JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 54, 617-621 (1976)

On the Factorization of Nuclear Operators on Hilbert Space

J. R. HOLUB*

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Submitted by Ky Fan

1. Let \mathscr{H} be a separable Hilbert space (which we take over the real scalar field for notational convenience) and T a nuclear (trace-class) operator on \mathscr{H} . It is well known that T can be factored as $T = T_2 \circ T_1$, where T_1 and T_2 are both Hilbert-Schmidt operators on \mathscr{H} [8]. More generally, T can be factored as $T = T_2 \circ T_1$, where $T_1 \in C_p$ and $T_2 \in C_q$ for $1 and <math>p^{-1} + q^{-1} = 1$ (see [3, 6] for a discussion of the operators in the classes C_p). Since it is known (e.g., [4]) that C_p^* is isometrically isomorphic to $C_q(p^{-1} + q^{-1} = 1)$, the following problem is a very natural one.

Let α be a uniform crossnorm [8] and $J(\alpha)$ the completion of the finite dimensional operators on \mathscr{H} under the norm α . Then $J(\alpha)$ can be identified with the separable norm ideal $\mathscr{H} \otimes_{\alpha} \mathscr{H}$ of compact operators on $\mathscr{H}[7]$. Moreover, as Schatten has shown [7], $J(\alpha)^* = (\mathscr{H} \otimes_{\alpha} \mathscr{H})^*$ may be identified with a norm ideal of compact operators on \mathscr{H} , and if $T_1 \in J(\alpha)$ and $T_2 \in J(\alpha)^*$, then $T_2 \cap T_1$ is a nuclear operator on \mathscr{H} .

PROBLEM. For which separable norm ideals $J(\alpha)$ is it true that if T is a nuclear operator on \mathscr{H} , then T can be factored as $T = T_2 \circ T_1$ for $T_1 \in J(\alpha)$ and $T_2 \in J(\alpha)^*$?

In this note we show that this problem is equivalent to one concerning an analogous factorization of elements of the sequence space l^1 .

2. If \mathscr{H} is a separable Hilbert space, we denote by $B(\mathscr{H})$, $K(\mathscr{H})$, and $N(\mathscr{H})$, respectively, the spaces of bounded linear operators, compact operators, and nuclear operators on \mathscr{H} . If $T \in K(\mathscr{H})$, the sequence of snumbers of T [4] is the sequence $\{s_n(T)\}_{n=1}^{\infty}$ of eigenvalues of $(T^*T)^{1/2}$ arranged in a sequence decreasing to zero and repeated according to their multiplicity. By a well known and fundamental result of Von Neumann, any operator $T \in K(\mathscr{H})$ has the representation $T = \sum_{n=1}^{\infty} s_n(T) \varphi_n \otimes \psi_n$ for

^{*} Research for this paper was partially supported by NSF-GP 33778.

 (φ_n) and (ψ_n) orthonormal sequences in $\mathcal{H}[8]$. Moreover, it is a classical result of Calkin and Von Neumann [8] that there is a one-to-one correspondence between the collection of two-sided ideals in $B(\mathcal{H})$ and the collection of certain "ideal sets" of sequences in c_0 . Extending the results of Schatten [8] and of Gohberg, and Krein [4], the author has recently shown that there is a one-to-one correspondence between the set of all separable norm ideals in $B(\mathcal{H})$ and the set of all separable symmetric Banach sequence spaces [5]. This correspondence is obtained, as in Calkin's result, by associating with any separable norm ideal $J(\alpha)$ the space μ of all sequences (a_n) in c_0 for which $\sum_n a_n \varphi_n \otimes \psi_n$ converges in $J(\alpha)$ for any orthonormal sequences (φ_n) and (ψ_n) in \mathscr{H} . It turns out that μ is then a symmetric solid Banach space with the property that $T \in J(\alpha)$ if and only if $(s_n(T)) \in \mu$. Moreover, if $\mu^x =$ $\{(b_n) \in c_0 \mid \sum_{n=1}^{\infty} \mid a_n \mid \mid b_n \mid < +\infty \text{ for all } (a_n) \in \mu\}, \text{ then } S \in J(\alpha)^* \text{ if}$ and only if $(s_n(S)) \in \mu^x$. These results will enable us to transform the original problem into a fundamentally simpler one concerning sequence spaces.

