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Abstract

Let {Xn, n ≥ 1} be a strictly stationary sequence of random variables and Mn = max{X1, X2, . . . , Xn}.
Assume that some random variables X1, X2, . . . can be observed and the sequence of random variables
ε = {εn, n ≥ 1} indicate which X1, X2, . . . are observed, thus Mn(ε) = max{X j : ε j = 1, 1 ≤ j ≤ n}. In
paper (Mladenovič and Piterbarg, 2006 [3]), the limiting behaviour (Mn, Mn(ε)) is investigated under the
condition

n∑
j=1

ε j

n
P
−→ p, as n → ∞,

for some real p ∈ (0, 1). We generalize these results on the case, when for some random variable λ

n∑
j=1

ε j

n
P
−→ λ, as n → ∞.
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1. Introduction

Let {Xn, n ≥ 1} be a strictly stationary random sequence with the marginal distribution
function F(.) which belongs to the domain of attraction of a nondegenerate distribution function
G (for short F ∈ D(G)), i.e. there exist sequences an > 0 and bn ∈ ℜ, n ∈ N , such that

lim
n→∞

Fn(an x + bn) = G(x), (1)

holds for every continuity point of G. The set of possible distribution functions G() as well as
the constants an, bn are described, e.g. in [5]. For two fixed continuity points of G, x < y, we
assume Condition D(un, vn) (Definition 2.3 in [3]):

Condition D(un, vn). For all A1, A2, B1, B2 ⊂ {1, 2, 3, . . . , n}, such that

max
b∈B1∪B2,a∈A1∪A2

|b − a| ≥ l, A1 ∩ A2 = ∅, B1 ∩ B2 = ∅,

the following inequality holds:P

[ 
j∈A1∪B1

{X j ≤ un} ∩


j∈A2∪B2

{X j ≤ vn}

]

− P

[ 
j∈A1

{X j ≤ un} ∩


j∈A2

{X j ≤ vn}

]
P

[ 
j∈B1

{X j ≤ un} ∩


j∈B2

{X j ≤ vn}

]
≤ αn,l ,

and αn,ln → 0 as n → ∞ for some ln = o(n).

It is easy to check that the sequence {Xn, n ≥ 1} of independent identically distributed random
variables satisfy Condition D(un, vn) with αn,l = 0 for all n ≥ l.

Condition D′(un). Let {Xn, n ≥ 1} be strictly stationary sequence of random variables
and let {un, n ≥ 1} be a sequence of real numbers. We say that {Xn, n ≥ 1} satisfy
the ConditionD′(un) iff

lim
k→∞

lim sup
n→∞

n
[n/k]−
j=2

P[X1 > un, X j > un] = 0.

Obviously, if {Xn, n ≥ 1} is the sequence of independent identically distributed random
variables with limn→∞ n P[X1 > un] = c then Condition D′(un) holds.

Let among the sequence X1, X2, . . . some variables are observed. Let the random variable εk
is the indicator of event that random variable Xk is observed. In paper [3] in Theorem 3.2 it was
assumed that {εn, n ≥ 1} are dependent but independent of {Xn, n ≥ 1}. This result is
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Theorem 1. Let:

(a) F ∈ D(G) for some real constants an > 0, bn and every real x (i.e. (1) holds).
(b) {Xn, n ≥ 1} is strictly stationary random sequence, such that ConditionsD(un, vn) and

D′(un) are satisfied for un = an x + bn and vn = an y + bn , where x < y.
(c) ε = {εn, n ≥ 1} is the sequence of indicators such that

Sn

n
P
−→ p, as n → ∞. (2)

Then, the following equality holds for all real x < y:

lim
n→∞

P[Mn(ε) ≤ an x + bn, Mn ≤ an y + bn] = G p(x)G1−p(y). (3)

The general aim of this paper is to generalize Theorem 1 replacing condition (2) with

Sn

n
P
−→ λ, as n → ∞, (4)

for some random variable λ. As a corollary we obtain Theorems 3.2 and 3.1 [3].

