The asymptotic behaviour of maxima of complete and incomplete samples from stationary sequences ${ }^{\pi, 4, w_{i}}$

Tomasz Krajka
Maria Curie-Skłodowska University, Institute of Mathematics, Plac Marii Curie-Sklodowskiej 1, Lublin, Poland

Received 9 July 2010; received in revised form 3 April 2011; accepted 5 April 2011
Available online 13 April 2011

Abstract

Let $\left\{X_{n}, n \geq 1\right\}$ be a strictly stationary sequence of random variables and $M_{n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Assume that some random variables X_{1}, X_{2}, \ldots can be observed and the sequence of random variables $\boldsymbol{\varepsilon}=\left\{\varepsilon_{n}, n \geq 1\right\}$ indicate which X_{1}, X_{2}, \ldots are observed, thus $M_{n}(\boldsymbol{\varepsilon})=\max \left\{X_{j}: \varepsilon_{j}=1,1 \leq j \leq n\right\}$. In paper (Mladenovič and Piterbarg, 2006 [3]), the limiting behaviour ($M_{n}, M_{n}(\varepsilon)$) is investigated under the condition $$
\frac{\sum_{j=1}^{n} \varepsilon_{j}}{n} \xrightarrow{P} p, \quad \text { as } n \rightarrow \infty,
$$

for some real $p \in(0,1)$. We generalize these results on the case, when for some random variable λ

$$
\frac{\sum_{j=1}^{n} \varepsilon_{j}}{n} \xrightarrow{P} \lambda, \quad \text { as } n \rightarrow \infty .
$$

[^0]0304-4149/\$ - see front matter (C) 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2011.04.001
(C) 2011 Elsevier B.V. All rights reserved.

MSC: primary 60G70; secondary 60G10
Keywords: Stationary sequences; Weak dependency

1. Introduction

Let $\left\{X_{n}, n \geq 1\right\}$ be a strictly stationary random sequence with the marginal distribution function F (.) which belongs to the domain of attraction of a nondegenerate distribution function G (for short $F \in D(G)$), i.e. there exist sequences $a_{n}>0$ and $b_{n} \in \Re, n \in N$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F^{n}\left(a_{n} x+b_{n}\right)=G(x), \tag{1}
\end{equation*}
$$

holds for every continuity point of G. The set of possible distribution functions $G()$ as well as the constants a_{n}, b_{n} are described, e.g. in [5]. For two fixed continuity points of $G, x<y$, we assume Condition $D\left(u_{n}, v_{n}\right)$ (Definition 2.3 in [3]):

Condition $D\left(u_{n}, v_{n}\right)$. For all $A_{1}, A_{2}, B_{1}, B_{2} \subset\{1,2,3, \ldots, n\}$, such that

$$
\max _{b \in B_{1} \cup B_{2}, a \in A_{1} \cup A_{2}}|b-a| \geq l, \quad A_{1} \cap A_{2}=\emptyset, \quad B_{1} \cap B_{2}=\emptyset,
$$

the following inequality holds:

$$
\begin{aligned}
& \mid P\left[\bigcap_{j \in A_{1} \cup B_{1}}\left\{X_{j} \leq u_{n}\right\} \cap \bigcap_{j \in A_{2} \cup B_{2}}\left\{X_{j} \leq v_{n}\right\}\right] \\
& \quad-P\left[\bigcap_{j \in A_{1}}\left\{X_{j} \leq u_{n}\right\} \cap \bigcap_{j \in A_{2}}\left\{X_{j} \leq v_{n}\right\}\right] P\left[\bigcap_{j \in B_{1}}\left\{X_{j} \leq u_{n}\right\} \cap \bigcap_{j \in B_{2}}\left\{X_{j} \leq v_{n}\right\}\right] \mid \\
& \quad \leq \alpha_{n, l},
\end{aligned}
$$

and $\alpha_{n, l_{n}} \rightarrow 0$ as $n \rightarrow \infty$ for some $l_{n}=o(n)$.
It is easy to check that the sequence $\left\{X_{n}, n \geq 1\right\}$ of independent identically distributed random variables satisfy Condition $D\left(u_{n}, v_{n}\right)$ with $\alpha_{n, l}=0$ for all $n \geq l$.

Condition $D^{\prime}\left(u_{n}\right)$. Let $\left\{X_{n}, n \geq 1\right\}$ be strictly stationary sequence of random variables and let $\left\{u_{n}, n \geq 1\right\}$ be a sequence of real numbers. We say that $\left\{X_{n}, n \geq 1\right\}$ satisfy the Condition $D^{\prime}\left(u_{n}\right)$ iff

$$
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} n \sum_{j=2}^{[n / k]} P\left[X_{1}>u_{n}, X_{j}>u_{n}\right]=0
$$

Obviously, if $\left\{X_{n}, n \geq 1\right\}$ is the sequence of independent identically distributed random variables with $\lim _{n \rightarrow \infty} n P\left[X_{1}>u_{n}\right]=c$ then Condition $D^{\prime}\left(u_{n}\right)$ holds.

Let among the sequence X_{1}, X_{2}, \ldots some variables are observed. Let the random variable ε_{k} is the indicator of event that random variable X_{k} is observed. In paper [3] in Theorem 3.2 it was assumed that $\left\{\varepsilon_{n}, n \geq 1\right\}$ are dependent but independent of $\left\{X_{n}, n \geq 1\right\}$. This result is

Theorem 1. Let:
(a) $F \in D(G)$ for some real constants $a_{n}>0, b_{n}$ and every real x (i.e. (1) holds).
(b) $\left\{X_{n}, n \geq 1\right\}$ is strictly stationary random sequence, such that ConditionsD $\left(u_{n}, v_{n}\right)$ and $D^{\prime}\left(u_{n}\right)$ are satisfied for $u_{n}=a_{n} x+b_{n}$ and $v_{n}=a_{n} y+b_{n}$, where $x<y$.
(c) $\varepsilon=\left\{\varepsilon_{n}, n \geq 1\right\}$ is the sequence of indicators such that

$$
\begin{equation*}
\frac{S_{n}}{n} \xrightarrow{P} p, \quad \text { as } n \rightarrow \infty . \tag{2}
\end{equation*}
$$

Then, the following equality holds for all real $x<y$:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq a_{n} x+b_{n}, M_{n} \leq a_{n} y+b_{n}\right]=G^{p}(x) G^{1-p}(y) . \tag{3}
\end{equation*}
$$

The general aim of this paper is to generalize Theorem 1 replacing condition (2) with

$$
\begin{equation*}
\frac{S_{n}}{n} \xrightarrow{P} \lambda, \quad \text { as } n \rightarrow \infty, \tag{4}
\end{equation*}
$$

for some random variable λ. As a corollary we obtain Theorems 3.2 and 3.1 [3].

