On the Factorization of Nuclear Operators on Hilbert Space

J. R. Holub*
Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, V'irginia 24061
Submitted by Ky Fan

1. Let \mathscr{H} be a separable Hilbert space (which we take over the real scalar field for notational convenience) and T a nuclear (trace-class) operator on \mathscr{H}. It is well known that T can be factored as $T=T_{2} \circ T_{1}$, where T_{1} and T_{2} are both Hilbert-Schmidt operators on \mathscr{H} [8]. More generally, T can be factored as $T=T_{2} \circ T_{1}$, where $T_{1} \in C_{p}$ and $T_{2} \in C_{q}$ for $1 \ll p<+\infty$ and $p^{-1}+q^{-1}=1$ (see $[3,6]$ for a discussion of the operators in the classes C_{p}). Since it is known (e.g., [4]) that C_{p}^{*} is isometrically isomorphic to $C_{q}\left(p^{-1}+q^{-1}=1\right)$, the following problem is a very natural one.

Let α be a uniform crossnorm [8] and $J(\alpha)$ the completion of the finite dimensional operators on \mathscr{H} under the norm α. Then $J(\alpha)$ can be identified with the separable norm ideal $\mathscr{H} \otimes_{a} \mathscr{H}$ of compact operators on \mathscr{H} [7]. Moreover, as Schatten has shown [7], $J(\alpha)^{*}=\left(\mathscr{H} \otimes_{x} \mathscr{H}\right)^{*}$ may be identified with a norm ideal of compact operators on \mathscr{H}, and if $T_{1} \in J(\alpha)$ and $T_{2}=J(x)^{*}$, then $T_{2} T_{1}$ is a nuclear operator on \mathscr{H}.

Problem. For which separable norm ideals $J(\alpha)$ is it true that if T is a nuclear operator on \mathscr{H}, then T can be factored as $T=T_{2}=T_{1}$ for $T_{1} \in J(\alpha)$ and $T_{2} \in J(\alpha)^{*}$?

In this note we show that this problem is equivalent to one concerning an analogous factorization of elements of the sequence space l^{1}.
2. If \mathscr{H} is a separable Hilbert space, we denote by $B(\mathscr{H}), K(\mathscr{H})$, and $N(\mathscr{H})$, respectively, the spaces of bounded linear operators, compact nperators, and nuclear operators on \mathscr{H}. If $T \in K(\mathscr{H})$, the sequence of s numbers of T [4] is the sequence $\left\{s_{n}(T)\right\}_{n=1}^{\infty}$ of eigenvalues of $\left(T^{*} T\right)^{1 / 2}$ arranged in a sequence decreasing to zero and repeated according to their multiplicity. By a well known and fundamental result of Yon Neumann, any operator $T \in K(\mathscr{H})$ has the representation $T=\sum_{n=1}^{\infty} s_{n}(T) \varphi_{n}(\bigotimes) \psi_{n}$ for

[^0]$\left(\varphi_{n}\right)$ and $\left(\psi_{n}\right)$ orthonormal sequences in $\mathscr{H}[8]$. Moreover, it is a classical result of Calkin and Von Neumann [8] that there is a one-to-one correspondence between the collection of two-sided ideals in $B(\mathscr{H})$ and the collection of certain "ideal sets" of sequences in c_{0}. Extending the results of Schatten [8] and of Gohberg, and Krein [4], the author has recently shown that there is a one-to-one correspondence between the set of all separable norm ideals in $B(\mathscr{H})$ and the set of all separable symmetric Banach sequence spaces [5]. This correspondence is obtained, as in Calkin's result, by associating with any separable norm ideal $J(\alpha)$ the space μ of all sequences $\left(a_{n}\right)$ in c_{0} for which $\sum_{n} a_{n} \varphi_{n} \otimes \psi_{n}$ converges in $J(\alpha)$ for any orthonormal sequences $\left(\varphi_{n}\right)$ and $\left(\psi_{r}\right)$ in \mathscr{H}. It turns out that μ is then a symmetric solid Banach space with the property that $T \in J(\alpha)$ if and only if $\left(s_{m}(T)\right) \in \mu$. Moreover, if $\mu^{x}=$ $\left\{\left(b_{n}\right) \in c_{0}\left|\sum_{n=1}^{\infty}\right| a_{n}| | b_{n} \mid<+\infty\right.$ for all $\left.\left(a_{n}\right) \in \mu\right\}$, then $S \in J(\alpha)^{*}$ if and only if $\left(s_{n}(S)\right) \in \mu^{x}$. These results will enable us to transform the original problem into a fundamentally simpler one concerning sequence spaces.

