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Abstract
Let {X,, n > 1} be a strictly stationary sequence of random variables and M, = max{Xq, X3, ..., Xn}.
Assume that some random variables X, X», ... can be observed and the sequence of random variables

& = {ey, n > 1} indicate which X1, X», ... are observed, thus M, (¢) = max{Xj tgj = 1,1 <j<n}In
paper (Mladenovi¢ and Piterbarg, 2006 [3]), the limiting behaviour (M,,, M, (e)) is investigated under the
condition

n
2 £
Jj=1 P
— p, asn — 00,
n

for some real p € (0, 1). We generalize these results on the case, when for some random variable A

n

P
— A, asn — oQ.

* The project is co-funded from the sources of European Union within the limit of the European Social Fund.

ete
EUROPEAN
i HUMAN CAPITAL B -

The project is co-funded from the sources of the European Union
within the limit of the European Sccial Fund

Human - The Best Inwestment

E-mail address: tkraj@op.pl.

0304-4149/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2011.04.001


http://dx.doi.org/10.1016/j.spa.2011.04.001
http://www.elsevier.com/locate/spa
mailto:tkraj@op.pl
http://dx.doi.org/10.1016/j.spa.2011.04.001

1706 T. Krajka / Stochastic Processes and their Applications 121 (2011) 1705-1719

© 2011 Elsevier B.V. All rights reserved.
MSC: primary 60G70; secondary 60G10

Keywords: Stationary sequences; Weak dependency

1. Introduction

Let {X,,n > 1} be a strictly stationary random sequence with the marginal distribution
function F(.) which belongs to the domain of attraction of a nondegenerate distribution function
G (for short F € D(G)), i.e. there exist sequences a, > 0 and b, € N, n € N, such that

lim F"(a,x + b,) = G(x), (1)
n—0oo

holds for every continuity point of G. The set of possible distribution functions G () as well as
the constants a,, b, are described, e.g. in [5]. For two fixed continuity points of G, x < y, we
assume Condition D (u,,, v,) (Definition 2.3 in [3]):

Condition D(u,,, v,). Forall Ay, A>, By, By C {1,2,3,...,n}, such that

max |b—al>1, Al NAy =0, BiN By =0,
beB1UBy,acA1UA,

the following inequality holds:

P|: m {Xjfun}ﬁ m {Xjfvn}]

JjEAUB) JjEALUBy
- P[ﬂ{xj <ud 0 ()X, svn}}P[ﬂ{X, <ubn ()X, svn}”
JEA] Jj€A2 JEBI JE€By
San,la

and a1, — 0 as n — oo for some I, = o(n).

It is easy to check that the sequence {X,,, n > 1} of independent identically distributed random
variables satisfy Condition D (u,, v,) with a,; = Oforall n > [.

Condition D’ (u,). Let {X,,n > 1} be strictly stationary sequence of random variables
and let {u,,n > 1} be a sequence of real numbers. We say that {X,,n > 1} satisfy
the ConditionD’ (uy) iff

[n/k]
lim limsupn Z P[X1>uu, Xj >u,]=0.

k—00 pn—o00 =

Obviously, if {X,,n > 1} is the sequence of independent identically distributed random
variables with lim,_, oo n P[X| > u,] = c then Condition D’(u,) holds.

Let among the sequence X1, X», ... some variables are observed. Let the random variable &
is the indicator of event that random variable X} is observed. In paper [3] in Theorem 3.2 it was
assumed that {¢,, n > 1} are dependent but independent of {X,,, n > 1}. This result is
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Theorem 1. Let:

(a) F € D(G) for some real constants a,, > 0, b, and every real x (i.e. (1) holds).
) {X,,n = 1} is strictly stationary random sequence, such that ConditionsD (u,, v,) and
D'(uy,) are satisfied for u,, = ayx + b, and v, = a,y + b,, where x < y.
(c) € = {ey, n = 1} is the sequence of indicators such that
S
—nip, asn — oo. 2)
n

Then, the following equality holds for all real x < y:

lim P[My(e) < anx + by, My < any +ba] = GP(0)G'7P(y). 3)
n

The general aim of this paper is to generalize Theorem 1 replacing condition (2) with

S,
—"ik, asn — 00, 4)
n

for some random variable A. As a corollary we obtain Theorems 3.2 and 3.1 [3].
2. Main result