2. Main result

Let $\left\{X_{n}, n \geq 1\right\}$ be a strictly stationary sequence of random variables and F be a distribution function such that $F(x)=P\left[X_{1} \leq x\right]$. Let $\boldsymbol{\varepsilon}=\left\{\varepsilon_{n}, n \geq 1\right\}$ be a sequence of indicator of events that random variable X_{n} is observed, respectively, and let

$$
S_{n}=\sum_{i=1}^{n} \varepsilon_{i}
$$

Let $\boldsymbol{\alpha}=\left\{\alpha_{n}, n \geq 1\right\}$ be a sequence of 0 and $1\left(\boldsymbol{\alpha} \in\{0,1\}^{N}\right)$ and $\boldsymbol{\vartheta}=\{1\}^{N}$ be an infinite sequence of 1 . For the arbitrary random or nonrandom sequence $\boldsymbol{\beta}=\left\{\beta_{n}, n \geq 1\right\}$ of 0 and 1 and subset $I \subset N$, let us put

$$
\begin{aligned}
& M(I, \boldsymbol{\beta})= \begin{cases}\max \left\{X_{j}: j \in I, \beta_{j}=1\right\}, & \text { if } \max _{j \in I} \beta_{j}>0, \\
\text { otherwise },\end{cases}
\end{aligned}, \begin{aligned}
& M_{n}(\boldsymbol{\beta})=M(\{1,2,3, \ldots, n\}, \boldsymbol{\beta}), \\
& M(I)=M(I, \vartheta)=\max \left\{X_{j}: j \in I\right\}, \\
& M_{n}=M(\{1,2,3, \ldots, n\}, \vartheta)=M(\{1,2,3, \ldots, n\})=\max _{1 \leq j \leq n} X_{j}, \\
& K_{s}=\{j:(s-1) m+1 \leq j \leq s m\}, \quad 1 \leq s \leq k, \\
& A_{s j}=\left\{X_{\left.(s-1) m+j>u_{n}\right\},} \quad 1 \leq j \leq k .\right.
\end{aligned}
$$

By $I_{1}, I_{2}, \ldots, I_{k}$ we will denote such subsets of $\{1,2,3, \ldots, n\}$ that $\min I_{t}-\max I_{s} \geq l$, for $k \geq t>s \geq 1$. For random variable λ such that $0 \leq \lambda \leq 1$ a.s., we put

$$
\begin{aligned}
& B_{r, l}= \begin{cases}\omega: \lambda(\omega) \in\left\{\begin{array}{ll}
{\left[0, \frac{1}{2^{l}}\right],} & r=0, \\
\left(\frac{r}{2^{l}}, \frac{r+1}{2^{l}}\right], & 0<r \leq 2^{l}-1
\end{array}\right\}, \\
B_{r, l, \boldsymbol{\alpha}, n}=\left\{\omega: \varepsilon_{j}(\omega)=\alpha_{j}, 1 \leq j \leq n\right\} \cap B_{r, l} .\end{cases}
\end{aligned}
$$

Theorem 2. Let us suppose that the following conditions are satisfied:
(a) $F \in D(G)$, for some real constants $a_{n}>0, b_{n}$ and every real x,
(b) $\left\{X_{n}, n \geq 1\right\}$ is a strictly stationary random sequence satisfying Conditions $D\left(u_{n}, v_{n}\right)$ and $D^{\prime}\left(u_{n}\right)$ for $u_{n}=a_{n} x+b_{n}$ and $v_{n}=a_{n} y+b_{n}$, where $x<y$,
(c) $\boldsymbol{\varepsilon}=\left\{\varepsilon_{n}, n \geq 1\right\}$ is a sequence of indicators that is independent of $\left\{X_{n}, n \geq 1\right\}$ and such that (4) holds for some random variable λ.

Then the following equality holds for all real x and $y, x<y$:

$$
\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq a_{n} x+b_{n}, M_{n} \leq a_{n} y+b_{n}\right]=E\left[G^{\lambda}(x) G^{1-\lambda}(y)\right] .
$$

Thus this result generalize that one in [3] where constant limit p of $\frac{S_{n}}{n}$ was considered instead of the random variable λ. Moreover as the corollary we may obtain:

Corollary 1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables such that:
(a) $F \in D(G)$, (i.e. (1) holds),
(b) $\varepsilon=\left\{\varepsilon_{n}, n \geq 1\right\}$ is a sequence of indicators that is independent of $\left\{X_{n}, n \geq 1\right\}$ and such that

$$
\frac{S_{n}}{n} \xrightarrow{P} \lambda, \quad \text { as } n \rightarrow \infty
$$

for some random variable λ.
Then, the following equality holds for all real $x<y$:

$$
\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq a_{n} x+b_{n}, M_{n} \leq a_{n} y+b_{n}\right]=E\left[G^{\lambda}(x) G^{1-\lambda}(y)\right] .
$$

3. Proofs

Lemma 1. For any sequence $\boldsymbol{\alpha}=\left\{\alpha_{j}, j \in N\right\}$, under conditions of Theorem 2 we have

$$
\begin{aligned}
& \left|P\left[\bigcap_{s=1}^{k} M\left(I_{s}, \boldsymbol{\alpha}\right) \leq u_{n}, M\left(I_{s}\right) \leq v_{n}\right]-\prod_{s=1}^{k} P\left[M\left(I_{s}, \boldsymbol{\alpha}\right) \leq u_{n}, M\left(I_{s}\right) \leq v_{n}\right]\right| \\
& \quad \leq(k-1) \alpha_{n, l},
\end{aligned}
$$

where $\alpha_{n, l_{n}} \rightarrow 0$ as $n \rightarrow \infty$ for some $l_{n}=o(n)$.
Proof of Lemma 1. For $k=2$ we have Condition $D\left(u_{n}, v_{n}\right)$ where $A_{1}=\left\{j \in I_{1}: \alpha_{j}=\right.$ $1\}, A_{2}=I_{1} \backslash A_{1}, B_{1}=\left\{j \in I_{2}: \alpha_{j}=1\right\}, B_{2}=I_{2} \backslash A_{2}$. And the proof follows from induction similarly as the proof of Lemma 4.2 in [3].

Lemma 2. With assumptions of Lemma 1 we have

$$
\begin{aligned}
& \left|P\left[M_{n}(\boldsymbol{\alpha}) \leq u_{n}, M_{n} \leq v_{n}\right]-\prod_{s=1}^{k} P\left[M\left(K_{s}, \boldsymbol{\alpha}\right) \leq u_{n}, M\left(K_{s}\right) \leq v_{n}\right]\right| \\
& \quad \leq\left[(k-1) \alpha_{n, l}+(4 k+3) \frac{l}{n} \cdot n\left(1-F\left(u_{n}\right)\right)\right]
\end{aligned}
$$

Proof of Lemma 2. The proof is similar to the proof of Lemma 4.3 in [3] but we use Lemma 1 instead of Lemma 4.2 [3].