Now let $\mu \cdot \mu^x = \{(c_n) \in c_0 \mid (c_n) = (a_n b_n) \text{ for } (a_n) \in \mu \text{ and } (b_n) \in \mu^x\}$ [2]. Then certainly $\mu \cdot \mu^x \subset l^1$. If $T \in N(\mathcal{H})$, then $(s_n(T)) \in l^1$ [8], so if $\mu \cdot \mu^x = l^1$ we must have $(s_n(T)) = (a_n b_n)$ for some $(a_n) \in \mu$ and $(b_n) \in \mu^x$. Consequently, since $T = \sum_n s_n(T) \varphi_n \otimes \psi_n$ for some orthonormal sets (φ_n) and (ψ_n) in \mathcal{H} , we have the factorization $T = T_2 \circ T_1$, where

$$T_1 = \sum_n a_n \varphi_n \otimes \varphi_n$$
 is in $J(\alpha)$,

and

$$T_2 = \sum_n b_n \varphi_n \otimes \psi_n$$
 is in $J(\alpha)^*$.

That is, T factors through the pair of ideals $(J(\alpha), J(\alpha)^*)$.

We now show that the converse is also true. That is, the existence of such a factorization implies the indicated factorization of elements of l^1 . Thus the problem mentioned earlier is equivalent to the problem of whether $l^1 = \mu \cdot \mu^x$ for the sequence space μ associated with $J(\alpha)$.

We begin with a technical result.

LEMMA. Let A and B be compact operators on \mathcal{H} . Then there is a sequence (λ_n) convergent to zero for which $s_n(AB) \leq \lambda_n s_n(B)$ for all n.

Proof. It is well known that if $T \in K(\mathcal{H})$, then $s_n(T) \leq ||T - F||$ for any operator F on \mathcal{H} of dimension $\leq (n-1)[4]$.

Let $B = \sum_{n=1}^{\infty} s_n(B) \varphi_n \otimes \psi_n$ and denote by P_k the orthogonal projection of \mathscr{H} onto $[\varphi_i]_{i=k}^{\infty}$. Then $P_k = I - Q_k$, where Q_k is the orthogonal projection

onto $[\varphi_i]_{i=1}^{k-1}$, and $||ABP_k|| = ||AB - ABQ_k||$, where dim $(ABQ_k) \leq K - 1$. Thus

$$s_k(AB) \leqslant ||ABP_k|| = \left||A\left(\sum_{n=k}^{\infty} s_n(B) \varphi_n \otimes \psi_n\right)||$$

 $= \left||AR_k\left(\sum_{n=k}^{\infty} s_n(B) \varphi_n \otimes \psi_n\right)||,$

(where R_k is the orthogonal projection of \mathscr{H} onto $[\psi_i]_{i=k}^{\infty}$)

$$\leqslant \|AR_k\| \left\| \sum_{n=k}^{\infty} s_n(B) \varphi_n \otimes \psi_n \right\| = \|AR_k|, s_k(B).$$

Now, $||AR_k|| = ||R_kA^*||$, implying

$$\|AR_k\| = \sup_{\|x\|=1} \|R_k A^*(x)\|$$
$$= \sup_{\|x\|\leq 1} \left\|\sum_{n=k}^{\infty} \langle A^*(x), \psi_n \rangle \psi_n\right\|.$$

But since A^* is compact, the set $\{A^*x \mid ||x|| \leq 1\}$ is compact in \mathcal{H} , and this last tends to zero as $k \to \infty$. Thus setting $\lambda_n = ||AR_n||$, we have $s_n(AB) \leq \lambda_n s_n(B)$, where $\lambda_n \to 0$, and the lemma is proved.

We have seen that if $J(\alpha)$ is a separable norm ideal whose associated Banach sequence space is μ , then every nuclear operator on \mathscr{H} factors through the pair $(J(\alpha), J(\alpha)^*)$ if $\mu \cdot \mu^x = l^1$. We can now prove the converse, thereby characterizing those norm ideals with this factorization property.

THEOREM. Suppose every $T \in N(\mathcal{H})$ can be factored as T = AB for $B \in J(\alpha)$ and $A \in J(\alpha)^*$. Then $\mu \cdot \mu^x = l^1$.

Proof. By definition $\mu \cdot \mu^x \subset l^1$. To show the reverse inclusion, let $(c_i) \in l^p$. If (c_i) is finitely nonzero, then certainly $(c_i) \in \mu \cdot \mu^x$. Thus we may assume $c_i > 0$ for all *i*, and show $(c_i) = (a_i b_i)$ for $(a_i) \in \mu$ and $(b_i) \in \mu^x$. Since $(c_i) \in l^1$, $T = \sum_{i=1}^{\infty} c_i \varphi_i \otimes \varphi_i \in N(\mathscr{H})$ for (φ_i) some orthonormal basis for \mathscr{H} . By assumption, T = AB for some $B \in J(\alpha)$ and $A \in J(\alpha)^*$.

Since $c_i > 0$, $c_i = s_i(AB)$ for all *i*.