Let {X,, n > 1} be a strictly stationary sequence of random variables and F be a distribution
function such that F(x) = P[X; < x]. Let e = {¢,, n > 1} be a sequence of indicator of events
that random variable X, is observed, respectively, and let

n
Sn = ZE,’.
i=1

Let « = {a,,n > 1} be a sequence of 0 and 1 (¢ € {0,1}"¥) and # = {1}V be an infinite
sequence of 1. For the arbitrary random or nonrandom sequence 8 = {8,,n > 1} of 0 and 1 and
subset I C N, let us put

max{X;:jel, B; =1}, if maxB; >0,
M, B) = Jjel
inf{t : F(t) > 0}, otherwise,
M,(B) =M({1,2,3,...,n}, B),
MU)=MU,¥) =max{X;:jel},
M, =M(\{1,2,3,...,n}, ) =M{1,2,3,...,n}) = max X;,

l<j=n
Ki={j:6s—-1m+1<j<sm}, 1<s<k,
Asj ={X-nm+j > un}, 1=j =<k

By 11, I», ..., Iy we will denote such subsets of {1,2,3,...,n} that min [, — max Iy > [, for
k >t > s > 1. For random variable A such that 0 < A <1 a.s., we put

1
[Oa _} ) r = O’
2!l

1
(L,l], 0<r§21—1
207 2l

Brlon={w:¢j(@) =a;,1 <j<n}NB,.

B = w:A(w) €

’
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Theorem 2. Let us suppose that the following conditions are satisfied:

(a) F € D(G), for some real constants a, > 0, b, and every real x,

() {X,,n = 1} is a strictly stationary random sequence satisfying ConditionsD (uy, v,) and
D'(uy) for u, = ayx + b, and v, = ayy + by, where x <y,

(c) e = {&y, n = 1} is a sequence of indicators that is independent of {X,,,n > 1} and such that
(4) holds for some random variable ).

Then the following equality holds for all real x and y, x < y:

lim_P[My(€) < anx + by, My < any + ba] = EIG*()G'(7)].
n

Thus this result generalize that one in [3] where constant limit p of % was considered instead
of the random variable A. Moreover as the corollary we may obtain:

Corollary 1. Let {X,,, n > 1} be a sequence of i.i.d. random variables such that:

(a) F € D(G), (i.e. (1) holds),
(b) e = {&,,n = 1} is a sequence of indicators that is independent of {X,,n > 1} and such
that

S, P
— — A, asn— 09,
n

for some random variable A.
Then, the following equality holds for all real x < y:
lim P[My (&) < @ux + by, My < any + b1 = E[G*)G' ()],
n— oo
3. Proofs

Lemma 1. For any sequence a = {aj, j € N}, under conditions of Theorem 2 we have

k k
P [ﬂ M Iy, @) < uy, M(Iy) < vn} — [T PMUs, @) < un, ML) < v,)

s=1

= (k = Dap,,

s=1

where oy, ;, — 0 asn — oo for some I, = o(n).
Proof of Lemma 1. For k = 2 we have Condition D(u,,v,) where A1 = {j € I : a; =

1}, A, =1\ Ay, By ={j € h:aj =1}, B, =1\ Ay. And the proof follows from induction
similarly as the proof of Lemma 4.2 in [3]. [

Lemma 2. With assumptions of Lemma 1 we have

k
P[M,(a) < up, My < vy] — 1_[ P[M(Ks, a) < uy, M(Ky) < v,]

s=1

< |:(k — Doy + (4k + 3)% -n(l — F(un))i|.
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Proof of Lemma 2. The proof is similar to the proof of Lemma 4.3 in [3] but we use Lemma 1
instead of Lemma 4.2 [3]. I

Let d(X, Y) stands for Ky Fan metric, d(X,Y) = inf{e : P[|X — Y| > ¢] < ¢}.
Lemma 3. (a) For arbitrary positive integers s, m, we have

d (—S”” — =) A) <@s-1) |:d (S”” : A) +d (—S’”(“) A)] .
m ms m(s — 1)

®) If {X,,,n = 1} and {Y,, n > 1} are such that | X,, — Y,| < 1 a.s. then

E|Xn - Yn| = Zd(Xn» Yn)~

Proof of Lemma 3.