2. Main result

Let {Xn, n ≥ 1} be a strictly stationary sequence of random variables and F be a distribution
function such that F(x) = P[X1 ≤ x]. Let ε = {εn, n ≥ 1} be a sequence of indicator of events
that random variable Xn is observed, respectively, and let

Sn =

n−
i=1

εi .

Let α = {αn, n ≥ 1} be a sequence of 0 and 1 (α ∈ {0, 1}
N ) and ϑ = {1}

N be an infinite
sequence of 1. For the arbitrary random or nonrandom sequence β = {βn, n ≥ 1} of 0 and 1 and
subset I ⊂ N , let us put

M(I, β) =


max{X j : j ∈ I, β j = 1}, if max

j∈I
β j > 0,

inf{t : F(t) > 0}, otherwise,

Mn(β) = M({1, 2, 3, . . . , n}, β),

M(I ) = M(I, ϑ) = max{X j : j ∈ I },

Mn = M({1, 2, 3, . . . , n}, ϑ) = M({1, 2, 3, . . . , n}) = max
1≤ j≤n

X j ,

Ks = { j : (s − 1)m + 1 ≤ j ≤ sm}, 1 ≤ s ≤ k,

As j = {X(s−1)m+ j > un}, 1 ≤ j ≤ k.

By I1, I2, . . . , Ik we will denote such subsets of {1, 2, 3, . . . , n} that min It − max Is ≥ l, for
k ≥ t > s ≥ 1. For random variable λ such that 0 ≤ λ ≤ 1 a.s., we put

Br,l =

ω : λ(ω) ∈


[

0,
1
2l

]
, r = 0,

r

2l ,
r + 1

2l

]
, 0 < r ≤ 2l

− 1

 ,

Br,l,α,n = {ω : ε j (ω) = α j , 1 ≤ j ≤ n} ∩ Br,l .
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Theorem 2. Let us suppose that the following conditions are satisfied:

(a) F ∈ D(G), for some real constants an > 0, bn and every real x,
(b) {Xn, n ≥ 1} is a strictly stationary random sequence satisfying ConditionsD(un, vn) and

D′(un) for un = an x + bn and vn = an y + bn , where x < y,
(c) ε = {εn, n ≥ 1} is a sequence of indicators that is independent of {Xn, n ≥ 1} and such that

(4) holds for some random variable λ.

Then the following equality holds for all real x and y, x < y:

lim
n→∞

P[Mn(ε) ≤ an x + bn, Mn ≤ an y + bn] = E[Gλ(x)G1−λ(y)].

Thus this result generalize that one in [3] where constant limit p of Sn
n was considered instead

of the random variable λ. Moreover as the corollary we may obtain:

Corollary 1. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables such that:

(a) F ∈ D(G), (i.e. (1) holds),
(b) ε = {εn, n ≥ 1} is a sequence of indicators that is independent of {Xn, n ≥ 1} and such

that
Sn

n
P
−→ λ, as n → ∞,

for some random variable λ.

Then, the following equality holds for all real x < y:

lim
n→∞

P[Mn(ε) ≤ an x + bn, Mn ≤ an y + bn] = E[Gλ(x)G1−λ(y)].

3. Proofs

Lemma 1. For any sequence α = {α j , j ∈ N }, under conditions of Theorem 2 we haveP


k

s=1

M(Is, α) ≤ un, M(Is) ≤ vn


−

k∏
s=1

P[M(Is, α) ≤ un, M(Is) ≤ vn]


≤ (k − 1)αn,l ,

where αn,ln → 0 as n → ∞ for some ln = o(n).

