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SUMMARY

RNase P is the endonuclease that removes 50 exten-
sions from tRNA precursors. In its best-known form,
the enzyme is composed of a catalytic RNA and
a protein moiety variable in number and mass. This
ribonucleoprotein enzyme iswidely considered ubiq-
uitous and apparently reached its highest complexity
in the eukaryal nucleus, where it is typically com-
posed of at least ten subunits. Here, we show that
in the protist Trypanosoma brucei, two proteins
are the sole forms of RNase P. They localize to the
nucleus and the mitochondrion, respectively, and
have RNase P activity each on their own. The
protein-RNase P is, moreover, capable of replacing
nuclear RNase P in yeast cells. This shows that com-
plex ribonucleoprotein structures and RNA catalysis
are not necessarily required to support tRNA 50 end
formation in eukaryal cells.
INTRODUCTION

RNase P is the endonuclease responsible for the removal of

extraneous nucleotides from the 50 end of tRNA precursors, an

early and essential step in tRNA biogenesis (Phizicky and

Hopper, 2010; Liu and Altman, 2010). Two basically different

forms of RNase P have been identified. One, apparently more

ancient and widespread, is based on a structurally conserved

RNA molecule forming the catalytic core of the enzyme

(reviewed by Ellis and Brown, 2009; Hartmann et al., 2009; Lai

et al., 2010b; or Liu and Altman, 2010). This RNA is catalytically

active on its own in vitro and hypothesized to be the relic of a

prebiotic RNA world. In the evolved, modern RNase P enzymes,

the RNA nevertheless depends on protein to fulfill its cellular

function. This RNA-based form of RNase P is found in all

domains of life, but there is an apparent trend from RNA to

protein predominance in the overall composition and functioning

of these ribonucleoproteins (RNPs) from Bacteria to Eukarya.

RNase P of the former is built from a catalytically proficient

RNA and a single small protein only. RNase P RNA of Archaea

is a less-efficient catalyst in vitro and associates with five
proteins, none of which is related to the bacterial protein. Yet,

they are homologous to five of the ten proteins found in human

nuclear RNase P, the RNA component of which is barely active

on its own. By the mere number of components, the nuclear

enzyme also appears to be the most complex form of RNase

P, a fact that has been attributed to the need for increased

flexibility in substrate recognition due to a presumably greater

variety of additional, non-tRNA substrates, the possible need

for coordination with other molecular machines, and/or the

acquisition of further, unrelated functions (Marvin and Engelke,

2009; Jarrous and Gopalan, 2010; Walker et al., 2010; Chen

et al., 2012). Unfortunately, this view of eukaryal nuclear RNase

P is almost exclusively built on studies of yeast and human cells,

and thus, little is known about nuclear RNase P in eukaryal

branches other than opisthokonts/unikonts. In fact homologs

of (some) yeast/human nuclear RNase P proteins seem to be

absent from many eukaryal genomes, and an RNase P RNA

has not been identified in the genome of plants, algae, and

some protist groups (Hartmann and Hartmann, 2003; Piccinelli

et al., 2005; Rosenblad et al., 2006).

Another entirely different form of RNase P, apparently not con-

taining RNA, was initially observed in the organelles of different

Eukarya (Wang et al., 1988; Thomas et al., 1995; Rossmanith

and Karwan, 1998; Salavati et al., 2001). The identification of

its components made clear that this form of RNase P does

indeed not contain any RNA but is composed of protein only

(Holzmann et al., 2008). Its key component is an�60 kDa protein

characterized by an NYN metallonuclease domain, a CXXC zinc

finger-like motif, and two in-tandem pentatricopeptide repeats

(Rossmanith, 2012). The first-identified, human protein was orig-

inally termed ‘‘mitochondrial RNase P protein 3’’ (MRPP3), but

meanwhile, we have coined the more generally applicable

name ‘‘proteinaceous RNase P’’ (PRORP). Although human

PRORP makes use of two further proteins for mitochondrial

RNase P function, its plant mitochondrial/plastidial homolog

does not require a partner for RNase P activity (Gobert et al.,

2010). PRORP homologs are not found in Archaea and Bacteria,

but in a wide range of eukaryal branches, suggesting an origin at

the root of the eukaryal tree.