Let $d(X, Y)$ stands for Ky Fan metric, $d(X, Y)=\inf \{\varepsilon: P[|X-Y|>\varepsilon]<\varepsilon\}$.
Lemma 3. (a) For arbitrary positive integers s, m, we have

$$
d\left(\frac{S_{m s}-S_{m(s-1)}}{m}, \lambda\right) \leq(2 s-1)\left[d\left(\frac{S_{m s}}{m s}, \lambda\right)+d\left(\frac{S_{m(s-1)}}{m(s-1)}, \lambda\right)\right] .
$$

(b) If $\left\{X_{n}, n \geq 1\right\}$ and $\left\{Y_{n}, n \geq 1\right\}$ are such that $\left|X_{n}-Y_{n}\right|<1$ a.s. then

$$
E\left|X_{n}-Y_{n}\right| \leq 2 d\left(X_{n}, Y_{n}\right)
$$

Proof of Lemma 3.

(a) Because

$$
\begin{equation*}
\frac{S_{m s}-S_{m(s-1)}}{m}-\lambda=s\left(\frac{S_{m s}}{m s}-\lambda\right)-(s-1)\left(\frac{S_{m(s-1)}}{m(s-1)}-\lambda\right), \tag{5}
\end{equation*}
$$

and for every random variables X and Y and arbitrary α we have

$$
\begin{equation*}
P[|X+Y|>\varepsilon] \leq P[|X|+|Y|>\varepsilon] \leq P[|X|>\alpha \varepsilon]+P[|Y|>(1-\alpha) \varepsilon] \tag{6}
\end{equation*}
$$

thus using (5) and putting in (6) $X=s\left(\frac{S_{m s}}{m s}-\lambda\right), Y=-(s-1)\left(\frac{S_{m(s-1)}}{m(s-1)}-\lambda\right)$, and $\alpha=\frac{s}{2 s-1}$, we get

$$
\begin{aligned}
P\left[\left|\frac{S_{m s}-S_{m(s-1)}}{m}-\lambda\right|>\varepsilon\right] \leq & P\left[\left|\frac{S_{m s}}{m s}-\lambda\right|>\frac{\varepsilon}{2 s-1}\right] \\
& +P\left[\left|\frac{S_{m(s-1)}}{m(s-1)}-\lambda\right|>\frac{\varepsilon}{2 s-1}\right]
\end{aligned}
$$

what gives (a).
(b) We have

$$
\begin{aligned}
E\left|X_{n}-Y_{n}\right|= & E\left|X_{n}-Y_{n}\right| I\left[\left|X_{n}-Y_{n}\right|>d\left(X_{n}, Y_{n}\right)\right] \\
& +E\left|X_{n}-Y_{n}\right| I\left[\left|X_{n}-Y_{n}\right| \leq d\left(X_{n}, Y_{n}\right)\right] \\
\leq & P\left[\left|X_{n}-Y_{n}\right|>d\left(X_{n}, Y_{n}\right)\right]+d\left(X_{n}, Y_{n}\right) \\
\leq & 2 d\left(X_{n}, Y_{n}\right),
\end{aligned}
$$

as $d\left(X_{n}-Y_{n}, 0\right)=d\left(X_{n}, Y_{n}\right)$.
Proof of Theorem 2. Proceedings as in the proof of Theorem 3.2 [3] with the sequence of random variables $\left\{\varepsilon_{n}, n \geq 1\right\}$ replaced by the nonrandom sequence of $\left\{\alpha_{n}, n \geq 1\right\} \in\{0,1\}^{N}$
for any $0 \leq r \leq 2^{k}-1$, we have

$$
\begin{align*}
& \left(\sum_{j \in K_{s}} \alpha_{j}\right)\left(F\left(u_{n}\right)-F\left(v_{n}\right)\right)+\left(1-m\left(1-F\left(v_{n}\right)\right)\right) \\
& =\left[1-\frac{m r}{2^{k}}\left(1-F\left(u_{n}\right)\right)-m\left(1-\frac{r}{2^{k}}\right)\left(1-F\left(v_{n}\right)\right)\right] \\
& \quad+\left[\frac{\sum_{j \in K_{s}} \alpha_{j}}{m}-\frac{r}{2^{k}}\right] m\left(F\left(u_{n}\right)-F\left(v_{n}\right)\right) \\
& \leq P\left[M\left(K_{s}, \boldsymbol{\alpha}\right) \leq u_{n}, M\left(K_{s}\right) \leq v_{n}\right] \\
& \leq\left[1-\frac{m r}{2^{k}}\left(1-F\left(u_{n}\right)\right)-m\left(1-\frac{r}{2^{k}}\right)\left(1-F\left(v_{n}\right)\right)\right] \\
& \quad+m \sum_{j=2}^{m} P\left[A_{s 1}, A_{s j}\right]+\left[\frac{\sum_{j \in K_{s}} \alpha_{j}}{m}-\frac{r}{2^{k}}\right] m\left(F\left(u_{n}\right)-F\left(v_{n}\right)\right), \tag{7}
\end{align*}
$$

where $A_{i j}=\left\{X_{(i-1) m+j}>u_{n}\right\}, j \in\{1,2, \ldots, m\}$ and $m=\left[\frac{n}{k}\right]$ for any fixed positive integer k. From the previous inequalities, Lemma 2, inequality

$$
\begin{equation*}
\left|\prod_{s=1}^{k} a_{s}-\prod_{s=1}^{k} b_{s}\right| \leq \sum_{s=1}^{k}\left|a_{s}-b_{s}\right| \tag{8}
\end{equation*}
$$

valid for all $a_{s}, b_{s} \in[0,1]$ as $0 \leq 1-m\left[\frac{r}{2^{k}}\left(1-F\left(u_{n}\right)\right)+\left(1-\frac{r}{2^{k}}\right)\left(1-F\left(v_{n}\right)\right)\right] \leq 1$, and since $\left\{X_{n}, n \geq 1\right\}$ is strictly stationary, we have

$$
\begin{aligned}
& \left|P\left[M_{n}(\boldsymbol{\alpha}) \leq u_{n}, M_{n} \leq v_{n}\right]-\prod_{s=1}^{k}\left[1-\frac{\frac{r}{2^{k}} n\left(1-F\left(u_{n}\right)\right)+\left(1-\frac{r}{2^{k}}\right) n\left(1-F\left(v_{n}\right)\right)}{k}\right]\right| \\
& \quad \leq\left|P\left[M_{n}(\boldsymbol{\alpha}) \leq u_{n}, M_{n} \leq v_{n}\right]-\prod_{s=1}^{k} P\left[M\left(K_{s}, \boldsymbol{\alpha}\right) \leq u_{n}, M\left(K_{s}\right) \leq v_{n}\right]\right| \\
& \quad+\mid \prod_{s=1}^{k} P\left[M\left(K_{s}, \boldsymbol{\alpha}\right) \leq u_{n}, M\left(K_{s}\right) \leq v_{n}\right] \\
& \left.\quad-\prod_{s=1}^{k}\left[1-\frac{\frac{r}{2^{k}} n\left(1-F\left(u_{n}\right)\right)+\left(1-\frac{r}{2^{k}}\right) n\left(1-F\left(v_{n}\right)\right)}{k}\right] \right\rvert\,
\end{aligned}
$$

$$
\begin{equation*}
=J_{1}+J_{2}, \quad \text { say } \tag{9}
\end{equation*}
$$