Proof of Lemma 1. For k = 2 we have Condition D(un, vn) where A1 = { j ∈ I1 : α j =

1}, A2 = I1 \ A1, B1 = { j ∈ I2 : α j = 1}, B2 = I2 \ A2. And the proof follows from induction
similarly as the proof of Lemma 4.2 in [3]. �

Lemma 2. With assumptions of Lemma 1 we haveP[Mn(α) ≤ un, Mn ≤ vn] −

k∏
s=1

P[M(Ks, α) ≤ un, M(Ks) ≤ vn]


≤

[
(k − 1)αn,l + (4k + 3)

l

n
· n(1 − F(un))

]
.
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Proof of Lemma 2. The proof is similar to the proof of Lemma 4.3 in [3] but we use Lemma 1
instead of Lemma 4.2 [3]. �

Let d(X, Y ) stands for Ky Fan metric, d(X, Y ) = inf{ε : P[|X − Y | > ε] < ε}.

Lemma 3. (a) For arbitrary positive integers s, m, we have

d


Sms − Sm(s−1)

m
, λ


≤ (2s − 1)

[
d


Sms

ms
, λ


+ d


Sm(s−1)

m(s − 1)
, λ

]
.

(b) If {Xn, n ≥ 1} and {Yn, n ≥ 1} are such that |Xn − Yn| < 1 a.s. then

E |Xn − Yn| ≤ 2d(Xn, Yn).

Proof of Lemma 3.

(a) Because

Sms − Sm(s−1)

m
− λ = s


Sms

ms
− λ


− (s − 1)


Sm(s−1)

m(s − 1)
− λ


, (5)

and for every random variables X and Y and arbitrary α we have

P[|X + Y | > ε] ≤ P[|X | + |Y | > ε] ≤ P[|X | > αε] + P[|Y | > (1 − α)ε], (6)

thus using (5) and putting in (6) X = s


Sms
ms − λ


, Y = −(s − 1)


Sm(s−1)

m(s−1)
− λ


, and

α =
s

2s−1 , we get

P

[ Sms − Sm(s−1)

m
− λ

 > ε

]
≤ P

[ Sms

ms
− λ

 >
ε

2s − 1

]
+ P

[ Sm(s−1)

m(s − 1)
− λ

 >
ε

2s − 1

]
,

what gives (a).

(b) We have

E |Xn − Yn| = E |Xn − Yn|I [|Xn − Yn| > d(Xn, Yn)]

+ E |Xn − Yn|I [|Xn − Yn| ≤ d(Xn, Yn)]

≤ P[|Xn − Yn| > d(Xn, Yn)] + d(Xn, Yn)

≤ 2d(Xn, Yn),

as d(Xn − Yn, 0) = d(Xn, Yn). �

Proof of Theorem 2. Proceedings as in the proof of Theorem 3.2 [3] with the sequence of
random variables {εn, n ≥ 1} replaced by the nonrandom sequence of {αn, n ≥ 1} ∈ {0, 1}

N
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for any 0 ≤ r ≤ 2k
− 1, we have −

j∈Ks

α j


F(un) − F(vn)


+


1 − m(1 − F(vn))


=

[
1 −

mr

2k (1 − F(un)) − m


1 −
r

2k


(1 − F(vn))

]

+


∑

j∈Ks

α j

m
−

r

2k

 m

F(un) − F(vn)


≤ P[M(Ks, α) ≤ un, M(Ks) ≤ vn]

≤

[
1 −

mr

2k (1 − F(un)) − m


1 −
r

2k


(1 − F(vn))

]

+ m
m−

j=2

P[As1, As j ] +


∑

j∈Ks

α j

m
−

r

2k

 m(F(un) − F(vn)), (7)

where Ai j = {X(i−1)m+ j > un}, j ∈ {1, 2, . . . , m} and m =
 n

k


for any fixed positive integer

k. From the previous inequalities, Lemma 2, inequality k∏
s=1

as −

k∏
s=1

bs

 ≤

k−
s=1

|as − bs |, (8)

valid for all as, bs ∈ [0, 1] as 0 ≤ 1 − m

[
r
2k (1 − F(un)) +


1 −

r
2k


(1 − F(vn))