The constraints that preserved a catalytic RNA for RNase P

function throughout evolution in a cellular biochemistry so

much dominated by protein catalysts are not clear, and its pre-

sence inmodern life is all themore surprising now that it is known
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that a single protein is able to catalyze the same, specific

hydrolytic reaction. Given that PRORP enzymes have so far

only been found responsible for organellar tRNA processing, it

was suggested that the RNA-based enzymes, for reasons yet

unclear, would allow more flexibility with respect to, e.g., sub-

strate recognition, and that PRORPs therefore remained

restricted to the simpler organellar systems (Esakova and Krasil-

nikov, 2010; Marvin and Engelke, 2009; Walker and Engelke,

2008). Bioinformatic evidence for PRORP homologs in organ-

isms lacking RNase P RNA has, however, challenged this view.

Here, we report a study of RNase P in the model organism

Trypanosoma brucei. Notably, the genomes of trypanosomatids

lack evidence for genes related to RNA-based RNase P

(Piccinelli et al., 2005; Rosenblad et al., 2006), but they encode

two homologs of human and plant PRORP genes (Holzmann

et al., 2008; Gobert et al., 2010). Weweremost intrigued whether

a ‘‘simple’’ PRORP could accomplish the role of nuclear RNase

P, traditionally ascribed to highly complex, multicomponent

RNP enzymes.

RESULTS

Two presumptive PRORP genes (PRORP1, PRORP2) were iden-

tified in all available trypanosomatid genomes. Although the

overall similarity between the two (�30% amino acid identity)

is no more than their similarity to plant PRORPs, they are never-

theless distinguished from plant and animal sequences by an

insertion of 35–41 amino acids in the NYN metallonuclease

domain (Figure S1). A second, distinctive insertion of 13–18

amino acids is found in the C-terminal part of the NYN domain

of trypanosomatid PRORP2 only.

In T. brucei the transcript copy number of PRORP1 (locus tag

Tb09.211.0870) and PRORP2 (Tb11.02.0510) was estimated to

be �2 mRNA molecules per cell (insect form) each in a recent

transcriptome study by Kolev et al. (2010). Similar mRNA levels

were reported for several genes encoding putative homologs

of other tRNA-processing and -modification enzymes in the

same study, though finally 75% of all T. bruceimRNAs were esti-

mated in the range of one to ten (median three) molecules per

cell. None of the two genes appears to be regulated at the

RNA level in life-cycle development or during cell cycle (Archer

et al., 2011; Jensen et al., 2009; Nilsson et al., 2010; Siegel

et al., 2010; Veitch et al., 2010).

T. brucei PRORP1 and PRORP2 Have RNase P Activity
Recombinant, tagged proteins were purified to near homoge-

neity by one- or two-step affinity chromatography and subse-

quent size exclusion chromatography (Figure 1A). Compared

to standards, PRORP1 and PRORP2 eluted close to their calcu-

lated molecular weight at �60–65 kDa, indicating that they

do not form dimers or higher-order oligomers (Figure 1B). Both

recombinant proteins cleaved different T. brucei tRNA pre-

cursors as well as two commonly used bacterial model sub-

strates at the same site as E. coli RNase P (Figures 1C–1G;

canonical cleavage, immediately upstream of the first nucle-

otide of the tRNA structure, was also confirmed by sizing

along nuclease ladders in high-resolution gel electrophoresis

[data not shown]). Thus, similar to Arabidopsis PRORP1 (Gobert
20 Cell Reports 2, 19–25, July 26, 2012 ª2012 The Authors
et al., 2010) and despite their divergence in nuclease domain

primary structure, both T. brucei PRORPs have RNase P activity

on their own and, unlike human PRORP, do not require additional

proteins (Holzmann et al., 2008).

PRORP1 Localizes to the Nucleus/Nucleolus and
PRORP2 to the Mitochondrion
Eukaryal cells require RNase P in any tRNA-synthesizing

compartment, i.e., nucleus, mitochondria, and chloroplasts if

applicable. An RNase P activity was previously purified from

T. brucei mitochondria by Salavati et al. (2001). Although the

responsible enzyme was not identified, its apparent lack of an

RNA component and a molecular weight of �70 kDa would both

be consistent with this activity being derived from either PRORP1

or PRORP2. In fact PRORP2 is predicted to bemitochondrial and

to have a cleavable N-terminal targeting sequence. PRORP1,

conversely, seems to harbor a nuclear localization signal.

