover, and keep track of, the existence of each other by exchanging periodic heartbeats within local
networks, and once-sent device appearance/disappearance notifications across interconnected networks. This approach has the
advantage of eliminating the need to forward periodic heartbeats beyond the boundaries of the local networks of their originator
devices. However, when a device appearance/disappearance notification is sent only once over an unreliable channel, there is a
possibility of losing that notification. As a result, the device discovery information on PalCom devices will be out-of-sync. In this
paper, we present the design, model-based evaluation, and the implementation status of a solution to this synchronization problem.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: pervasive middleware; device discovery; synchronization; model checking

1. Introduction

PalCom is a pervasive middleware that enables users to combine the services of their devices into useful application
scenarios1. In particular, PalCom can be deployed onto user devices to provide the necessary utility for advertising
device existences to other devices on the same local networks, as well as across different interconnected networks2,3,4.

* Corresponding author. Tel.: +46736399143; fax: +46 46 13 10 21.
E-mail address: amr.ergawy@cs.lth.se.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.052&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.052&domain=pdf

348 Amr Ergawy and Boris Magnusson / Procedia Computer Science 94 (2016) 347 – 352

Once interconnected devices discover the existence of each other, they can exchange description of their functionality,
i.e. services1.

PalCom provides the necessary abstraction for devices to communicate via different networking technologies2. On
top of that abstraction, PalCom uses periodic heartbeats within the boundaries of local networks to enable devices to
discover and keep track of each other3. For cross-networks device discovery, PalCom uses once-sent device
appearance/disappearance notifications3. This approach saves network bandwidth by eliminating the need to forward
periodic heartbeats outside the local networks of their originator devices. However, if such appearance/disappearance
notifications are sent over unreliable channels, then PalCom nodes that lose a notification will lose synchronization
of their exchanged cross-networks device discovery information.

In this paper, we present the design, model-based evaluation, and the implementation status of a reliability feature
for PalCom that enables synchronization of device discovery information on the event of losing discovery updates. In
section 2, we summarize our previous work on networking and device discovery for PalCom, illustrating the need for
a device discovery synchronization mechanism. Then, in section 3, we survey reliability in distributed systems to
inspect different design options for the required synchronization support in PalCom. Afterwards, in section 4, we
present our proposed synchronization mechanism, modelled using UPPAAL9. In section 5, we present a performance
evaluation of the algorithm. We conclude with the implementation status of the algorithm and our future work.

2. Previous work and problem statement

PalCom is designed as a layered distributed system2,3,4. In this section, we review the lowest two layers of PalCom
that provide the communication utility and state machine logic for device discovery among interconnected devices.
We conclude this section by the problem statement of this paper, namely the need for a synchronization mechanism
to overcome the loss of once-sent device discovery notification on unreliable channels.

2.1. Cross networks communication support in PalCom

PalCom enables devices to communicate via different types of networking technologies by defining a networking
media abstraction layer, MAL, as its lowest layer2. The core of the MAL layer is to view a network protocol as a
composition of a device addressing method, a connection establishment mechanism, a byte array encoding/decoding
method, and a network interfacing utility. By inheriting and extending this framework, a PalCom developer can easily
add a new connectivity driver to support a new networking protocol. The plugging for such connectivity driver to
PalCom is done in a way that considers different sides of system reliability and performance2.

2.2. Device discovery in PalCom

On top of the MAL layer, PalCom defines the device discovery layer3. This layer defines two state machines,
namely the local-network device discovery state machine and the cross-networks device discovery state machine. A
PalCom device applies the logic of the local-network state machine to discover and keep track of other PalCom devices
on its connected local networks3.

In particular, PalCom device-A periodically broadcasts heartbeat messages via all its network interfaces on
available local networks. Then, PalCom device-B that receives a heartbeat from device-A, on the same local network,
starts to exchange device information request and response messages with device-A. On the successful completion of
device information exchange, PalCom device-B declares device-A as visible. From that point in time, device-B may
change the availability state of device-A between visible, out-of-reach, rebooted, and gone based on configured time-
outs and received periodic heartbeats from that device.