]
≤ 1, and

since {Xn, n ≥ 1} is strictly stationary, we haveP

Mn(α) ≤ un, Mn ≤ vn


−

k∏
s=1

1 −

r
2k n(1 − F(un)) +


1 −

r
2k


n(1 − F(vn))

k


≤

P

Mn(α) ≤ un, Mn ≤ vn


−

k∏
s=1

P

M(Ks, α) ≤ un, M(Ks) ≤ vn


+


k∏

s=1

P

M(Ks, α) ≤ un, M(Ks) ≤ vn



−

k∏
s=1

1 −

r
2k n(1 − F(un)) +


1 −

r
2k


n(1 − F(vn))

k


= J1 + J2, say. (9)

From Lemma 2 and (7), (8) we have

J1 ≤ (k − 1)αn,l + (4k + 3)
l

n
· n(1 − F(un)), (10)



T. Krajka / Stochastic Processes and their Applications 121 (2011) 1705–1719 1711

J2 ≤

k−
s=1

P

M(Ks, α) ≤ un, M(Ks) ≤ vn



−

1 −

r
2k n(1 − F(un)) +


1 −

r
2k


n(1 − F(vn))

k


≤ n

m−
j=2

P[A1 j , A11] +

k−
s=1

 ∑i∈Is

αi
m −

r
2k


k

n(F(un) − F(vn)). (11)

Furthermore, again from (8),

E
−

α∈{0,1}n


k∏

s=1

1 −

r
2k n(1 − F(un)) +


1 −

r
2k


n(1 − F(vn))

k


−

k∏
s=1

[
1 −

λn(1 − F(un)) + (1 − λ)n(1 − F(vn))

k

] I

Br,k,α,n


≤

k−
s=1

E
 r

2k − λ

 I

Br,k

n(2 − F(un) − F(vn))

k

≤
n(2 − F(un) − F(vn))

2k P[Br,k]. (12)

From independency {Xn, n ≥ 1} and {εn, n ≥ 1}, λ, we get−
α∈{0,1}n

E P[Mn(α) ≤ un, Mn ≤ vn]I [Br,k,α,n] = P[Mn(ε) ≤ un, Mn ≤ vn, Br,k]. (13)

Now, taking into account (9)–(13), we get

Jr,k =

−
α∈{0,1}n

E

P

Mn(ε) ≤ un, Mn ≤ vn


−

k∏
s=1

[
1 −

λn(1 − F(un)) + (1 − λ)n(1 − F(vn))

k

]I

Br,k,α,n


≤


(k − 1)αn,l + (4k + 3)

l

n
· n(1 − F(un))


P[Br,k] + n

m−
j=2

P[A1 j , A11, Br,k]

+ E
k−

s=1

 ∑i∈Is

εi
m −

r
2k


k

n(F(un) − F(vn))I [Br,k]

+
n(2 − F(un) − F(vn))

2k P[Br,k]. (14)

Now, we evaluate the third term on the right-hand side of (14). From triangle inequality and
Lemma 3 we have
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2k
−1−

r=0

E

−
i∈Is

εi

m
−

r

2k

 I [Br,k] ≤ E

−
i∈Is

εi

m
− λ

 +

2k
−1−

r=0

E
λ −

r

2k

 I [Br,k]

≤ E

 Sms − Sm(s−1)

m
− λ

 +
1
2k

≤ 2d


Sms − Sm(s−1)

m
, λ


+

1
2k

≤ 2

2s − 1


d


Sms

ms
, λ


+ d


Sm(s−1)

m(s − 1)
, λ


+

1
2k (15)

thus taking a sum
∑2k

−1
r=0 of the left- and right-hand side of (14) we get

2k
−1−

r=0

Jr,k ≤

[
(k − 1)αn,l + (4k + 3)

l

n
· n(1 − F(un))

]
+ n

m−
j=2

P[A1 j , A11]

+

[
2

2s − 1


d


Sms

ms
, λ


+ d


Sm(s−1)

m(s − 1)
, λ


+

1
2k

]
n(F(un) − F(vn))

k

+
n(2 − F(un) − F(vn))

2k . (16)

Taking a limit n → ∞ and then m → ∞ from Lemma 4.1 in [3] by similar computations as

those in the proof of Theorem 3.2 in [3] and because limm→∞ d


Sms
ms , λ


= 0 we have lim

n→∞
P


Mn(ε) ≤ un, Mn ≤ vn


− E

[
1 −

− ln Gλ(x) − ln G1−λ(y)

k

]k


≤ ko


1
k


+

− ln G(y)

2k−1 .