From Lemma 2 and (7), (8) we have

$$
\begin{equation*}
J_{1} \leq(k-1) \alpha_{n, l}+(4 k+3) \frac{l}{n} \cdot n\left(1-F\left(u_{n}\right)\right), \tag{10}
\end{equation*}
$$

$$
\begin{align*}
J_{2} \leq & \sum_{s=1}^{k} \mid P\left[M\left(K_{s}, \boldsymbol{\alpha}\right) \leq u_{n}, M\left(K_{s}\right) \leq v_{n}\right] \\
& \left.-\left[1-\frac{\frac{r}{2^{k}} n\left(1-F\left(u_{n}\right)\right)+\left(1-\frac{r}{2^{k}}\right) n\left(1-F\left(v_{n}\right)\right)}{k}\right] \right\rvert\, \\
\leq & n \sum_{j=2}^{m} P\left[A_{1 j}, A_{11}\right]+\sum_{s=1}^{k} \frac{\left|\sum_{i \in I_{s}} \frac{\alpha_{i}}{m}-\frac{r}{2^{k}}\right|}{k} n\left(F\left(u_{n}\right)-F\left(v_{n}\right)\right) . \tag{11}
\end{align*}
$$

Furthermore, again from (8),

$$
\begin{align*}
& E \quad \sum_{\alpha \in\{0,1\}^{n}} \left\lvert\, \prod_{s=1}^{k}\left[1-\frac{\frac{r}{2^{k}} n\left(1-F\left(u_{n}\right)\right)+\left(1-\frac{r}{2^{k}}\right) n\left(1-F\left(v_{n}\right)\right)}{k}\right]\right. \\
& \left.\quad-\prod_{s=1}^{k}\left[1-\frac{\lambda n\left(1-F\left(u_{n}\right)\right)+(1-\lambda) n\left(1-F\left(v_{n}\right)\right)}{k}\right] \right\rvert\, I\left[B_{r, k, \boldsymbol{\alpha}, n}\right] \\
& \quad \leq \sum_{s=1}^{k} E\left|\frac{r}{2^{k}}-\lambda\right| I\left[B_{r, k}\right] \frac{n\left(2-F\left(u_{n}\right)-F\left(v_{n}\right)\right)}{k} \\
& \quad \leq \frac{n\left(2-F\left(u_{n}\right)-F\left(v_{n}\right)\right)}{2^{k}} P\left[B_{r, k}\right] . \tag{12}
\end{align*}
$$

From independency $\left\{X_{n}, n \geq 1\right\}$ and $\left\{\varepsilon_{n}, n \geq 1\right\}$, λ, we get

$$
\begin{equation*}
\sum_{\boldsymbol{\alpha} \in\{0,1\}^{n}} E P\left[M_{n}(\boldsymbol{\alpha}) \leq u_{n}, M_{n} \leq v_{n}\right] I\left[B_{r, k, \boldsymbol{\alpha}, n}\right]=P\left[M_{n}(\boldsymbol{\varepsilon}) \leq u_{n}, M_{n} \leq v_{n}, B_{r, k}\right] . \tag{13}
\end{equation*}
$$

Now, taking into account (9)-(13), we get

$$
\begin{align*}
J_{r, k}= & \sum_{\alpha \in\{0,1\}^{n}} E \mid P\left[M_{n}(\boldsymbol{\varepsilon}) \leq u_{n}, M_{n} \leq v_{n}\right] \\
& \left.-\prod_{s=1}^{k}\left[1-\frac{\lambda n\left(1-F\left(u_{n}\right)\right)+(1-\lambda) n\left(1-F\left(v_{n}\right)\right)}{k}\right] \right\rvert\, I\left[B_{r, k, \boldsymbol{\alpha}, n}\right] \\
\leq & \left((k-1) \alpha_{n, l}+(4 k+3) \frac{l}{n} \cdot n\left(1-F\left(u_{n}\right)\right)\right) P\left[B_{r, k}\right]+n \sum_{j=2}^{m} P\left[A_{1 j}, A_{11}, B_{r, k}\right] \\
& +E \sum_{s=1}^{k} \frac{\left|\sum_{i \in I_{s}} \frac{\varepsilon_{i}}{m}-\frac{r}{2^{k}}\right|}{k} n\left(F\left(u_{n}\right)-F\left(v_{n}\right)\right) I\left[B_{r, k}\right] \\
& +\frac{n\left(2-F\left(u_{n}\right)-F\left(v_{n}\right)\right)}{2^{k}} P\left[B_{r, k}\right] . \tag{14}
\end{align*}
$$

Now, we evaluate the third term on the right-hand side of (14). From triangle inequality and Lemma 3 we have

$$
\begin{align*}
\sum_{r=0}^{2^{k}-1} E\left|\sum_{i \in I_{s}} \frac{\varepsilon_{i}}{m}-\frac{r}{2^{k}}\right| I\left[B_{r, k}\right] & \leq E\left|\sum_{i \in I_{s}} \frac{\varepsilon_{i}}{m}-\lambda\right|+\sum_{r=0}^{2^{k}-1} E\left|\lambda-\frac{r}{2^{k}}\right| I\left[B_{r, k}\right] \\
& \leq E\left|\frac{S_{m s}-S_{m(s-1)}}{m}-\lambda\right|+\frac{1}{2^{k}} \\
& \leq 2 d\left(\frac{S_{m s}-S_{m(s-1)}}{m}, \lambda\right)+\frac{1}{2^{k}} \\
& \leq 2(2 s-1)\left(d\left(\frac{S_{m s}}{m s}, \lambda\right)+d\left(\frac{S_{m(s-1)}}{m(s-1)}, \lambda\right)\right)+\frac{1}{2^{k}} \tag{15}
\end{align*}
$$

thus taking a sum $\sum_{r=0}^{2^{k}-1}$ of the left- and right-hand side of (14) we get

$$
\begin{align*}
\sum_{r=0}^{2^{k}-1} J_{r, k} \leq & {\left[(k-1) \alpha_{n, l}+(4 k+3) \frac{l}{n} \cdot n\left(1-F\left(u_{n}\right)\right)\right]+n \sum_{j=2}^{m} P\left[A_{1 j}, A_{11}\right] } \\
& +\left[2(2 s-1)\left(d\left(\frac{S_{m s}}{m s}, \lambda\right)+d\left(\frac{S_{m(s-1)}}{m(s-1)}, \lambda\right)\right)+\frac{1}{2^{k}}\right] \frac{n\left(F\left(u_{n}\right)-F\left(v_{n}\right)\right)}{k} \\
& +\frac{n\left(2-F\left(u_{n}\right)-F\left(v_{n}\right)\right)}{2^{k}} \tag{16}
\end{align*}
$$

Taking a limit $n \rightarrow \infty$ and then $m \rightarrow \infty$ from Lemma 4.1 in [3] by similar computations as those in the proof of Theorem 3.2 in [3] and because $\lim _{m \rightarrow \infty} d\left(\frac{S_{m s}}{m s}, \lambda\right)=0$ we have

$$
\begin{aligned}
& \left|\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq u_{n}, M_{n} \leq v_{n}\right]-E\left[1-\frac{-\ln G^{\lambda}(x)-\ln G^{1-\lambda}(y)}{k}\right]^{k}\right| \\
& \quad \leq k o\left(\frac{1}{k}\right)+\frac{-\ln G(y)}{2^{k-1}}
\end{aligned}
$$

