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Abstract-we show some new expressions for a Cauchy matrix, which enable us to simplify the 
solution of Trummer’s problem, both in the general case and in the case where the input Cauchy 
matrix is fixed for the problem whereas the input vector varies. @ 1998 Elsevier Science Ltd. All 
rights reserved. 
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1. INTRODUCTION 

The solution of Trummer’s problem (that is, the problem of multiplication of an n x n Cauchy 
matrix C by a vector) is the basis for the solution of several important problems of scientific and 
engineering computing [l-lo]. The straightforward algorithm solves Trummer’s problem in 0(n2) 
flops. The fast algorithm of [ll] uses O(n log2 n) flops but has poor numerical stability. Presently, 
the algorithm of choice in practical computations is the celebrated Multipoint Algorithm [lo, 
12-16, pp, 261-2621, which belongs to the class of hierarchical methods [2,17,18]. The algorithm 
approximates the solution in O(nlogn) flops in terms of n, but its cost estimate and even its 
ability to yield the desired approximation at all also depend on the bound on the approximation 
error and on the correlation between ihe entries of the pair of n-dimensional vectors defining the 
input matrix C. 

The goal of the present paper is to enhance the power of the Multipoint Algorithm (as well as 
other solution algorithms for Trummer’s problem) by showing some new expressions for a Cauchy 
matrix via other Cauchy matrices, which we may vary by changing one of their basis vectors. 
Under an appropriate choice of such a vector, the subsequent solution of Trummer’s problem is 
simplified; in particular, the power of the Multipoint Algorithm can be enhanced. 

Supported by NSF Grant CCR 9625344 and PSC CUNY Awards 667340 and 668365. 

Typeset by AM-‘&X 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82488539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 v. Y. PAN et al. 

Technically, we achieve our goal by means of a simple transformation of the useful basic for- 
mulae of [19], and our resulting expressions for C give us further algorithmic opportunities. The 
underlying idea of the transformation of the basic vectors defining the problem is taken from [20], 
where this idea was used for multipoint polynomial evaluation and interpolation. 

We use the following order of presentation. In the next section, we introduce the definitions, 
show how to avoid degeneration of Trummer’s problem, and recall some basic formulae from [19]. 
In Section 3, we extend these formulae to yield the desired transformations of Cauchy matrices 
and Trummer’s problem. In Section 4, we comment on the algorithmic aspects. 

2. DEFINITIONS, BASIC EXPRESSIONS, 
AND TREATMENT OF DEGENERATION 

DEFINITION 2.1. For a pair of n-dimensional vectors a’ = (ai)~~~, b’ = (bj)yzi, let C(Z, g) = 
(l/(ai - bj))2Tio, V(Z) = (a~)~~_!,, H(Z) = (hi,j)T&, hi,j = ai+j for i + j 5 n - 1, h,,j = 0 
for i + j 2 n - 1, denote the associated n x n Cauchy, Vandermonde, and triangular Hanke1 
matrices, respectively. For a vector ii = (ai)TzO’ with ai # aj for i # j, a Cauchy degenerate 
matrix C(Z) has the diagonal entries zeros and the (i,j)“h entry l/(ai - aj) for i # j. W-‘, 
WT, and W- T denote the inverse, the transpose, and the transpose of the inverse of a matrix 
W, respectively firthermore, pi;(z) and pi(z) denote the polynomid p,-(x) = nyii(z - bj) and 

its derivative pi(z) = Cyzt flyz$jgi) (Z - bj), respectively Finally, D(Z, g) = diag(p;(ai))yzt = 

diag(nyzi(ai - 6j))Tzi and D’(g) = diag(&(bj))~~~ = diag(n~‘~~jZi)(ai - bj))yii denote a pair 

of n x n diagonal matrices, defined by the vectors a’ and b’. 

THEOREM 2.1. (See [19].) Let ci # dj, i, j = O,l,.. . ,n - 1. Then 

C(Z,J) =D(Z,ci)-lV(F)H(i)V(i)T, 

C(Z,z) =D(Z,i)-lV(Z)V(i)-lD+i). 