Moreover, when device-B discovers device-A on a local network that connects them, device-B will advertise the
appearance of device-A on other networks that it is connected to3. To prevent looping device discovery advertisements
in a network of PalCom devices, device-B manages forwarding device discovery notifications using a data structure
called discovery forwarding flow3, DFFs. The idea behind this data structure is to prevent forwarding a device
discovery notification via the network interface that it was received from, a reused concept from conventional internet
protocols3. Similarly, device-B may forward a disappearance notification of device-A on all other local networks after

349 Amr Ergawy and Boris Magnusson / Procedia Computer Science 94 (2016) 347 – 352

a specific time-out of not receiving heartbeats from that device. When device-C receives from device-B
appearance/disappearance notifications about device-A, it uses the cross-networks device discovery state machine to
process this notification to keep track of the availability of device-A.

2.3. The problem of once-sent device discovery notifications over unreliable channels

When sending cross-networks device appearance/disappearance notifications over unreliable channels, there is a
possibility of losing these messages. In the above discussed example in section 2.2, if a discovery notification message
from device-B to device-C about device-A is lost, then device-C will be out-of-sync from the world view that device-
B meant to update it with. This will cause communication issues to the services on device-C and other PalCom devices
that are connected to device-C, but not connected to device-B or device-A.

We view this problem as a reliability problem of the PalCom device discovery mechanism. And to handle it, we
need a synchronization mechanism that recovers the world view on device-C whenever it detects the loss of a
discovery update message from device-B. In the next section, we review reliability support in distributed systems
while focusing on possible design options for the required discovery synchronization mechanism for PalCom.

3. Reliability in distributed systems and design options

As discussed above, we designed PalCom as a layered distributed system2,3,4. In this section, we review reliability
requirements and approaches in distributed systems. We focus on different approaches of fault detection and tolerance
for communication/networking faults. Below, we compare these approaches to the current status of PalCom, aiming
to make proper design decisions for the required device discovery synchronization mechanism.

3.1. Reliability requirements in distributed systems vs. communication/networking faults

Among several requirements for distributed systems, reliability comes as an essential one5,7. It aims at ensuring
system functionality, quality and scalability. A reliable distributed system must provide a specific probability of
successful performance of its intended function for sufficient time periods to meet users’ expectations5. Moreover, a
reliable distributed system is required to properly operate under the specific conditions of its deployment environment
and resources5. Among several challenges to meet these requirements, the reliability of the used
communication/networking infrastructure comes as a very important factor to consider5,7. Fault tolerant and recovery
techniques are required to overcome reliability issues at such low-level utilities.

3.2. Requests redirection reliability vs. architectural based reliability

The simplest way of failure recovery at the networking levels is to redirect operations to other resources5,7.
However, such an approach is not suitable to recover lost device discovery messages in PalCom, because such
messages represent only the perspective of their originator node. Alternatively, we can employ an architectural and
state based approach5 to add support for device discovery synchronization in PalCom.

The main challenge to applying an architectural based reliability is the need to plan it before application
development5, which is not the case for PalCom. A recommended approach to start such a design is to preserve the
layered system structure in a way that keeps hiding communication and networking from the reliability module5. We
apply this recommendation to design a synchronization mechanism that fits into the layered architecture of PalCom.

3.3. Time-out based failure detection vs. sequence number based failure detection

To design reliability into device discovery in PalCom, we need to consider failure detection6,7. A proper failure
detector is expected to provide a specific time after which a failure is detected while a properly functional process is
not wrongly detected as a failed one6. To support device discovery synchronization on lost update messages in
PalCom, we need to complement its time based device discovery failure detection3 with a mechanism that keeps track
of the sequence of update messages. This is a packet loss failure detection approach7.

350 Amr Ergawy and Boris Magnusson / Procedia Computer Science 94 (2016) 347 – 352

To keep track of the sequence of update messages, we re-use the concept of update round numbers8 in our proposed
synchronization mechanism for PalCom. However, instead of using update round numbers to implement a lock-step
synchronizer8, we implement a synchronizer that can handle a continuously changing ad-hoc network of PalCom
devices3. We detail our design in the next section.