Now if we take limk→∞ of the both sides we have lim
n→∞

P

Mn(ε) ≤ un, Mn ≤ vn


− lim

k→∞
E


1 +

ln Gλ(x) + ln G1−λ(y)

k

k
 = 0,

so

lim
n→∞

P[Mn(ε) ≤ un, Mn ≤ vn] = E[Gλ(x)G1−λ(y)]. �

4. Examples and applications

Example 1. Let λ ∈ [0, 1], a.s., be an arbitrary random variable and let us define

ε1 = 1 a.s.,

εn =


0, for λ ∈

n−1
r=1


r − 1
n − 1

,
r

n

]
∪ {0},

1, for λ ∈

n−1
r=1


r

n
,

r

n − 1

]
,

(17)
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then

Sn

n
P
−→ λ, as n → ∞. (18)

Let {Xn, n ≥ 1} be the family of stationary Farlie–Gumbel–Morgenstern sequence (cf. [4,2]),
independent of λ with the law:

P

X i < x, X i+ j < y


= F


x

F


y


1 + µ j (1 − F(x))(1 − F(y))

, x, y ∈ ℜ. (19)

Then for arbitrary sequence µ = {µn, n ≥ 1} and nondegenerate distribution function F such
that F ∈ D(G) the condition D′(u) holds. If additionally {Xn, n ≥ 1} is the α-mixing sequence
with αn → 0, as n → ∞ (it means, that µn → 0, as n → ∞), then Condition D(un, vn) holds
too. In this cases we have

lim
n→∞

P[Mn(ε) ≤ un, Mn ≤ vn] = E[Gλ(x)G1−λ(y)].

For example, if λ is uniformly distributed on [0, 1] independent on α-mixing stationary family
Farlie–Gumbel–Morgenstern laws with F(x) =

1
2 +

1
π

arctg(x) (the Cauchy’s law) then

lim
n→∞

P[Mn(ε) ≤ un, Mn ≤ vn] =
xy

x − y


e−

1
x − e−

1
y


.

Proof of Example 1. At first, we prove that

Sn =

n−
k=1

εk =



1, λ ∈

[
0,

1
n

]
2, λ ∈


1
n
,

2
n

]
,

...

n, λ ∈


n − 1

n
, 1

]
,

n ≥ 1, (20)

really, for n = 1 we have S1 = 1 = ε1. Assuming, (20) for some n we get


Sn+1 = k


=



Sn = 1, εn+1 = 0


, if k = 1,

Sn = k, εn+1 = 0

∪


Sn = k − 1, εn+1 = 1


, if 1 < k ≤ n,

Sn = n, εn+1 = 1

, if k = n + 1,

=



[
λ ∈

[
0,

1
n

]
∩

[
0,

1
n + 1

]]
, if k = 1[

λ ∈


k − 1

n
,

k

n

]
∩


k − 1

n
,

k

n + 1

]
∪


k − 2

n
,

k − 1
n

]
∩


k − 1
n + 1

,
k − 1

n

]]
, if 1 < k ≤ n,[

λ ∈


n − 1

n
, 1

]
∩


n

n + 1
, 1

]]
, if k = n + 1,
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=



[
λ ∈

[
0,

1
n + 1

]]
, if k = 1,[

λ ∈


k − 1
n + 1

,
k

n + 1

]]
, if 1 < k ≤ n,[

λ ∈


n

n + 1
, 1

]]
, if k = n + 1,

what leads to Sn

n
− λ

 ≤
1
n
, a.s., n ≥ 1,

thus (18) holds.
If F ∈ D(G) then we show that Condition D′(un) holds. Really, since F is nondegenerate,

then there exists the real xo, such that 0 < F(xo) < 1, then from (19)