CLAIM.

$$\frac{s_i(AB)}{s_i(A)} = \frac{c_i}{s_i(A)} \in \mu^x.$$

By the lemma, the sequence $s_i(AB)/s_i(A) \in c_0$ (where we note $s_i(A) > 0$ for all i since A is not finite dimensional). Thus we can arrange this sequence in decreasing order as $s_{\pi(i)}(AB)/s_{\pi(i)}(A)$ for some permutation π of the positive integers.

Now for any *n*, arrange the set $\{\pi(1), \pi(2), ..., \pi(n)\}$ as the increasing sequence of integers $1 \leq j_1 \leq j_2 \leq \cdots \leq j_n$. By the theorem of Amir-Moez [1] we have

$$\prod_{k=1}^n s_{j_k}(AB) \leqslant \left[\prod_{k=1}^n s_k(B)\right] \left[\prod_{k=1}^n s_{j_k}(A)\right].$$

Hence

$$\prod_{k=1}^n (s_{j_k}(AB)/s_{j_k}(A)) \leqslant \prod_{k=1}^n s_k(B),$$

or

$$\prod_{i=1}^n (s_{\pi(i)}(AB)/s_{\pi(i)}(A)) \leqslant \prod_{i=1}^n s_i(B).$$

The last inequality holds for all *n*, where $s_{\pi(i)}(AB)/s_{\pi(i)}(A)$ and $(s_i(B))$ are sequences decreasing to zero. Thus since the function $\ln x$ is increasing we have

$$\sum_{i=1}^{n} \ln(s_{\pi(i)}(AB)/s_{\pi(i)}(A)) \leqslant \sum_{i=1}^{n} \ln(s_i(B))$$

for all n, where $\ln (s_{\pi(i)}(AB)/s_{\pi(i)}(A))$ and $(\ln(s_i(B)))$ are decreasing sequences.

By the theorem of Hardy, Littlewood, and Polya (e.g., [4, p. 37]) (and by the fact that e^x is a convex function) we then have

$$\sum_{i=1}^n (s_{\pi(i)}(AB)/s_{\pi(i)}(A)) \leqslant \sum_{i=1}^n s_i(B) \quad \text{for all } n.$$

Hence by a well-known result, if $(d_i) \in \mu$, $||(d_i)|| \mu \leq 1$, and $d_i \downarrow 0$, then

$$\sum_{i=1}^n d_i(s_{\pi(i)}(AB)/s_{\pi(i)}(A)) \leqslant \sum_{i=1}^n d_is_i(B) \quad \text{for all } n.$$

Since the sequences $s_{\pi(i)}(AB)/s_{\pi(i)}(A)$ and $(s_i(B))$ are each decreasing, this implies

$$\sup_{n} \left\| \sum_{i=1}^{n} (s_{\pi(i)}(AB)/s_{\pi(i)}(A)) e_{i} \right\|_{\mu^{x}} \leq \left\| (s_{i}(B)) \right\|_{\mu^{x}}.$$

620

It follows that the sequence $s_{\pi(i)}(AB)/s_{\pi(i)}(A)$, and hence also $s_i(AB)/s_i(A)$ is in μ^{c} . But then since $(s_i(A)) \in \mu$ and $(c_i) = s_i(AB)$, we have

$$(c_i) = s_i(A) \cdot (s_i(AB)/s_i(A)) \in \mu \cdot \mu^x,$$

and the theorem is proved.

3. As we have remarked, the result proved in Section 2 shows that the original problem concerning factorization of nuclear operators on \mathscr{H} is precisely equivalent to the problem of which symmetric solid Banach sequence spaces μ have the property that $\mu \cdot \mu^r = l^1$. Conceivably, this property may hold for every such sequence space, but it appears to be unknown. Thus we state the following.

PROBLEM. Characterize those separable symmetric solid Banach sequence spaces μ for which $\mu \cdot \mu^x = l^1$. In particular, is this the case for all such μ ?

References

- 1. A. AMIR-MOEZ, Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations, *Duke Math.* J. 23 (1956), 463-476.
- 2. G. CROFTS, Concerning perfect Frechet spaces and diagonal transformations, Math. Am. 183 (1969), 67-76.
- 3. N. DUNFORD AND J. SCHWARTZ, "Linear Operators II," Interscience, New York, 1963.
- I. GOHBERG AND M. KREIN, "Introduction to the Theory of Linear Non-Selfadjoint Operators," Transl. Math. Monographs, Vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
- 5. J. HOLUB, A characterization of the norm ideals of compact operators on Hilbert space, J. Math. Anal. Appl., to appear.
- 6. C. MCCARTHY, C_p, Israel J. Math. 5 (1967), 249-271.
- 7. R. SCHATTEN, "A Theory of Cross-Spaces," Ann. of Math. Studies, No. 26, Princeton Univ. Press, Princeton, N. J., 1950.
- 8. R. SCHATTEN, "Norm Ideals of Completely Continuous Operators," Springer-Verlag, Berlin, 1960.