4. The proposed algorithm for synchronizing device discovery on lost update messages

As shown in Fig. 1 and Fig. 2, we model our proposed synchronization algorithm in UPPAAL9. Our design has
four components, we list them while describing the algorithm functionality:

Sequence number based fault detection: Every heartbeat message, an h/H-message3, from device-A to device-B
contains an update-number field. As shown in Fig. 1, if device-B finds that the (h/H).update-number is not equal
to the latest update-number that it has received from device-A via the network interface that received the h/H-
message, then device-B concludes that it is out-of-sync with device-A. Every appearance or disappearance
notification from device-A to device-B about device-x, an S-*-message3, has two fields: previous-update-number
and update-number. Device-B uses a received (S-*).previous-update-number in the same way as it uses a
received (h/H).update-number to detect whether it is out of sync with the sender device-A.
Destination-device driven request/response synchronization: When device-B detects that it is out-of-sync with
device-A via one of its network interfaces, it initiates the synchronization process, as shown in Fig. 1. In
particular, device-B declares all remote routes discovered via that interface as out-of-sync, and sends a sync-start
request, a k-message, to device-A. Fig. 2 illustrates how device-A handles such message to respond with a
relevant S-*-message to device-B.
Fig. 1 illustrates how device-B handles a reply to its sync-start message. Device-B may ask for more updates by
sending a sync-next request to device-A, a K-message. In Fig. 1, we illustrate that device-B terminates the

Fig. 1. The UPPAAL model of the destination node of the synchronization algorithm.

351 Amr Ergawy and Boris Magnusson / Procedia Computer Science 94 (2016) 347 – 352

synchronization process when a received (h/H).update-number equals its remembered latest-update-number from
device-A via its network interface that received the h/H message.
Limited cache of continuous device appearance/disappearance history: As illustrated in Fig. 2, the
synchronization source, device-A, maintains a limited size cache of complete device-x appearance/disappearance
history. If device-B, the synchronization destination, asks for updates within this cached history, then a smaller
number of messages will be required for the synchronization process.
Synchronization reliability over periodic heartbeat messages: As shown in Fig. 1, device-B, the synchronization
destination, uses h/H-messages to make sure that sync-start and sync-next message are sent as much as required
to the synchronization source device-A. This feature overcomes any lost synchronization request/response
messages from device-A.

5. Model-based performance evaluation

We used the UPPAAL9 model of our synchronization algorithm to evaluate its performance. We use two different
parameters to evaluate the performance of the algorithm:

Cache capacity: the number of appearance and disappearance updates that the source node remembers.
Out-of-sync detection sensitivity: the number of sent discovery update messages before sending a heartbeat
message. This is a definition of the heartbeat frequency in terms of the number of discovery update messages.

We measure the synchronization overhead as the average number of sync-request messages per a lost message.
The input to the performance evaluation is composed of 50 message sequences with 20 messages each and randomly
chosen dropped messages. These message sequences are grouped into five groups based on the ratio of dropped
messages. These groups are randomly specified to contain 2/20, 5/20, 6/20, 8/20, or 10/20 dropped messages, which
are extreme message drop rates of 10% to 50%. We run the performance evaluation against two configurations of the
algorithm. The first test configuration is: heartbeat_frequency_1 = an h-message every number of update messages
that equals the cache size. The second test configuration is: heartbeat_frequency_2 = 2× heartbeat_frequency_1.

As shown in Fig. 3, the test run with heartbeat_frequency_2 produces less synchronization overhead compared to
that with heartbeat_frequency_1. We interpret this as the more frequent the heartbeat messages compared to the update
messages, the earlier the out-of-sync status is detected, and the more cached synchronization is performed. Also, for
the test run with heartbeat_frequency_2, the majority of cases does not require more than three sync-request messages
per a lost message. This is a relevant but still expensive performance. We interpret these results as at least a sync-start
k-message and a sync-next K-message will be triggered per an out-of-sync detection event. Moreover, a minimal

Fig. 2. The UPPAAL model of the source node of the synchronization algorithm.