0 ≤ P

X i < xo, X i+ j < xo


= F2xo


1 + µ j (1 − F(xo))

2
≤ 1, (21)

leads to

−
1

(1 − F(xo))2 ≤ µ j ≤
1 + F(xo)

F2(xo)(1 − F(xo))
,

which implies that sup |µ j | ≤ C for some absolute constants C . From

P[X1 > x, X j > y] = 1 − P[X1 < x, X j > y] − P[X1 > x, X j < y]

− P[X1 < x, X j < y]

= 1 − P[X1 < x] − P[X j < y] + P[X1 < x, X j < y],

we get

P

X1 > x, X j > y


=


1 − F(x)


1 − F(y)


1 + µ j F(x)F(y)


, (22)

such thatn
[n/k]−
j=2

P

X1 > un, X j > un

 ≤
1 + C

k


n(1 − F(un))

2
,

and because n(1 − F(un)) → G(x) thus D′(un) holds.
For the last fact of example, by Theorem 2 we have from l’Hospital theorem

lim
t→∞

1 − F(t x)

1 − F(t)
= lim

t→∞

(1 + t2)x

1 + (t x)2 = x−1,

thus from Theorem 2.1.1 [1] we have

lim
n→∞

P

max{X1, X2, . . . , Xn} < tg

π

2
−

π

n


x


= exp


−
1
x


, x > 0
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therefore for y > x > 0 we have

lim
n→∞

P[Mn(ε) ≤ un, Mn ≤ vn] = Ee−
λ
x −

1−λ
y

= e−
1
y

∫ 1

0
e

t


1
y −

1
x


dt

=
xy

x − y


e−

1
x − e−

1
y


. �

Example 2. Let {ξn, n ≥ 1} be a sequence of independent identically distributed random
variables with the distribution function H and let g(x1, x2, . . . , xm) be some measurable
function. We put Xn = g(ξn, ξn+1, . . . , ξn+m−1), n ≥ 1, thus {Xn, n ≥ 1} is the sequence
of m-dependent random variables, thus Condition D(un, vn) is satisfied. For some choice of
{ξn, n ≥ 1} and function g() the Condition D′(un) may be fulfilled too. For example, if
g(x1, x2, . . . , xm) = min{x1, x2, . . . , xm} and ξn are uniformly distributed on [0, 1] then

H(x) =

0, if x < 0,

x, if x ∈ [0, 1],

1, if x > 1,

F(x) = 1 − (1 − H(x))m
=

0, if x < 0,

1 − (1 − x)m, if x ∈ [0, 1],

1, if x > 1.

Furthermore, for such defined sequence, we have that F ∈ D(H2,m) where

H2,m =


1, if x ≥ 0,

exp

−(−x)m

, if x < 0,
(23)

with the centring and normalizing constants an = 1, bn =
1

m√n
, i.e. for every x ∈ R,

P

[
max{X1, X2, . . . , Xn} < 1 +

x
m
√

n

]
−→ H2,m(x), as n → ∞.

Therefore, the appropriate sequence of {un, n ≥ 1} should be defined by


un = 1 +
x

m√n
, n ≥ 1


.

Furthermore Conditions D′(un) and D(un, vn) hold. Hence if λ has the law with the density
function αxα−1 ({εn, n ≥ 1} is constructed as in Example 1) independent of {ξn, n ≥ 1} then

lim
n→∞

P[Mn(ε) ≤ un, Mn ≤ vn] = αe−(−y)m
∫ 1

0
tα−1et ((−y)m

−(−x)m )dt. (24)

Proof of Example 2. We put ω(F) = 1, F⋆(x) = F


1 −
1
x


= 1 −

1
xm , (cf. [1], Section 2.1)

and remark

lim
t→∞

1 − F⋆(t x)

1 − F⋆(t)
= x−m,

such that from Theorem 2.1.2 [1] we have that F ∈ D(H2,m). Now we check Condition D′(un).
For 1 < j ≤ m we have
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P[X1 > un, X j > un] = P[min{ξ1, ξ2, . . . , ξm+ j−1} > un]

= (1 − un)m+ j−1

=


x

m
√

n

m+ j−1

,

thus

lim
k→∞

lim sup
n→∞

n
[n/k]−
j=2

P[X1 > un, X j > un] = lim sup
n→∞

n
m−

j=2

xm+ j−1

n(m+ j−1)/m

= lim
n→∞

xm+1

m
√

n
·

1 − ( x
m√n

)m−1

1 −
x

m√n

= 0.