To directly determine the localization of PRORP1 and

PRORP2, we expressed both proteins with a C-terminal YFP

tag in T. brucei cells (insect form) and alternatively also localized

the endogenous proteins by immunofluorescence using anti-

bodies raised against the recombinant proteins. PRORP1-YFP

overexpression gave rise to nuclear fluorescence only (Fig-

ure 2A). In contrast to the apparently homogeneous nuclear

distribution of PRORP1-YFP, immunostaining of endogenous

PRORP1 was largely confined to the single central nucleolus of

T. brucei nuclei and only weak in the nucleoplasm (Figure 2B),

a discrepancy possibly due to the overexpression of PRORP1-

YFP from the strong PARP promoter. PRORP2 was localized

to the branched trypanosomatid mitochondrion by YFP tag or

immunofluorescence, coinciding with MitoTracker staining (Fig-

ures 2C and 2D). Hence, like other eukaryal cells T. brucei has

twoRNase P activities: one present in the nucleus, and a different

one in its mitochondrion.

PRORP1 and PRORP2 Are the Sole Forms of RNase P in
Trypanosomatids
With the exception of a parasitic archaeon that dispensed with

RNase P by making leaderless tRNAs (Randau et al., 2008),

the RNA-based form of RNase P is widely considered a ubiqui-

tous RNPmachine, indispensable for life, reminiscent of the ribo-

some (Altman, 2010). Previous bioinformatic studies did not find

any possible RNase P RNA candidate sequences in trypanoso-

matid genomes (Piccinelli et al., 2005), nor the commonly asso-

ciated protein subunits (with the exception of a possible RPP25/

POP6 homolog; Rosenblad et al., 2006). However, RNase P

RNAs are notoriously difficult to identify, and structurally more

divergent variants might have escaped bioinformatic analyses

so far. The recent case of Pyrobaculum demonstrated that

RNase P RNAs (and associated proteins) can diverge consider-

ably from the structural consensus (Lai et al., 2010a). Likewise,

the structurally degenerate fungal mitochondrial RNase P

RNAs seem to have recruited an entirely new protein moiety

even more than once during evolution (Rossmanith, 2012).

Because life solely built on the proteinaceous form of RNase P

is in fact unprecedented, we investigated the possibility of the

simultaneous presence of a further, possibly RNA-based form

of RNase P in T. brucei. We prepared whole-cell extracts by a
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Figure 1. Purification and tRNA-Processing Activity of Recombinant T. brucei PRORP1 and PRORP2

(A) SDS-PAGE of recombinant PRORP1 and PRORP2 purified by affinity chromatography (AC), or affinity chromatography with subsequent size exclusion

chromatography (SEC) is shown; molecular weight of marker proteins indicated in kDa.

(B) Size exclusion chromatography profile of purified recombinant PRORP1 (blue) and PRORP2 (red) is illustrated. The peak at about 8 ml represents aggregated

protein eluting in the void volume. The peak positions of molecular weight marker proteins resolved under identical conditions are indicated.

(C) RNase P activity of recombinant PRORP1 and PRORP2 is presented. A T. brucei tRNAi
Met precursor was incubated with PRORP1, PRORP2, or E. coli RNase

P. 50 end-labeled substrate RNA and cleavage product (indicated by icons to the right) were resolved by denaturing PAGE.

(D) Same as (C), but T. brucei tRNAPhe precursor used as substrate is shown.

(E) Same as (C), but T. brucei tRNAHis precursor used as substrate is presented.

(F) Same as (C), but E. coli tRNATyrsu3
+ precursor used as substrate is illustrated.

(G) Same as (C), but tRNAGly precursor from Thermus thermophilus used as substrate is demonstrated.

See Figure S1 for alignment of trypanosomatid PRORP sequences to human and plant PRORP.
combination of hypotonic swelling/mechanical disruption and

lysis with a nonionic detergent. Similar extraction procedures

have been used previously to isolate RNase P enzymes from

various sources, including the fragile human nuclear and mito-

chondrial enzymes (Rossmanith et al., 1995). The T. brucei-cell

extraction procedure was optimized to yield a maximal amount

of RNase P activity in the crude whole-cell extract. We then sub-

jected the extract to immunodepletion using PRORP1 and

PRORP2 antisera. Depletion of either PRORP1 or PRORP2 led

to a reduction of RNase P activity, but the depletion of both

proteins eliminated all activity (Figures 3 and S2). Thus, apart

from PRORP1 and PRORP2, T. brucei apparently contains no

other kind of RNase P.
PRORP1 Is Able to Substitute for Yeast Nuclear RNase P
In Vivo
In terms of number of components, the complexity of the

trypanosomatid enzyme is reduced by one order of magnitude

relative to yeast or human nuclear RNase P. In the tree of

Eukarya, trypanosomatids (a kinetoplastid clade of euglenozo-

ans) are placed in the supergroup of excavates and are thus

only distantly related to animals and fungi (opisthokont/unikont

supergroup). Notably, trypanosomatids differ from opisthokonts

and most other Eukarya in several fundamental aspects of gene

expression (Martı́nez-Calvillo et al., 2010). The seemingly simpli-

fied form of RNase P could be related to the peculiar genetic

system of these protists, possibly being the result of reductive
Cell Reports 2, 19–25, July 26, 2012 ª2012 The Authors 21