(2.1) 

(2.2) 

DEFINITION 2.2. TYummer’s problem is the problem of computing the vector C(Z, ;)a for three 
given vectors ii = (u~)~~~, b’ = (bj)yzI, and v’ = (vj)yzt, where ai # bj for al pairs i, j. 
TYummer’s degenerate problem is the problem of computing the vector C(Z)i)a for two given 
vectors a’ = (a&‘:: and v’ = (vj)yzt, where ai # aj for i # j. 

DEFINITION 2.3. Wk = exp(2nfl/k) is a primitive kth root of 1, wk = 1,~: # 1, for 1 = 
1 ,...,k-1. 

LEMMA~.~. C~~~~~~=Oforg=l,..., k-l. 

Approximate solution of Trummer’s degenerate problem can be reduced to Trummer’s problem 
due to the next simple result. 

LEMMA 2.2. C(Z) = l/hCi:i C(Z,Z+ CW~Z) + O(@) as e ---) 0, where Z = (1)~~~ is the vector 
filled with the values one and where e is a scalar parameter. 

PROOF. Ctzi l/(~i - cj - EW:) = l/(~ - Cj) Cp”=, C,hzi(EWi/Q - Cj)” = h/(Q - cj)(l + 0 
(@)), due to Lemma 2.1. I 

3. NEW TRANSFORMATIONS OF A CAUCHY 
MATRIX AND OF TRUMMER’S PROBLEM 

THEOREM 3.1. For a triple of n-dimensional vectors b’ = (bi)yZi, c’ = (Cj)yzt, d’ = (dk);=i, 
wherebi#Cj,cj#dk,dk#bifori,j,k=O ,..., n - 1, we have the following matrix equations. 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

PROOF. From (2.1), we immediately deduce that C(g,d-’ = V(dt)-TH(d’,-lV(~)-lD(~,~. 
Substitute the latter matrix equation and the expression (2.1) for C(Z,i) into the trivial matrix 
identity C(Z, i) = C(C; i)C(& i)-lC($, $) and obtain (3.1). Extend (2.2) to a similar expres- 
sion C(Z, 6) = D(Z, bt>-‘V(Z)V(b’))-‘D’(g) and d e d uce that V(c’)V(g)-’ = D(Z, g)C(Z, 6)D’(g)-‘. 
Substitute this expression into (3.1) and obtain (3.2). Observe that C(Z,d) = -C(d:ZjT and 
extend (2.2) to obtain that -C(Z,d) = C(J,ZjT = (D(& Z)-1V(d’)V(6)-‘D(b’,, qC(6, Z))T = 
C(g, ZJTD(& E)V(b’))-TV(dT D(4 4-l. Substitute C(Z, g) = -C(& qT and obtain (3.3). Finally, 
extend (2.2) to obtain that V($)V(g)-’ = D(d: G)C(& g)D’(@’ and consequently V(g)-TV(dlT 
= D’(6)-1C(c$g)TD(d:g). Substitute the latter matrix equation and the matrix equation 
C(& g)T = -Cc;, 2) into (3.3) and obtain (3.4). I 

4. SOME ALGORITHMIC ASPECTS 

The expressions (3.2) and (3.4) for C(Z,d are Vandermonde-free and Hankel-free, but they 
enable us to transform the basis vectors c’ and d’ for the Cauchy matrix C(Z, d! into the two 
pairs of basis vectors c’, g, and b’, d’ for any choice of the vector b’ = (bj), bj # cj, bj # dk, 
i,j,k=O ,..., n - 1. The associated Trummer’s problem is reduced to 

(a) the evaluation of the diagonal entries of the diagonal matrices D/(6)-l, D(f,G), and/or 
II(f:i)-‘, for (f:i) denoting the pairs (I?‘,,, (g,d, (Z,@, (g,Z), (gg), and/or (43, 

(b) recursive multiplication of these matrices and the Cauchy matrices C(g, 2) and C(c’, g) by 
vectors. 