Now let $\mu \cdot \mu^{x}=\left\{\left(c_{n}\right) \in c_{0} \mid\left(c_{n}\right)=\left(a_{n} b_{n}\right)\right.$ for $\left(a_{n}\right) \in \mu$ and $\left.\left(b_{n}\right) \in \mu^{x}\right\}[2]$. Then certainly $\mu \cdot \mu^{x} \subset l^{1}$. If $T \in N(\mathscr{H})$, then $\left(s_{n}(T)\right) \in l^{1}[8]$, so if $\mu \cdot \mu^{x}=l^{1}$ we must have $\left(s_{n}(T)\right)=\left(a_{n} b_{n}\right)$ for some $\left(a_{n}\right) \in \mu$ and $\left(b_{n}\right) \in \mu^{x}$. Consequently, since $T=\sum_{n} s_{n}(T) \varphi_{n} \otimes \psi_{n}$ for some orthonormal sets $\left(\varphi_{n}\right)$ and $\left(\psi_{n}\right)$ in \mathscr{H}, we have the factorization $T=T_{2} \circ T_{1}$, where

$$
T_{1}=\sum_{n} a_{n} \varphi_{n} \otimes \varphi_{n} \text { is in } J(\alpha)
$$

and

$$
T_{2}=\sum_{n} b_{n} \varphi_{n} \otimes \psi_{n} \text { is in } J(\alpha)^{*}
$$

That is, T factors through the pair of ideals $\left(J(\alpha), J(\alpha)^{*}\right)$.
We now show that the converse is also true. That is, the existence of such a factorization implies the indicated factorization of elements of l^{1}. Thus the problem mentioned earlier is equivalent to the problem of whether $l^{1}=\mu \cdot \mu^{x}$ for the sequence space μ associated with $J(\alpha)$.

We begin with a technical result.

Lemma. Let A and B be compact operators on \mathscr{H}. Then there is a sequence $\left(\lambda_{n}\right)$ convergent to zero for which $s_{n}(A B) \leqslant \lambda_{n} s_{n}(B)$ for all n.

Proof. It is well known that if $T \in K(\mathscr{H})$, then $s_{n}(T) \leqslant\|T-F\|$ for any operator F on \mathscr{H} of dimension $\leqslant(n-1)[4]$.

Let $B=\sum_{n=1}^{\infty} s_{n}(B) \varphi_{n} \otimes \psi_{n}$ and denote by P_{k} the orthogonal projection of \mathscr{H} onto $\left[\varphi_{i}\right]_{i=k}^{\infty}$. Then $P_{k}=I-Q_{k}$, where Q_{k} is the orthogonal projection
onto $\left[\varphi_{i}\right]_{i=1}^{k-1}$, and $\left\|A B P_{k}\right\|=\left\|A B-A B Q_{k}\right\|$, where $\operatorname{dim}\left(A B Q_{k}\right) \leqslant K-1$. Thus

$$
\begin{aligned}
s_{k}(A B) \leqslant\left.\right|^{\prime} A B P_{k} \| & =A\left(\sum_{n=k}^{\infty} s_{n}(B) \varphi_{n} \otimes \psi_{n}\right) \\
& =\| A R_{k}\left(\sum_{n=k}^{\infty} s_{n}(B) \varphi_{n} \otimes \psi_{n}\right)
\end{aligned}
$$

(where R_{k} is the orthogonal projection of \mathscr{H} onto $\left[\psi_{i}\right]_{i=k}^{\alpha}$)

$$
\leqslant\left\|A R_{k}\right\| \sum_{n=k}^{\infty} s_{n}(B) \varphi_{n} \otimes \psi_{n} \|_{i}^{\|}=A R_{k} \mid, s_{k}(B) .
$$