Figure 2. Subcellular Localization of

PRORP1 and PRORP2

Analysis of the subcellular localization in pro-

cyclic T. brucei Lister 427 cells by expression

of C-terminally YFP-tagged proteins (YFP) or by

immunofluorescence (IF) of endogenous pro-

teins is presented. Mitochondria were stained by

MitoTracker red (MT), nuclei and kinetoplasts by

Hoechst (H); cells are also shown in bright-field

view (BF). Pictures were taken by epifluorescence

microscopy. Scale bars, to 2 mm.

(A) Expression of YFP-tagged PRORP1 is shown.

(B) Immunofluorescence of endogenous PRORP1

is demonstrated; overlay of immunofluorescence

and Hoechst staining (IF/H) is illustrated.

(C) Expression of YFP-tagged PRORP2 is shown.

(D) Immunofluorescence of endogenous PRORP2

is demonstrated.
evolution, and accompanied by a reduced functionality of the

enzyme. It seemed thus worthwhile to compare PRORP1, the

nuclear RNase P of T. brucei, to the rather complex RNP form

of RNase P found in the nucleus of animals or fungi.

Yeast nuclear RNase P is composed of nine proteins and an

RNA considered to be the catalytic core (Walker et al., 2010).

All subunits are essential for enzyme function in vivo, i.e., dele-

tion of any of them is lethal. We tested whether T. brucei

PRORP1 is able to rescue the deletion of RPR1, the gene encod-

ing yeast nuclear RNase P RNA. First, RPR1 was confirmed to

be essential using a standard gene disruption/tetrad analysis

approach (Figure 4A). When we transformed the diploid RPR1/

rpr1D::kanMX strain (one allele of RPR1 replaced by the select-

able marker kanMX) with a plasmid for PRORP1 expression,

meiotic tetrads could be dissected into three or four viable

spores frequently (Figure 4B). Replica plating confirmed haploidy

and the expected kanMX segregation among the spores.

Analysis of plasmid-encoded leucine prototrophy revealed that

the plasmid was frequently lost from RPR1 wild-type spores,

but never from the rpr1D::kanMX mutant spores. Even after

long-term culture in leucine-containing medium, rpr1D::kanMX

cells invariably remained leucine prototroph, i.e., had kept the

plasmid with the actual dispensable LEU2 marker; by providing

vital RNase P function to the cells, plasmid-encoded T. brucei

PRORP1 obviously became an essential gene in rpr1D::kanMX

yeasts. The genotype of rpr1D::kanMX [PRORP1] strains was

also verified at the molecular level, and multiple PCR analyses

confirmed the loss of RPR1 from their genome (Figure 4C).

Compared to the RPR1 wild-type, PRORP1 strains gave rise

to smaller colonies indicating a slower growth rate (Fig-

ure 4D). Nevertheless, we have been able to perpetuate these

RNase P-engineered yeast strains for an as yet unlimited

number of generations, demonstrating that even in an entirely

different cellular environment, T. brucei PRORP1 sufficiently

supports all RNase P functions required for vitality.
22 Cell Reports 2, 19–25, July 26, 2012 ª2012 The Authors
DISCUSSION

In contrast to the peculiarities found

in the expression of trypanosomatid

protein-coding genes, e.g., generalized

polycistronic transcription and trans-splicing (Martı́nez-Calvillo

et al., 2010), trypanosomatid tRNA biology appears generally

orthodox. Gene organization, transcription, processing, and

modification, and tRNA structure and function, appear all similar

as in other eukaryal systems. Their genome encodes a homolog

of RNase Z and a CCA-adding enzyme, and only their tRNA 50

end-processing machinery seems to be unusual. So far, trypa-

nosomatids are the sole eukaryal group identified that has lost

all genes associated with or related to the RNA-based form of

RNase P and, instead, uses the protein-only form of RNase P

(PRORP) to process its tRNAs.