Now if we take $\lim _{k \rightarrow \infty}$ of the both sides we have

$$
\left|\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq u_{n}, M_{n} \leq v_{n}\right]-\lim _{k \rightarrow \infty} E\left(1+\frac{\ln G^{\lambda}(x)+\ln G^{1-\lambda}(y)}{k}\right)^{k}\right|=0
$$

so

$$
\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq u_{n}, M_{n} \leq v_{n}\right]=E\left[G^{\lambda}(x) G^{1-\lambda}(y)\right] .
$$

4. Examples and applications

Example 1. Let $\lambda \in[0,1]$, a.s., be an arbitrary random variable and let us define

$$
\varepsilon_{1}=1 \quad \text { a.s. }
$$

$$
\varepsilon_{n}= \begin{cases}0, & \text { for } \lambda \in \bigcup_{r=1}^{n-1}\left(\frac{r-1}{n-1}, \frac{r}{n}\right] \cup\{0\}, \tag{17}\\ 1, & \text { for } \lambda \in \bigcup_{r=1}^{n-1}\left(\frac{r}{n}, \frac{r}{n-1}\right]\end{cases}
$$

then

$$
\begin{equation*}
\frac{S_{n}}{n} \xrightarrow{P} \lambda, \quad \text { as } n \rightarrow \infty . \tag{18}
\end{equation*}
$$

Let $\left\{X_{n}, n \geq 1\right\}$ be the family of stationary Farlie-Gumbel-Morgenstern sequence (cf. [4,2]), independent of λ with the law:

$$
\begin{equation*}
P\left[X_{i}<x, X_{i+j}<y\right]=F(x) F(y)\left(1+\mu_{j}(1-F(x))(1-F(y))\right), \quad x, y \in \mathfrak{R} \tag{19}
\end{equation*}
$$

Then for arbitrary sequence $\boldsymbol{\mu}=\left\{\mu_{n}, n \geq 1\right\}$ and nondegenerate distribution function F such that $F \in D(G)$ the condition $D^{\prime}(u)$ holds. If additionally $\left\{X_{n}, n \geq 1\right\}$ is the α-mixing sequence with $\alpha_{n} \rightarrow 0$, as $n \rightarrow \infty$ (it means, that $\mu_{n} \rightarrow 0$, as $n \rightarrow \infty$), then Condition $D\left(u_{n}, v_{n}\right)$ holds too. In this cases we have

$$
\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq u_{n}, M_{n} \leq v_{n}\right]=E\left[G^{\lambda}(x) G^{1-\lambda}(y)\right] .
$$

For example, if λ is uniformly distributed on $[0,1]$ independent on α-mixing stationary family Farlie-Gumbel-Morgenstern laws with $F(x)=\frac{1}{2}+\frac{1}{\pi} \operatorname{arctg}(x)$ (the Cauchy's law) then

$$
\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq u_{n}, M_{n} \leq v_{n}\right]=\frac{x y}{x-y}\left(\mathrm{e}^{-\frac{1}{x}}-\mathrm{e}^{-\frac{1}{y}}\right) .
$$

Proof of Example 1. At first, we prove that

$$
S_{n}=\sum_{k=1}^{n} \varepsilon_{k}= \begin{cases}1, & \lambda \in\left[0, \frac{1}{n}\right] \tag{20}\\ 2, & \lambda \in\left(\frac{1}{n}, \frac{2}{n}\right], \\ \vdots & \\ n, & \lambda \in\left(\frac{n-1}{n}, 1\right]\end{cases}
$$

really, for $n=1$ we have $S_{1}=1=\varepsilon_{1}$. Assuming, (20) for some n we get

$$
\begin{aligned}
{\left[S_{n+1}=k\right] } & = \begin{cases}{\left[S_{n}=1, \varepsilon_{n+1}=0\right],} & \text { if } k=1, \\
{\left[S_{n}=k, \varepsilon_{n+1}=0\right] \cup\left[S_{n}=k-1, \varepsilon_{n+1}=1\right],} & \text { if } 1<k \leq n, \\
{\left[S_{n}=n, \varepsilon_{n+1}=1\right],} & \text { if } k=n+1,\end{cases} \\
= & \begin{cases}{\left[\lambda \in\left[0, \frac{1}{n}\right] \cap\left[0, \frac{1}{n+1}\right]\right],} & \text { if } k=1 \\
{\left[\lambda \in\left(\frac{k-1}{n}, \frac{k}{n}\right] \cap\left(\frac{k-1}{n}, \frac{k}{n+1}\right]\right.} \\
\left.\cup\left(\frac{k-2}{n}, \frac{k-1}{n}\right] \cap\left(\frac{k-1}{n+1}, \frac{k-1}{n}\right]\right], & \text { if } 1<k \leq n, \\
{\left[\lambda \in\left(\frac{n-1}{n}, 1\right] \cap\left(\frac{n}{n+1}, 1\right]\right],} & \text { if } k=n+1,\end{cases}
\end{aligned}
$$

$$
= \begin{cases}{\left[\lambda \in\left[0, \frac{1}{n+1}\right]\right],} & \text { if } k=1, \\ {\left[\lambda \in\left(\frac{k-1}{n+1}, \frac{k}{n+1}\right]\right],} & \text { if } 1<k \leq n, \\ {\left[\lambda \in\left(\frac{n}{n+1}, 1\right]\right],} & \text { if } k=n+1,\end{cases}
$$

what leads to

$$
\left|\frac{S_{n}}{n}-\lambda\right| \leq \frac{1}{n}, \quad \text { a.s., } n \geq 1
$$

thus (18) holds.
If $F \in D(G)$ then we show that Condition $D^{\prime}\left(u_{n}\right)$ holds. Really, since F is nondegenerate, then there exists the real x_{o}, such that $0<F\left(x_{o}\right)<1$, then from (19)

$$
\begin{equation*}
0 \leq P\left[X_{i}<x_{o}, X_{i+j}<x_{o}\right]=F^{2}\left(x_{o}\right)\left(1+\mu_{j}\left(1-F\left(x_{o}\right)\right)^{2}\right) \leq 1, \tag{21}
\end{equation*}
$$

leads to

$$
-\frac{1}{\left(1-F\left(x_{o}\right)\right)^{2}} \leq \mu_{j} \leq \frac{1+F\left(x_{o}\right)}{F^{2}\left(x_{o}\right)\left(1-F\left(x_{o}\right)\right)}
$$

which implies that sup $\left|\mu_{j}\right| \leq C$ for some absolute constants C. From

$$
\begin{aligned}
P\left[X_{1}>x, X_{j}>y\right]= & 1-P\left[X_{1}<x, X_{j}>y\right]-P\left[X_{1}>x, X_{j}<y\right] \\
& -P\left[X_{1}<x, X_{j}<y\right] \\
= & 1-P\left[X_{1}<x\right]-P\left[X_{j}<y\right]+P\left[X_{1}<x, X_{j}<y\right]
\end{aligned}
$$