(a) Because

Sims — Sm(s— S Sm(s—
ms m(s 1)_)\4:S ms_k —(S—l) m(s—1) Y 7 (5)
m ms m(s — 1)
and for every random variables X and Y and arbitrary o we have
PIX+Y|> el < P[IX|+1Y] > e] < P[IX] > ae]l + P[|Y| > (1 — a)e], (6)
thus using (5) and putting in (6) X = s (% — A) Y = —(s = 1) (i"&t{; — A), and

_— S
o = 5.7, We get

P [ Sms — Smts—1) —A‘ > s] <P [

m =

Sins s £
ms 2s — 1

Sin(s—
4+ P Ome=D >L ,
m(s —1) 25 — 1

what gives (a).
(b) We have

E|Xn - Yn| = E|Xn - Yn|1[|Xn - Yn| > d(Xnv Yn)]
+E|Xn - Yn|I[|Xn - Yn| =< d(an Yn)]

IA

P[|Xn - Ynl = d(Xn, Yn)] +d(Xnv Yn)

A

2d(Xp, Yy),

asd(Xy, —Y,,0)=d(X,,Y,). O

Proof of Theorem 2. Proceedings as in the proof of Theorem 3.2 [3] with the sequence of
random variables {¢,,n > 1} replaced by the nonrandom sequence of {a,,n > 1} € {0, 1y
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forany0 <r < 2k _ 1, we have

(Z “j)(F(un) — F(u)) + (1 = m(1 — F(vn)))

JeKs

mr r
- [1 - St = Fay —m(1-5)a- F(vn»]

2k
e,
’En; = 5% [ m(F ) = F o)

< P[M(K;,a) < u,, M(Ky) < v,]

mr r
< [1 — S = Fa) —m(1-5)a- F(vn»]

" ZI:( 4 r
€Ky
+m Y PlAs. Agl+ | = o | m(F ) = F(on)), @)
=2
where Ajj = {X(—1ymtj > un}, j € {1,2,...,m} and m = [{] for any fixed positive integer

k. From the previous inequalities, Lemma 2, inequality

k k

l_[as—l_[bx

s=1 s=1

k

<Y las —byl, ®)
s=1

valid for all a, bs € [0, 1] as 0 < 1 — m[;—ku ~ Flup)) + (1 - z—k) = F(v,,))] <1, and

since {X,, n > 1} is strictly stationary, we have

1= Fu) + (1= £ ) n(l = Fw,))

k
P[Mn(“)funaMnfvn]_H 1 - X

s=1

k
< |P[My(@) < un. My < va] = [ P[M(K;. @) <y, M(K) < v,]
s=1

k
+ [T PIM(Ks. @) < un, M(Ky) < 4]

s=1
Hl gl = F(up)) + (]1€— 3 ) n(1 = F(w,))
s=1

=J1+ Jo, say. 9

From Lemma 2 and (7), (8) we have

J1 < (k— Doy + (4k+ 3)% -n(l — F(uy)), (10)



T. Krajka / Stochastic Processes and their Applications 121 (2011) 1705-1719 1711

k
T = Y |\P[M(K, o) < up, M(Ky) < v,

s=1

gl = Fu) + (1= 2 ) n(l = F(u)

= k
1 %_{_k
< nZP[AU,AnHZ L) - Fan). (1

Furthermore, again from (8),

n( = F) + (1= 5 ) n(l = F(u)
k

k
E Y []|1-
ae{0,1}" |s=1

k
) 1_[[ An(l—F(un))‘i‘(]i_)‘)”(l_F(vn))] I[Brkan]

koo, n(2 — F(u) — F(vy))
2; o —A‘ I1[Bx] .
- n2 — F(uy) — F(vy)) P[B,4]. (12)

2k
From independency {X,,n > 1} and {¢,,n > 1}, A, we get

> EPIMy(a) < up, My < 0,1[Brian] = PIMy(€) < ty, My < vy, Bril.  (13)
aec{0,1}"

Now, taking into account (9)—(13), we get

Jrk = Z E

P[M, (&) < un, My < v,]

ac{0,1}

k
B 1_[[1 (= Fup) + (1 = Mn(l - F(”"))}‘I[Br,k,a,n]

s=1 k

< ((k — D1 + (4k + 3)% -n(l - F(un») PBril+n ) PLAL. All. Bri]
j=2
b

+E Z ————n(F(uy) — F(op))I[Byx]
+n(2—F(un)—F(U"))p[Br’k]. (14)

2k
Now, we evaluate the third term on the right-hand side of (14). From triangle inequality and
Lemma 3 we have
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2k_1 2%-1
& r
30D S RN TIER) o S S o N[
r=0 iels ielg
Sms - Sm(s—l) 1