Now,,$A R_{R}\left\|^{\|}=\right\| R_{k} A^{*} \|$, implying

$$
\begin{aligned}
!A R_{k}! & =\sup _{\mid x^{\prime}=1} \| R_{k} A^{*}(x)! \\
& =\sup _{x \leqslant 1} \| \sum_{n=h}^{\infty}\left\langle A^{*}(x), \psi_{n}\right\rangle \psi_{n}^{\prime \prime}
\end{aligned}
$$

But since A^{*} is compact, the set $\left\{A^{*} x|\| x|!\leqslant 1\right\}$ is compact in \mathscr{H}, and this last tends to zero as $k \rightarrow \infty$. Thus setting $\lambda_{n}=\| A R_{n}$, we have $s_{n}(A B) \leq$ $\lambda_{n} s_{n}(B)$, where $\lambda_{n} \rightarrow 0$, and the lemma is proved.

We have seen that if $J(\alpha)$ is a separable norm ideal whose associated Banach sequence space is μ, then every nuclear operator on \mathscr{H} factors through the pair $\left(J(\alpha), J(\alpha)^{*}\right)$ if $\mu \cdot \mu^{x}=l^{1}$. We can now prove the converse, thereby characterizing those norm ideals with this factorization property.

Theorem. Suppose every $T \in N(\mathscr{H})$ can be factored as $T=A B$ for $B \in J(\alpha)$ and $A \in J(\alpha)^{*}$. Then $\mu \cdot \mu^{x}=l^{1}$.

Proof. By definition $\mu \cdot \mu^{x} \subset l^{1}$. To show the reverse inclusion, let $\left(c_{i}\right) \in l^{1}$. If (c_{i}) is finitely nonzero, then certainly $\left(c_{i}\right) \in \mu \cdot \mu^{x}$. Thus we may assume $c_{2}>0$ for all i, and show $\left(c_{i}\right)=\left(a_{i} b_{i}\right)$ for $\left(a_{i}\right) \in \mu$ and $\left(b_{i}\right) \in \mu^{x}$. Since $\left(c_{i}\right) \in l^{1}, T=\sum_{i=1}^{\infty} c_{i} \varphi_{i} \otimes \varphi_{i} \in N(\mathscr{H})$ for (φ_{i}) some orthonormal basis for \mathscr{H}. By assumption, $T=A B$ for some $B \in J(\alpha)$ and $A \in J(\alpha)^{*}$.

Since $c_{i}>0, c_{i}=s_{i}(A B)$ for all i.

Claim.

$$
\frac{s_{i}(A B)}{s_{i}(A)}=\frac{c_{i}}{s_{1}(A)} \in \mu^{x}
$$

By the lemma, the sequence $s_{i}(A B) / s_{i}(A) \in c_{0}$ (where we note $s_{i}(A)>0$ for all i since A is not finite dimensional). Thus we can arrange this sequence in decreasing order as $s_{\pi(i)}(A B) / s_{\pi(i)}(A)$ for some permutation π of the positive integers.

Now for any n, arrange the set $\{\pi(1), \pi(2), \ldots, \pi(n)\}$ as the increasing sequence of integers $1 \leqslant j_{1} \leqslant j_{2} \leqslant \cdots \leqslant j_{n}$. By the theorem of Amir-Moez [1] we have

$$
\prod_{k=1}^{n} s_{f_{k}}(A B) \leqslant\left[\prod_{k=1}^{n} s_{k}(B)\right]\left[\prod_{k=1}^{n} s_{j_{k}}(A)\right]
$$

Hence

$$
\prod_{k=1}^{n}\left(s_{j_{k}}(A B) / s_{j_{k}}(A)\right) \leqslant \prod_{k=1}^{n} s_{k}(B)
$$

or

$$
\prod_{i=1}^{n}\left(s_{\pi(i)}(A B) / s_{\pi(i)}(A)\right) \leqslant \prod_{i=1}^{n} s_{i}(B)
$$