we get

$$
\begin{equation*}
P\left[X_{1}>x, X_{j}>y\right]=(1-F(x))(1-F(y))\left(1+\mu_{j} F(x) F(y)\right), \tag{22}
\end{equation*}
$$

such that

$$
\left|n \sum_{j=2}^{[n / k]} P\left[X_{1}>u_{n}, X_{j}>u_{n}\right]\right| \leq \frac{1+C}{k}\left[n\left(1-F\left(u_{n}\right)\right)\right]^{2},
$$

and because $n\left(1-F\left(u_{n}\right)\right) \rightarrow G(x)$ thus $D^{\prime}\left(u_{n}\right)$ holds.
For the last fact of example, by Theorem 2 we have from l'Hospital theorem

$$
\lim _{t \rightarrow \infty} \frac{1-F(t x)}{1-F(t)}=\lim _{t \rightarrow \infty} \frac{\left(1+t^{2}\right) x}{1+(t x)^{2}}=x^{-1}
$$

thus from Theorem 2.1.1 [1] we have

$$
\lim _{n \rightarrow \infty} P\left[\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}<\operatorname{tg}\left(\frac{\pi}{2}-\frac{\pi}{n}\right) x\right]=\exp \left(-\frac{1}{x}\right), \quad x>0
$$

therefore for $y>x>0$ we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left[M_{n}(\varepsilon) \leq u_{n}, M_{n} \leq v_{n}\right] & =E \mathrm{e}^{-\frac{\lambda}{x}-\frac{1-\lambda}{y}} \\
& =\mathrm{e}^{-\frac{1}{y}} \int_{0}^{1} \mathrm{e}^{t\left(\frac{1}{y}-\frac{1}{x}\right)} \mathrm{d} t \\
& =\frac{x y}{x-y}\left(\mathrm{e}^{-\frac{1}{x}}-\mathrm{e}^{-\frac{1}{y}}\right) .
\end{aligned}
$$

Example 2. Let $\left\{\xi_{n}, n \geq 1\right\}$ be a sequence of independent identically distributed random variables with the distribution function H and let $g\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be some measurable function. We put $X_{n}=g\left(\xi_{n}, \xi_{n+1}, \ldots, \xi_{n+m-1}\right), n \geq 1$, thus $\left\{X_{n}, n \geq 1\right\}$ is the sequence of m-dependent random variables, thus Condition $D\left(u_{n}, v_{n}\right)$ is satisfied. For some choice of $\left\{\xi_{n}, n \geq 1\right\}$ and function $g()$ the Condition $D^{\prime}\left(u_{n}\right)$ may be fulfilled too. For example, if $g\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\min \left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and ξ_{n} are uniformly distributed on $[0,1]$ then

$$
\begin{aligned}
& H(x)= \begin{cases}0, & \text { if } x<0, \\
x, & \text { if } x \in[0,1], \\
1, & \text { if } x>1,\end{cases} \\
& F(x)=1-(1-H(x))^{m}= \begin{cases}0, & \text { if } x<0, \\
1-(1-x)^{m}, & \text { if } x \in[0,1], \\
1, & \text { if } x>1 .\end{cases}
\end{aligned}
$$

Furthermore, for such defined sequence, we have that $F \in D\left(H_{2, m}\right)$ where

$$
H_{2, m}= \begin{cases}1, & \text { if } x \geq 0, \tag{23}\\ \exp \left(-(-x)^{m}\right), & \text { if } x<0\end{cases}
$$

with the centring and normalizing constants $a_{n}=1, b_{n}=\frac{1}{\sqrt[m]{n}}$, i.e. for every $x \in R$,

$$
P\left[\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}<1+\frac{x}{\sqrt[m]{n}}\right] \longrightarrow H_{2, m}(x), \quad \text { as } n \rightarrow \infty
$$

Therefore, the appropriate sequence of $\left\{u_{n}, n \geq 1\right\}$ should be defined by $\left\{u_{n}=1+\frac{x}{\sqrt[n]{n}}, n \geq 1\right\}$. Furthermore Conditions $D^{\prime}\left(u_{n}\right)$ and $D\left(u_{n}, v_{n}\right)$ hold. Hence if λ has the law with the density function $\alpha x^{\alpha-1}\left(\left\{\varepsilon_{n}, n \geq 1\right\}\right.$ is constructed as in Example 1) independent of $\left\{\xi_{n}, n \geq 1\right\}$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[M_{n}(\boldsymbol{\varepsilon}) \leq u_{n}, M_{n} \leq v_{n}\right]=\alpha \mathrm{e}^{-(-y)^{m}} \int_{0}^{1} t^{\alpha-1} \mathrm{e}^{t\left((-y)^{m}-(-x)^{m}\right)} \mathrm{d} t \tag{24}
\end{equation*}
$$

Proof of Example 2. We put $\omega(F)=1, F^{\star}(x)=F\left(1-\frac{1}{x}\right)=1-\frac{1}{x^{m}}$, (cf. [1], Section 2.1) and remark

$$
\lim _{t \rightarrow \infty} \frac{1-F^{\star}(t x)}{1-F^{\star}(t)}=x^{-m}
$$

such that from Theorem 2.1.2 [1] we have that $F \in D\left(H_{2, m}\right)$. Now we check Condition $D^{\prime}\left(u_{n}\right)$. For $1<j \leq m$ we have

$$
\begin{aligned}
P\left[X_{1}>u_{n}, X_{j}>u_{n}\right] & =P\left[\min \left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m+j-1}\right\}>u_{n}\right] \\
& =\left(1-u_{n}\right)^{m+j-1} \\
& =\left(\frac{x}{\sqrt[m]{n}}\right)^{m+j-1},
\end{aligned}
$$

thus

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} n \sum_{j=2}^{[n / k]} P\left[X_{1}>u_{n}, X_{j}>u_{n}\right] & =\limsup _{n \rightarrow \infty} n \sum_{j=2}^{m} \frac{x^{m+j-1}}{n^{(m+j-1) / m}} \\
& =\lim _{n \rightarrow \infty} \frac{x^{m+1}}{\sqrt[m]{n}} \cdot \frac{1-\left(\frac{x}{\sqrt[m]{n}}\right)^{m-1}}{1-\frac{x}{\sqrt[m]{n}}}=0
\end{aligned}
$$