< EF|l— = 7 _ ) _

- m + 2k

< 2d (Sms - Sm(s—l) 7 )\.) + i

m 2

% Sm(s—l) i
<2(2s - 1)<d<ms ,A) +d (—m(s — 1),)\)) + 55 (15)

thus taking a sum ka:?)] of the left- and right-hand side of (14) we get

2k—1
> gk < |:(k— Datn + (4k+3)— n(l — F(Mn))} -I-HZP[AU,AH]

r=0 j=2

Sins Sm(sfl) i n(F(uy) — F(vy))
+[2(2s—1)<d <m,k>+d(—m(s_l),k>>+2k] Z
n2 — F(uy) — F(vn))

2k
Taking a limit n — oo and then m — oo from Lemma 4.1 in [3] by similar computations as

(16)

those in the proof of Theorem 3.2 in [3] and because lim,, 00 d ( pral ) = 0 we have

—InG*(x) —lnGl_}‘(y)i|k
k

lim P[Mn(e) <up, M, < Un] - E|:1 -
n— 00

1 —InG(y)

Now if we take limy_, oo of the both sides we have

In G* InG'*(y»\*
lim P[My () < ttn, My < v,] — lim E<1+ nGTo) + In (y)> —o,
n—o00 k—00 k
)
lim P[M,(e) < un, My < v,] = E[G'(x)G'*(y)]. O
n—oo
4. Examples and applications
Example 1. Let A € [0, 1], a.s., be an arbitrary random variable and let us define
e1=1 as,
n—1
r—1 r
0, forA u{o
, for EU(n—l n] {0},
&n = r=1 (I7)
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then

S,
—"ik, asn — oQ. (18)
n
Let {X,,,n > 1} be the family of stationary Farlie—Gumbel-Morgenstern sequence (cf. [4,2]),

independent of A with the law:

P[Xi <x,Xitj <y]|=Fx)F(y)(1+up;(d —Fx)(A—F()), x,yeh 19

Then for arbitrary sequence . = {u,,n > 1} and nondegenerate distribution function F such
that F € D(G) the condition D’(u) holds. If additionally {X,,, n > 1} is the a-mixing sequence
with o, — 0, as n — oo (it means, that i, — 0, as n — 00), then Condition D(u,, v,) holds
too. In this cases we have

lim P[My (&) < un, My < va] = E[G* ()G ().

For example, if A is uniformly distributed on [0, 1] independent on ¢-mixing stationary family
Farlie-Gumbel-Morgenstern laws with F(x) = % + %arctg(x) (the Cauchy’s law) then

. Xy 1 _1
lim P[My(€) < ttn, My < v,] = (e T e )
n—>oo

12
n 25 A€ (_7_}7
=Y e = n'n nel, (20)

really, for n = 1 we have S; = 1 = 1. Assuming, (20) for some n we get

[Sh =1, 041 =0], ifk=1,
[Snt1=k] = {[Sn =k, a1 =0]U[Sy =k — 1, epp1 = 1], ifl <k <n,
[Sh =n, enp1 = 1], iftk=n+1,

S R

e (] (]
(P () e

[Ae(n;l,l}ﬂ< :l_l,lﬂ, ifk=n+1,
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I 1
relo ]l -
L n+1
[ —1
= S k , k , ifl <k <n,
L n+1 n+4+1
[ n
Ae( ,11|], ithk=n+1,
L n+1

what leads to

S 1
L} < -, as,n>1,
n n

thus (18) holds.

If F € D(G) then we show that Condition D’(u,) holds. Really, since F is nondegenerate,
then there exists the real x,, such that 0 < F(x,) < 1, then from (19)

0 < P[X; < X0, Xitj < Xo| = F*(x0) (1 + pj(1 — F(x,))?) < 1, (21)
leads to

v 14 F(x,)
(= Fao)? =" = Py - F(x)

which implies that sup | ;| < C for some absolute constants C. From

PX1>x,X;>y]l=1-P[X1 <x,X; >y]—P[X1>x,X; <y]
—P[X1 <x,X; <yl]
=1-P[X; <x]—-P[X; <yl+ P[X1 <x,X; <yl

we get
P[X1>x,X;>y]= (1= F))(1 = FM)(1+u; F&)F©)), (22)
such that
[n/k]
n Z P[X] > Uy, Xj > Mn] < 1+C[n(1 - F(”n))]z’