352 Amr Ergawy and Boris Magnusson / Procedia Computer Science 94 (2016) 347 – 352

overhead of a sync-start k-message and two sync-next K-message are triggered per one out-of-sync detection event
when the source cache has one more update message after the one that triggered the synchronization. From the test
results in Fig. 3, the higher the heartbeat frequency, the less the synchronization overhead.

Moreover, Fig. 3 shows that, for the test run with heartbeat_frequency_1, the message sequences with 10/20
dropped messages have less average synchronization overhead than the message sequence with 2/20 dropped
messages. We interpret this as the more dropped messages, the higher the chance that they are consequent messages,
and the higher the chance that more than one message is retrieved during a single full-synchronization round. This
will reduce the number of out-of-sync detection events and the average synchronization overhead.

6. Conclusion and future work

We added to PalCom a synchronization algorithm to overcome the problem of losing a once-sent device discovery
update message over an unreliable channel. We evaluated the algorithm using an UPPAAL based model. The
evaluation shows a stable and reasonable synchronization overhead when using high enough heartbeat frequency that
provides sufficient out-of-sync detection sensitivity compared to the size of the discovery events cache. We
implemented the synchronization algorithm as part of the current PalCom Java implementation. The implementation
passed testing against basic scenarios of channel failure. As a future work, we need to run more advanced test scenarios
on the implementation. We may also modify the algorithm for less synchronization overhead.

References

1. Svensson Fors D, Magnusson B, Gestegård Robertz S, Hedin G, Nilsson-Nyman E. Ad-hoc Composition of Pervasive Services in the PalCom
Architecture. In: Proceedings of the 2009 International Conference on Pervasive Services, London, UK, 2009. ACM. p. 83-92.

2. Ergawy A, Magnusson B. Media Abstraction Framework for the Pervasive Middleware PalCom. In: Proceedings of the 2nd International
Conference on Future Internet of Things and Cloud, FiCloud-2014, Barcelona, Spain, 2014. IEEE.

3. Ergawy A, Magnusson B. Device Discovery for the PalCom Pervasive Middleware with Eliminated Cross-networks Periodic Heart-beat
Messages. In: Proceedings of the 5th International Conference on Emerging Ubiquitous Systems and Pervasive Networks, EUSPN-2014,
Nova Scotia, Canada. Procedia Computer Science, volume 37, 2014. p. 64-71.

4. Ergawy A, Magnusson B. Supporting Distance Vector Routing Over Device Discovery Flows in the Pervasive Middleware PalCom. In:
Proceedings of the 6th International Conference on Ambient Systems, Networks and Technologies, ANT-2015, London, UK. Procedia
Computer Science, volume 52, 2015, p. 153-160.

5. Waseem Ahmed and Yong Wei Wu: A survey on reliability in distributed systems. Journal of Computer and System Sciences. 2013, volume
97, number 8, p. 1243 – 1255.

6. N. Xiong and Y. Yang and M. Cao and J. He and L. Shu. A Survey on Fault-Tolerance in Distributed Network Systems. In: Computational
Science and Engineering, 2009. CSE '09. International Conference on. 2009, vol. 2, p. 1065-1070. IEEE.

7. Lilia Paradis, Qi Han: A Survey of Fault Management in Wireless Sensor Networks. Journal of Network and Systems Management. 2007,
volume 15, number 2, p. 171-190.

8. Matthias Függer and Alexander Kößler and Thomas Nowak and Ulrich Schmid and Martin Zeiner: The effect of forgetting on the performance
of a synchronizer. Performance Evaluation. 2015, volume 93, pages 1-16.

9. UPPAAL and its tutorial material are available at http://w ww.uppaal.org/.

Fig. 3. The algorithm performance with two different configurations of the heartbeat frequency.

0
1
2
3
4
5
6
7

2/20 lost
messages

4/20 lost
messages

6/20 lost
messages

8/20 lost
messages

10/20 lost
messagesAv

er
ag

e
nu

m
be

r o
f s

yn
c-

re
qu

es
t m

es
sa

ge
s

pe
r a

lo

st
 m

es
sa

ge

Number of lost messages in each group of 10 message sequences

heartbeat_frequency_1 =
an h-message every
number of update
messages that equals the
cache size.
heartbeat_frequency_2 =
2× heartbeat_frequency_1