Equality (24) follows from our Theorem 2.
We remark that in [3] there is an error in the proof of Lemma 4.2 [3].
Example 3. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent identically distributed random variables with the exponential law $F(x)=\left(1-\mathrm{e}^{-x}\right) I[x>0]$. Obviously, for every x we have $F^{n}(\ln (n)+x) \rightarrow \mathrm{e}^{-\mathrm{e}^{-x}}$, as $n \rightarrow \infty$. Furthermore let $\left\{\varepsilon_{n}, n \geq 1\right\}$ be copies of random variable ε_{1} (i.e. for every $i, j, \varepsilon_{i}=\varepsilon_{j}$) with the law $P\left[\varepsilon_{1}=1\right]=P\left[\varepsilon_{1}=0\right]=\frac{1}{2}$, and independent of $\left\{X_{n}, n \geq 1\right\}$. If we put $u_{n}=\ln (n)+1, v_{n}=\ln (n)+2$, thus $D\left(u_{n}, v_{n}\right)$ holds with $\alpha_{n, l}=0$ for every $n, l \in N$. But, if we put $k=2, I_{1}=\{1\}, I_{2}=\{2\}$ then

$$
\begin{aligned}
P\left[\bigcap_{s=1}^{2}\left\{M\left(I_{s}, \boldsymbol{\varepsilon}\right) \leq u_{n}, M\left(I_{s}\right) \leq v_{n}\right\}\right]= & P\left[\max \left\{X_{1}, X_{2}\right\} \leq u_{n}<v_{n}\right] P\left[\varepsilon_{1}=\varepsilon_{2}=1\right] \\
& +P\left[\max \left\{X_{1}, X_{2}\right\} \leq v_{n}\right] P\left[\varepsilon_{1}=\varepsilon_{2}=0\right] \\
= & \frac{1}{2}\left(\left(1-\mathrm{e}^{-1} / n\right)^{2}+\left(1-\mathrm{e}^{-2} / n\right)^{2}\right)
\end{aligned}
$$

and

$$
\begin{array}{rl}
\prod_{s=1}^{2} P & P\left[\left\{\left(I_{s}, \boldsymbol{\varepsilon}\right) \leq u_{n}, M\left(I_{s}\right) \leq v_{n}\right\}\right] \\
= & \left(P\left[X_{1} \leq u_{n}<v_{n}\right] P\left[\varepsilon_{1}=1\right]+P\left[X_{1} \leq v_{n}\right] P\left[\varepsilon_{1}=0\right]\right) \\
& \times\left(P\left[X_{2} \leq u_{n}<v_{n}\right] P\left[\varepsilon_{2}=1\right]+P\left[X_{2} \leq v_{n}\right] P\left[\varepsilon_{2}=0\right]\right) \\
= & \frac{1}{4}\left(\left(1-\mathrm{e}^{-1} / n\right)+\left(1-\mathrm{e}^{-2} / n\right)\right)^{2} .
\end{array}
$$

Thus

$$
\begin{aligned}
& \left|P\left[\bigcap_{s=1}^{k}\left\{M\left(I_{s}, \boldsymbol{\varepsilon}\right) \leq u_{n}, M\left(I_{s}\right) \leq v_{n}\right\}\right]-\prod_{s=1}^{k} P\left[M\left(I_{s}, \boldsymbol{\varepsilon}\right) \leq u_{n}, M\left(I_{s}\right) \leq v_{n}\right]\right| \\
& \quad=\frac{1}{4}\left(\left(1-\mathrm{e}^{-1} / n\right)-\left(1-\mathrm{e}^{-2} / n\right)\right)^{2}=\frac{(\mathrm{e}-1)^{2}}{4 \mathrm{e}^{4} n^{2}}>\alpha_{n, 1}=0 .
\end{aligned}
$$

However the random variables $\boldsymbol{\varepsilon}=\left\{\varepsilon_{n}, n \geq 1\right\}$ defined in Example 3 do not satisfy the Weak Law of Large Numbers (WLLN). In the next example we construct the random variables
satisfying WLLN but such that for every choice of subsets $\left\{I_{s}, 1 \leq s \leq k\right\}$ the Lemma 4.2 [3] fails. We begin with

Lemma 4. Let $\left\{A_{k}, k \geq 1\right\}$ and $\left\{B_{k}, k \geq 1\right\}$ be such sequences of positive numbers, that for every $k \geq 1, A_{k}<B_{k}$. Then for every integer $n>1$,

$$
\frac{1}{2} \prod_{i=1}^{n} A_{i}+\frac{1}{2} \prod_{i=1}^{n} B_{i}>\prod_{i=1}^{n} \frac{A_{i}+B_{i}}{2}
$$

The easy inductive proof we omitted.
Example 4. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent identically distributed random variables with the law F, and let $\left\{u_{n}, v_{n}, n \geq 1\right\}$ be two sequences of reals such that $u_{n}<v_{n}$ and $F\left(u_{n}\right)<F\left(v_{n}\right)$, for every $n>1$ (this sequences and F may be defined as in Example 3). Let us define two sequences of random variables $\left\{\xi_{n}, n \geq 0\right\}$ and $\left\{\eta_{n}, n \geq 1\right\}$ interindependent and independent of $\left\{X_{n}, n \geq 1\right\}$, with the law

$$
\begin{aligned}
& P\left[\xi_{n}=1\right]=P\left[\xi_{n}=0\right]=\frac{1}{2}, \quad n \geq 0, \quad \text { and } \quad P\left[\eta_{n}=1\right]=1-\frac{1}{n} \\
& P\left[\eta_{n}=0\right]=\frac{1}{n}, \quad n \geq 1
\end{aligned}
$$

Put

$$
\varepsilon_{n}(\omega)= \begin{cases}\xi_{0}(\omega), & \text { for } \omega \in\left[\eta_{n}=0\right], \\ \xi_{n}(\omega), & \text { for } \omega \in\left[\eta_{n}=1\right]\end{cases}
$$

Then

$$
\begin{equation*}
\frac{S_{n}}{n}=\frac{\sum_{i=1}^{n} \varepsilon_{i}}{n} \xrightarrow{P} \frac{1}{2}, \quad \text { as } n \rightarrow \infty \tag{25}
\end{equation*}
$$

and for every $I_{1}, I_{2}, \ldots, I_{k}$ pairwise disjoint subsets of $\{1,2, \ldots, n\}$ we have

$$
\begin{equation*}
P\left[\bigcap_{s=1}^{k} M\left(I_{s}, \boldsymbol{\varepsilon}\right) \leq u_{n}, M\left(I_{s}\right) \leq v_{n}\right]-\prod_{s=1}^{k} P\left[M\left(I_{s}, \boldsymbol{\varepsilon}\right) \leq u_{n}, M\left(I_{s}\right) \leq v_{n}\right]>0 \tag{26}
\end{equation*}
$$

whereas for every $l \in N, \alpha_{n, l}=0$.
Proof of Example 4. At first we compute the common law of $\left\{\varepsilon_{n}, n \geq 1\right\}$.
Lemma 5. For $\left\{\varepsilon_{n}, n \geq 1\right\}$ defined as in Example 4 and every disjoint subsets of positive integers A and B such that $A \cup B \neq \emptyset$ we have

$$
\begin{aligned}
& P\left[\varepsilon_{i}=0, i \in A ; \varepsilon_{j}=1, j \in B\right] \\
& \quad=\frac{1}{2^{\overline{\bar{A}}+\overline{\bar{B}}+1}}\left[\prod_{i \in A}\left(1+\frac{1}{i}\right) \prod_{i \in B}\left(1-\frac{1}{i}\right)+\prod_{i \in A}\left(1-\frac{1}{i}\right) \prod_{i \in B}\left(1+\frac{1}{i}\right)\right],
\end{aligned}
$$

(where $\left.\prod_{i \in \emptyset} a_{i}=1, \overline{\bar{A}}=\operatorname{card}(A)\right)$.