=

and because n(1 — F(u,)) — G(x) thus D’(u,) holds.
For the last fact of example, by Theorem 2 we have from 1’Hospital theorem

1-F@x) .. (I+tHx
m ———= lim —— =
t—oo 1 — F(¢) t—o0 | 4 (tx)2

3

thus from Theorem 2.1.1 [1] we have

. T T 1
lim P[max{Xl,Xz,...,Xn}<tg<5——)x]=exp — ), x>0
n X

n—o0
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therefore for y > x > 0 we have

lim P[M,(e) < up, M, <v,] = Ee”
n—oo

Example 2. Let {§,,n > 1} be a sequence of independent identically distributed random
variables with the distribution function H and let g(xi, x2,...,x;) be some measurable
function. We put X, = g&., &nv1, ..., Enpm—1),n > 1, thus {X,;,n > 1} is the sequence
of m-dependent random variables, thus Condition D(u,, v,) is satisfied. For some choice of
{¢&,,n > 1} and function g() the Condition D’(u,) may be fulfilled too. For example, if
g(xy, x2, ..., x,) =min{xy, x2, ..., x,,} and &, are uniformly distributed on [0, 1] then

0, ifx <O,
H(x)=4{x, ifx e]0,1],
1, ifx>1,

0, ifx <0,
Fx)=1—-(1-Hx)"=31—-(0-x)", ifx€]0,1],
1, ifx > 1.

Furthermore, for such defined sequence, we have that F € D(H> ;) where

1 ifx >0,

e;(p(—(—x)m), if x <0, (23)

H2,m = {

with the centring and normalizing constants @, = 1, b, = %, i.e. for every x € R,

P max{Xl,Xz,...,X,,}<l—i—L —> Hp ., (x), asn — oo.
Therefore, the appropriate sequence of {u,, n > 1} should be defined by {u,, =1+ ﬁﬁ’ n> 1}.

Furthermore Conditions D’(u,) and D(u,, v,) hold. Hence if A has the law with the density
function ax®~! ({e,, n > 1} is constructed as in Example 1) independent of {£,, n > 1} then

1
lim P[M, (&) < up, My < vy] = ae” )" / 2 et (" =0 g (24)
n—oo O

Proof of Example 2. We put w(F) = 1, F*(x) = F (1 _ 5) = 1 — L, (cf. [1], Section 2.1)
and remark
1= P
llm —_— =X
t—oo 1 — F*(¢)

—m
)

such that from Theorem 2.1.2 [1] we have that F € D(Ha ;). Now we check Condition D’ (u,).
For 1 < j < m we have
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P[X1 > un, Xj > uy] = P[min{§y, &, ~-~a‘§m+j—l} > up]

— (] _ Mn)m+j71
X m+j—1
()
thus
[n/k] moemtj—1

lim limsupn P[X{>u,,X; >u,] =limsupn _
k— 00 n—>oop j; %1 8 / ] n—>oop j;n(m+j—l)/m
m+l 1 — (2=)m!
= lim Vo

n%oo’% ]—%

al —0.

Equality (24) follows from our Theorem 2.  [J

We remark that in [3] there is an error in the proof of Lemma 4.2 [3].

Example 3. Let {X,,,n > 1} be a sequence of independent identically distributed random
variables with the exponential law F(x) = (1 —e™")I[x > 0]. Obviously, for every x we have
F"(In(n) + x) — e~¢ ", as n — oo. Furthermore let {g,,n > 1} be copies of random variable
1 (i.e. for every i, j, &; = ¢;) with the law P[e; = 1] = P[e; = 0] = %, and independent of
{Xn,n > 1}. If we put u, = In(n) + 1, v, = In(n) + 2, thus D(u,, v,) holds with o, ; = O for
every n,l € N.But, if we putk = 2, I) = {1}, I = {2} then

2
P[m{M(Isv €) <uy, M(Iy) < Un}] = P[max{X1, X2} < u, < v,]Ple; =& =1]
s=1

+ P[max{Xy, X»} < v,]P[e; = &2 =0]

= %((1 —e )+ (1 —e?/n)?)