Let us next specify parts (a) and (b). 

(a) The evaluation of the entries of the matrices D(f7 93 and D(f, ?j)-l for a given pair of vec- 
tors (f: G) and of the matrix D’(G) for a given vector 9’ can be reduced to the computation 
of the coefficients of the polynomial pi = nyli (x - gj) and the subsequent evaluation 
of pg(z) at the points fi, i = 0,. . . , n - 1 (for D(ff 93) and of its derivative p;(z) at the 
points gi, i = 0, . . . , n - 1 (for D’(i)). 

The coefficients of the polynomial p,-(x) can be obtained by the fan-in method, consisting 
of the pairwise multiplication of the linear factors x - gj followed by recursive pairwise 
multiplication of the computed products (cf. [16, p. 251). The computation is numerically 
stable and uses O(n log2 n) flops. 

Multipoint polynomial evaluation can be also done in O(n log2 n) flops [16, p. 261, but 
due to the potential numerical stability problems, it seems more attractive to apply the 
more recent techniques of fast multipoint polynomial approximation [20-231. We may very 
much simplify the evaluation of the matrices D(f: G), D(f, G)-l, and D’(g), where $= b’ 
or ?j = b’ provided that we may choose a vector b’ = (bi)yzol at our convenience. For 
instance, let us fill this vector with the scaled nth roots of 1, so that 

bi = au;, i=O,l,..., n-l, (4.1) 

for a scalar a and for w, of Definition 2.3. Then p,-(x) = nyLt(x - a~:) = xn - an, 
pi(x) = nx+‘, and the matrices D(f7 6) and D(b) can be immediately evaluated in 
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O(n log n) flops. Furthermore, the evaluation of any given polynomial p(z) of degree n at 
the scaled nth roots of 1 is immediately reduced to discrete Fourier transform and thus, 
can be performed in O(n log n) flops by means of FFT. 

Finally, all the diagonal matrices involved in (3.1)-(3.4) can be precomputed once and 
for all if, in ‘Trummer’s problem of the computation of the vector C(c’,c@, the Cauchy 
matrix C(Z, 2) is fixed (e.g., C(Z,q is the Hilbert matrix (l/(i + j + l))t&,), and only 
the vector v’ varies. 

(b) The multiplication of the diagonal matrices by vectors is a trivial task. The multiplication _ 
of the Cauchy matrix C(b, d! or C(Z, b) by a vector is Trummer’s problem, whose solution 
can be simplified under an appropriate choice of the vector b’. In particular, even if we 
restrict b’ to be filled with scaled roots of 1 (cf. (4.1)), we still may choose the scaling 
parameter a to guarantee fast convergence of the power series of the Multipole Algorithm. 

The above study can be extended to the expressions (3.1) and (3.3) for C(Z,q. Each 
of them involves two Vandermonde matrices, but one of these matrices in each expression 
is defined by a vector b of our choice, and this enables us to yield simplification. In 
particular, for two given vectors ii = (~i)y&l and b” = (bi)yz,l the vector v’ = V(g)-% is 
the coefficient vector of the polynomial U(Z) that takes on the values Q at the points bk, 
k =O,...,n- 1. For bk being a scaled nth roots of 1, as in (4.1), the computation of v’ 
takes O(n log n) ops due to the inverse FFT. Similar comments apply to the multiplication 
of the matrix V(g)-’ by a vector. 

REMARK 4.1. Lemma 2.2 enables us to extend the above analysis to approximate solution of 
Trummer’s degenerate problem. 

REMARK 4.2. By Tellegen’s theorem [24], the exact multiplication of the transposed Vander- 
monde matrix VT(d3 by a vector (cf. (2.1), (3.3)) can be reduced to the exact multiplication of 
V(d> by a vector, that is, to exact multipoint polynomial evaluation, though Tellegen’s theorem 
does not generally preserve the error bounds of algorithms for multipoint polynomial approxima- 
tion, such as ones of [20-231. 
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