Proof of Lemma 5. The proof follows from

$$
\begin{aligned}
& P {\left[\varepsilon_{i}=0, i \in A ; \varepsilon_{j}=1, j \in B ; \xi_{0}=0\right] } \\
&=\sum_{K \subset A} P\left[\eta_{i}=0, i \in K ; \eta_{j}=1, \xi_{j}=0, j \in A \backslash K ; \eta_{p}=1, \xi_{p}=1 ; p \in B ; \xi_{0}=0\right] \\
& \quad=\sum_{K \subset A} \prod_{i \in K} \frac{1}{i} \prod_{i \in A \backslash K}\left(\frac{1}{2}\left(1-\frac{1}{i}\right)\right) \prod_{i \in B}\left(\frac{1}{2}\left(1-\frac{1}{i}\right)\right) \cdot \frac{1}{2} \\
& \quad=\frac{1}{2^{\overline{\bar{A}}+\overline{\bar{B}}+1}} \prod_{i \in A}\left(1+\frac{1}{i}\right) \prod_{i \in B}\left(1-\frac{1}{i}\right),
\end{aligned}
$$

and similarly

$$
P\left[\varepsilon_{i}=0, i \in A ; \varepsilon_{j}=1, j \in B ; \xi_{0}=1\right]=\frac{1}{2^{\overline{\bar{A}}+\overline{\bar{B}}+1}} \prod_{i \in A}\left(1-\frac{1}{i}\right) \prod_{i \in B}\left(1+\frac{1}{i}\right) .
$$

Because

$$
\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\operatorname{Var}\left(\xi_{0}\right) P\left[\eta_{i}=\eta_{j}=0\right]=\frac{1}{4 i j}, \quad i \neq j \geq 1,
$$

and

$$
\operatorname{Var}\left(\varepsilon_{i}\right)=\frac{1}{4}, \quad i \geq 1,
$$

thus from Chebyshev's inequality we have, for every $\varepsilon>0$,

$$
P\left[\left|\sum_{i=1}^{n}\left(\varepsilon_{i}-E \varepsilon_{i}\right)\right|>n \varepsilon\right] \leq \frac{\operatorname{Var}\left(\sum_{i=1}^{n} \varepsilon_{i}\right)}{n^{2} \varepsilon^{2}}=\frac{\sum_{i=1}^{n} \frac{1}{4}+2 \sum_{1 \leq i<j \leq n} \frac{1}{4 i j}}{n^{2} \varepsilon^{2}}=O\left(\frac{1}{n}\right),
$$

such that (25) holds.
Since for arbitrary $A \subset\{1,2, \ldots, n\}$, from Lemma 5

$$
\begin{aligned}
P & {\left[M(A, \varepsilon) \leq u_{n}, M(A) \leq v_{n}\right] } \\
= & \sum_{K \subset A} P\left[\max _{i \in K} X_{i} \leq u_{n} ; \max _{i \in A \backslash K} X_{i} \leq v_{n} ; \varepsilon_{i}=0, i \in K ; \varepsilon_{j}=1, j \in A \backslash K\right] \\
= & \sum_{K \subset A} \frac{F^{\bar{K}}\left(u_{n}\right) F^{\overline{\overline{A \backslash K}}}\left(v_{n}\right)}{2^{\bar{K}}+\overline{\overline{A \backslash K}}+1}\left[\prod_{i \in K}\left(1+\frac{1}{i}\right) \prod_{i \in A \backslash K}\left(1-\frac{1}{i}\right)\right. \\
& \left.+\prod_{i \in K}\left(1-\frac{1}{i}\right) \prod_{i \in A \backslash K}\left(1+\frac{1}{i}\right)\right] \\
= & \frac{1}{2} \sum_{K \subset A}\left[\prod_{i \in K} \frac{\left(1+\frac{1}{i}\right) F\left(u_{n}\right)}{2} \prod_{i \in A \backslash K} \frac{\left(1-\frac{1}{i}\right) F\left(v_{n}\right)}{2}\right. \\
& \left.+\prod_{i \in K} \frac{\left(1-\frac{1}{i}\right) F\left(u_{n}\right)}{2} \prod_{i \in A \backslash K} \frac{\left(1+\frac{1}{i}\right) F\left(v_{n}\right)}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left[\prod_{i \in A} \frac{F\left(u_{n}\right)+F\left(v_{n}\right)-\frac{1}{i}\left(F\left(v_{n}\right)-F\left(u_{n}\right)\right)}{2}\right. \\
& \left.+\prod_{i \in A} \frac{F\left(u_{n}\right)+F\left(v_{n}\right)+\frac{1}{i}\left(F\left(v_{n}\right)-F\left(u_{n}\right)\right)}{2}\right],
\end{aligned}
$$

thus putting for every $1 \leq j \leq k$,

$$
A_{j}=\prod_{i \in I_{j}} \frac{F\left(u_{n}\right)+F\left(v_{n}\right)+\frac{1}{i}\left(F\left(v_{n}\right)-F\left(u_{n}\right)\right)}{2}
$$

and

$$
B_{j}=\prod_{i \in I_{j}} \frac{F\left(u_{n}\right)+F\left(v_{n}\right)-\frac{1}{i}\left(F\left(v_{n}\right)-F\left(u_{n}\right)\right)}{2}
$$

the Lemma 4 ends the proof of (26).
Because Lemma 4.2 [3] fails, thus the proof of Theorem 3.2 [3] is not correct, but this theorem follows from our Theorem 2 and allows true.

Acknowledgements

The author would like to express his gratitude to the referees and the Editor-in-Chief Professor Thomas Mikosch for their constructive comments which led to an improved presentation of the paper as well as Professor Zdzisław Rychlik of University of Maria Curie-Skłodowska in Lublin for introducing to the subject of this article.

References

[1] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, John Wiley \& Sons, New York, Chichester, Brisbane, Toronto, 1978.
[2] N.L. Johnson, S. Kotz, On some generalized Farlie-Gumbel-Morgenstern distributions, Communications in Statistics-Theory and Methods 4 (1975) 415-427.
[3] P. Mladenovič, V. Piterbarg, On asymptotic distribution of maxima of complete and incomplete samples from stationary sequences, Stochastic Processes and their Applications 116 (2006) 1977-1991.
[4] D. Morgenstern, Einfache Beispiele Zweidimensionaler Verteilungen, Mitteilungsblatt für Mathematische Statistik, vol. 8, 1956, pp. 234-235.
[5] S.I. Resnick, Extreme Values, Regular Variation and Point Processes, Springer-Verlag, New York, Berlin. Heidelberg, London, Paris, Tokyo, 1987.

[^0]: ${ }^{4}$ The project is co-funded from the sources of European Union within the limit of the European Social Fund.动会

 The project is co-funded from the sources of the European Union within the limit of the European Social Fund.

 Human - The Best Inwestment
 E-mail address: tkraj@op.pl.