and
[[P[MUs. &) < un. M(Iy) < va}]
T (P[X| < up < va]Pley = 1]+ P[X| < v,]P[e; = 0])
x (P[X3 < uy < vy]Ple2 = 1]+ P[X3 < v,]P[e3 = 0])
- %((1 —e Yn)y+ (1 —e?/n)%
Thus

k k
P[ﬂ{M(ls’ €) <up, M(Iy) < vn}i| - HP[M(IS’ €) < uy, M(Iy) < v,]

s=1

s=1

1
= (=T — (= m) = Z o

However the random variables ¢ = {¢,,n > 1} defined in Example 3 do not satisfy the
Weak Law of Large Numbers (WLLN). In the next example we construct the random variables
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satisfying WLLN but such that for every choice of subsets {I;, 1 < s < k} the Lemma 4.2 [3]
fails. We begin with

Lemma 4. Let {Ay, k > 1} and {By, k > 1} be such sequences of positive numbers, that for
every k > 1, Ay < Bg. Then for every integer n > 1,

HA+1_[B 1—[A+B

The easy inductive proof we omitted.

Example 4. Let {X,,,n > 1} be a sequence of independent identically distributed random
variables with the law F, and let {u,, v,,n > 1} be two sequences of reals such that u, < v,
and F(u,) < F(vy,), for every n > 1 (this sequences and ' may be defined as in Example 3).
Let us define two sequences of random variables {&§,,n > 0} and {n,,n > 1} interindependent
and independent of {X,,, n > 1}, with the law

1 1
P[$n=1]=P[$n=0]=§, n=0, and Plp,=1]1=1--,
n

1
Pln =0l=~, nx1
n

Put
o(w), forw € [n, = 0],
en () {én(w), forw € [, = 1].
Then
n
&
Sn i; l p 1
izl B2 n o oo (25)
n 2
and for every I, I, ..., Iy pairwise disjoint subsets of {1, 2, ..., n} we have

k k
P |:ﬂ M, e) <uy, M(I;) < vn:| - 1_[ P[M (I, e) <uy, M(I;) < v,] > 0, (26)

s=1 s=1

whereas for every [ € N, a,,; = 0.

Proof of Example 4. At first we compute the common law of {g,, n > 1}.

Lemma 5. For {¢,, n > 1}defined as in Example 4 and every disjoint subsets of positive integers
A and B such that AU B # () we have

Plei=0,i€ A;e; =1, j € B]

(- Dene- o)

(where [;epai = 1, A = card(A)).
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Proof of Lemma 5. The proof follows from
Ple;=0,ie Aje; =1, j € B; § =0]

=Y Pli=0i€kK;n=1%=0jeA\K;n, =15, =1;peB;§=0]
KCA

ST ILGe-IG0-9)
A0

ieA ieB

and similarly

1 1 1
Plei=0,icA;ej=1,jeBg=11= == 1‘[(1—7)]_[(14_). O
l N l

2A+B+1 icA

Because

1 L
Cov(ei, gj) = Var(§o) P[n; =n; =01 = a0 #Jj=1,

and
1 ,
Var(g;) = T iz 1,

thus from Chebyshev’s inequality we have, for every ¢ > 0,

n n
R Var(Zsi) Zl‘ll+21 Z %-j |
i=1 i= <i<j<n
P |: ;(Si — Eg)| > ns] <2 = oy =0 (;) ,
such that (25) holds.
Since for arbitrary A C {1, 2, ..., n}, from Lemma 5

P[M(A, &) < up, M(A) < vy,]

= Z Pl:maxXigun; max Xifvn;ei:0,ieK;8j:1,jeA\K:|

o Liek ieA\K
FE (uy) FAK 1 1
_ Z (LZ): (vn) 1—[ <1 + T) 1—[ (1 _ T)
KcA  2K+A\K+] icK V) ieak !
1 1
e000)
ek L/ iea\k !
1 (1 + %) F(uy) ( - %) F(vp)
) Z l_[ 2 H
KCA | ick ieA\K
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1 F(un) + F(vy) — 1(F(v) — F(un))
) I1 2

i€cA

F(un) + F () + +(F(v) = F(u))
+11 ,
: 2
i€A
thus putting for every 1 < j <k,

F(un) + F () + 1 (F () — F(un))
Ai=11 > :

iEIj
and
F(un) + F(p) — +(F(va) — F(un))
Bi=]] 5 ,
ielj

the Lemma 4 ends the proof of (26). [

Because Lemma 4.2 [3] fails, thus the proof of Theorem 3.2 [3] is not correct, but this theorem
follows from our Theorem 2 and allows true.
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