Equality (24) follows from our Theorem 2. �

We remark that in [3] there is an error in the proof of Lemma 4.2 [3].

Example 3. Let {Xn, n ≥ 1} be a sequence of independent identically distributed random
variables with the exponential law F(x) = (1 − e−x )I [x > 0]. Obviously, for every x we have
Fn(ln(n) + x) → e−e−x

, as n → ∞. Furthermore let {εn, n ≥ 1} be copies of random variable
ε1 (i.e. for every i, j, εi = ε j ) with the law P[ε1 = 1] = P[ε1 = 0] =

1
2 , and independent of

{Xn, n ≥ 1}. If we put un = ln(n) + 1, vn = ln(n) + 2, thus D(un, vn) holds with αn,l = 0 for
every n, l ∈ N . But, if we put k = 2, I1 = {1}, I2 = {2} then

P

[ 2
s=1

{M(Is, ε) ≤ un, M(Is) ≤ vn}

]
= P[max{X1, X2} ≤ un < vn]P[ε1 = ε2 = 1]

+ P[max{X1, X2} ≤ vn]P[ε1 = ε2 = 0]

=
1
2
((1 − e−1/n)2

+ (1 − e−2/n)2)

and
2∏

s=1

P

{M(Is, ε) ≤ un, M(Is) ≤ vn}


= (P[X1 ≤ un < vn]P[ε1 = 1] + P[X1 ≤ vn]P[ε1 = 0])

× (P[X2 ≤ un < vn]P[ε2 = 1] + P[X2 ≤ vn]P[ε2 = 0])

=
1
4
((1 − e−1/n) + (1 − e−2/n))2.

Thus P

[ k
s=1

{M(Is, ε) ≤ un, M(Is) ≤ vn}

]
−

k∏
s=1

P[M(Is, ε) ≤ un, M(Is) ≤ vn]


=

1
4


(1 − e−1/n) − (1 − e−2/n)

2
=

(e − 1)2

4e4n2 > αn,1 = 0.

However the random variables ε = {εn, n ≥ 1} defined in Example 3 do not satisfy the
Weak Law of Large Numbers (WLLN). In the next example we construct the random variables
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satisfying WLLN but such that for every choice of subsets {Is, 1 ≤ s ≤ k} the Lemma 4.2 [3]
fails. We begin with

Lemma 4. Let {Ak, k ≥ 1} and {Bk, k ≥ 1} be such sequences of positive numbers, that for
every k ≥ 1, Ak < Bk . Then for every integer n > 1,

1
2

n∏
i=1

Ai +
1
2

n∏
i=1

Bi >

n∏
i=1

Ai + Bi

2
.

The easy inductive proof we omitted.

Example 4. Let {Xn, n ≥ 1} be a sequence of independent identically distributed random
variables with the law F , and let {un, vn, n ≥ 1} be two sequences of reals such that un < vn
and F(un) < F(vn), for every n > 1 (this sequences and F may be defined as in Example 3).
Let us define two sequences of random variables {ξn, n ≥ 0} and {ηn, n ≥ 1} interindependent
and independent of {Xn, n ≥ 1}, with the law

P[ξn = 1] = P[ξn = 0] =
1
2
, n ≥ 0, and P[ηn = 1] = 1 −

1
n
,

P[ηn = 0] =
1
n
, n ≥ 1.

Put

εn(ω) =


ξ0(ω), for ω ∈ [ηn = 0],

ξn(ω), for ω ∈ [ηn = 1].