The last inequality holds for all n, where $s_{\pi(i)}(A B) / s_{\pi(i)}(A)$ and $\left(s_{i}(B)\right)$ are sequences decreasing to zero. Thus since the function $\ln x$ is increasing we have

$$
\sum_{i=1}^{n} \ln \left(s_{\pi(i)}(A B) / s_{\pi(i)}(A)\right) \leqslant \sum_{i=1}^{n} \ln \left(s_{i}(B)\right)
$$

for all n, where $\ln \left(s_{\pi(i)}(A B) / s_{\pi(i)}(A)\right)$ and $\left(\ln \left(s_{i}(B)\right)\right)$ are decreasing sequences.
By the theorem of Hardy, Littlewood, and Polya (e.g., [4, p. 37]) (and by the fact that e^{x} is a convex function) we then have

$$
\sum_{i=1}^{n}\left(s_{\pi(i)}(A B) / s_{\pi(i)}(A)\right) \leqslant \sum_{i=1}^{n} s_{i}(B) \quad \text { for all } n
$$

Hence by a well-known result, if $\left(d_{i}\right) \in \mu,\left\|\left(d_{i}\right)\right\| \mu \leqslant 1$, and $d_{i} \downarrow 0$, then

$$
\sum_{i=1}^{n} d_{i}\left(s_{\pi(i)}(A B) / s_{\pi(i)}(A)\right) \leqslant \sum_{i=1}^{n} d_{i} s_{i}(B) \quad \text { for all } n
$$

Since the sequences $s_{\pi(i)}(A B) / s_{\pi(i)}(A)$ and $\left(s_{i}(B)\right)$ are each decreasing, this implies

$$
\sup _{n}\left\|\sum_{i=1}^{n}\left(s_{\pi(i)}(A B) / s_{\pi(i)}(A)\right) e_{i}\right\|_{\mu^{x}} \leqslant\left\|\left(s_{i}(B)\right)\right\|_{\mu^{x}}
$$

It follows that the sequence $s_{\pi(i)}(A B) / s_{\pi(i)}(A)$, and hence also $s_{i}(-H B) / s_{i}(-A)$ is in μ^{r}. But then since $\left(s_{i}(A)\right) \in \mu$ and $\left(c_{i}\right)=s_{i}(A B)$, we have

$$
\left(c_{i}\right)=s_{i}(A) \cdot\left(s_{i}(A B) / s_{i}(A)\right) \in \mu \cdot \mu^{3}
$$

and the theorem is proved.
3. As we have remarked, the result proved in Section 2 shows that the original problem concerning factorization of nuclear operators on \mathscr{H} is precisely equivalent to the problem of which symmetric solid Banach sequence spaces μ have the property that $\mu \cdot \mu^{r}=l^{1}$. Conceivably, this property may hold for every such sequence space, but it appears to be unknown. Thus we state the following.

Problen. Characterize those separable symmetric solid Banach sequence spaces μ for which $\mu \cdot \mu^{x}=l^{1}$. In particular, is this the case for all such μ ?

References

1. A. Amir-Moez, Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations, Duke Math. J. 23 (1956), 463-476.
2. G. Crofts, Concerning perfect Frechet spaces and diagonal transformations, Math. Am. 183 (1969), 67-76.
3. N. Dunford and J. Schwartz, "Linear Operators II," Interscience, New York, 1963.
4. I. Gohberg and M. Krein, "Introduction to the Theory of Linear Non-Selfadjoint Operators," Transl. Math. Monographs, Vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
5. J. Holcb, A characterization of the norm ideals of compact operators on Hilbert space, J. Math. Anal. Appl., to appear.
6. C. McCarthy, C_{p}, Israel J. Math. 5 (1967), 249-271.
7. R. Schatien, "A Theory of Cross-Spaces," Ann. of Math. Studies, No. 26, Princeton Univ. Press, Princeton, N. J., 1950.
8. R. Schatten, "Norm Ideals of Completely Continuous Operators," SpringerVerlag, Berlin, 1960.

[^0]: * Research for this paper was partially supported by NSF-GP 33778.