Then

Sn

n
=

n∑
i=1

εi

n
P
−→

1
2
, as n → ∞, (25)

and for every I1, I2, . . . , Ik pairwise disjoint subsets of {1, 2, . . . , n} we have

P


k

s=1

M(Is, ε) ≤ un, M(Is) ≤ vn


−

k∏
s=1

P[M(Is, ε) ≤ un, M(Is) ≤ vn] > 0, (26)

whereas for every l ∈ N , αn,l = 0.

Proof of Example 4. At first we compute the common law of {εn, n ≥ 1}.

Lemma 5. For {εn, n ≥ 1} defined as in Example 4 and every disjoint subsets of positive integers
A and B such that A ∪ B ≠ ∅ we have

P[εi = 0, i ∈ A; ε j = 1, j ∈ B]

=
1

2A+B+1

∏
i∈A


1 +

1
i

 ∏
i∈B


1 −

1
i


+

∏
i∈A


1 −

1
i

 ∏
i∈B


1 +

1
i


,

(where
∏

i∈∅
ai = 1, A = card(A)).
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Proof of Lemma 5. The proof follows from

P[εi = 0, i ∈ A; ε j = 1, j ∈ B; ξ0 = 0]

=

−
K⊂A

P[ηi = 0, i ∈ K ; η j = 1, ξ j = 0, j ∈ A \ K ; ηp = 1, ξp = 1; p ∈ B; ξ0 = 0]

=

−
K⊂A

∏
i∈K

1
i

∏
i∈A\K


1
2


1 −

1
i

 ∏
i∈B


1
2


1 −

1
i


·

1
2

=
1

2A+B+1

∏
i∈A


1 +

1
i

 ∏
i∈B


1 −

1
i


,

and similarly

P[εi = 0, i ∈ A; ε j = 1, j ∈ B; ξ0 = 1] =
1

2A+B+1

∏
i∈A


1 −

1
i

 ∏
i∈B


1 +

1
i


. �

Because

Cov(εi , ε j ) = Var(ξ0)P[ηi = η j = 0] =
1

4i j
, i ≠ j ≥ 1,

and

Var(εi ) =
1
4
, i ≥ 1,

thus from Chebyshev’s inequality we have, for every ε > 0,

P

 n−
i=1

(εi − Eεi )

 > nε


≤

Var


n∑
i=1

εi


n2ε2 =

n∑
i=1

1
4 + 2

∑
1≤i< j≤n

1
4i j

n2ε2 = O


1
n


,

such that (25) holds.
Since for arbitrary A ⊂ {1, 2, . . . , n}, from Lemma 5

P[M(A, ε) ≤ un, M(A) ≤ vn]

=

−
K⊂A

P

[
max
i∈K

X i ≤ un; max
i∈A\K

X i ≤ vn; εi = 0, i ∈ K ; ε j = 1, j ∈ A \ K

]

=

−
K⊂A

F K (un)F A\K (vn)

2K+A\K+1

 ∏
i∈K


1 +

1
i

 ∏
i∈A\K


1 −

1
i



+

∏
i∈K


1 −

1
i

 ∏
i∈A\K


1 +

1
i



=
1
2

−
K⊂A

∏
i∈K


1 +

1
i


F(un)

2

∏
i∈A\K


1 −

1
i


F(vn)

2

+

∏
i∈K


1 −

1
i


F(un)

2

∏
i∈A\K


1 +

1
i


F(vn)

2


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=
1
2

∏
i∈A

F(un) + F(vn) −
1
i (F(vn) − F(un))

2

+

∏
i∈A

F(un) + F(vn) +
1
i (F(vn) − F(un))

2


,

thus putting for every 1 ≤ j ≤ k,

A j =

∏
i∈I j

F(un) + F(vn) +
1
i (F(vn) − F(un))

2
,

and

B j =

∏
i∈I j

F(un) + F(vn) −
1
i (F(vn) − F(un))

2
,

the Lemma 4 ends the proof of (26). �

Because Lemma 4.2 [3] fails, thus the proof of Theorem 3.2 [3] is not correct, but this theorem
follows from our Theorem 2 and allows true.
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