Trypanosomatid PRORP1 differs from any previously charac-

terized nuclear RNase P. Still, the basic pathway of tRNA pro-

cessing seems preserved in T. brucei, and like in yeast (Walker

et al., 2010), 50 end maturation primarily occurs in the nucleolus.

Moreover, PRORP1’s ability to replace yeast nuclear RNase P

suggests that the inherently different physical qualities of the

two enzyme forms are not reflected in a basically different func-

tionality. The ‘‘protein-only’’ pathway of nuclear tRNA process-

ing actually seems to be more widespread than hitherto antici-

pated. RNase P RNA appears to be absent from the entire

plant supergroup (land plants, green and red algae) and from

stramenopiles (Piccinelli et al., 2005), all of which have one or

more PRORP homologs that could serve as nuclear RNase P

(Holzmann et al., 2008; Gobert et al., 2010). Indeed, Gutmann

et al. (2012) just recently reported that Arabidopsis PRORP2

and PRORP3 function as nuclear RNase P. Thus, also in plants,

all cellular tRNA 50 end maturation appears to be exclusively

protein dependent (Gobert et al., 2010; Gutmann et al., 2012).

Still, another recent report claimed the purification of a plant

nuclear RNP complex with RNase P activity, resembling the

unikont nuclear enzyme (Chen et al., 2012). However, none of

the components of this presumptive RNP enzymewas identified,

and it remains to be clarified if plant cells contain an as yet unrec-

ognized RNase P-RNP in addition to PRORPs.



2 3 4 987651

Ec
 R

N
a

s
e

 P

m
o

c
k

c
e

ll
 e

x
tr

a
c

t

immunodepleted
cell extract

P
R

O
R

P
1

P
R

O
R

P
2

c
o

n
tr

o
l

c
o

n
tr

o
l

P
R

O
R

P
1
, 
P

R
O

R
P

2

P
R

O
R

P
1
/P

R
O

R
P

2
5‘ 3‘

5‘

T.
 b

ru
ce

i  p
re

-t
R

N
A

P
h

e

Figure 3. Immunodepletion of RNase P Activity from T. brucei

Whole-Cell Extract by PRORP1 and PRORP2 Antibodies

RNase P activity in procyclic T. brucei Lister 427 whole-cell extract (lane 3) and

extract depleted of PRORP1 or/and PRORP2 by immunoprecipitation (lanes

5–8) is presented. Control immunodepletions were carried out with mixed

PRORP1 and PRORP2 preimmune sera (lanes 4 and 9). Double immu-

nodepletion was carried out either in sequence, i.e., PRORP2 depletion of

a PRORP1-depleted extract (lane 7), or simultaneously by mixing the two

antisera (lane 8). RNase P activity was assayed using the T. brucei tRNAPhe

precursor as substrate. E. coli RNase P was used to verify the cleavage site

(lane 1). 50 end-labeled substrate RNA and cleavage product (indicated by

icons to the right) were resolved by denaturing PAGE. Note that a few nucle-

otides were removed from the 30 trailer of the tRNA precursor by incubation in

the whole-cell extract.

See also Figure S2.
In mitochondria (and plastids), PRORP seems to be present in

a majority of Eukarya, more frequently than the ancient RNA

enzyme (Rossmanith, 2012). Paradoxically, it is for mitochondria

that trypanosomatid tRNA biology becomes perplexing again:

trypanosomatid mitochondrial genomes do not encode any

tRNA genes, but a complete set of tRNAs is imported from the

cytosol (Hancock and Hajduk, 1990; Tan et al., 2002). Although

early in vitro studies suggested that tRNAs are translocated as

precursors (Hancock et al., 1992), later work showed that

tRNA import in vivo is independent of flanking sequences

(Hauser and Schneider, 1995; Tan et al., 2002), suggesting that

mature tRNAs are imported into the organelle. This appears

also plausible in light of the nuclear localization of T. brucei

PRORP1 and an essentially identical set of mitochondrial and

cytosolic tRNAs. However, it also implies that PRORP2 might

be the unique case of an RNase P activity not employed for its

original role in tRNA 50 end maturation but, instead, possibly in

the processing of other mitochondrial RNA species only. Future

genetic studies should allow determining the mitochondrial

substrates and could also clarify if any unprocessed tRNAs are

imported into the mitochondrion of T. brucei.

The apparent simplicity of T. brucei nuclear RNase P (a mono-

meric 64 kDa protein) is in striking contrast to the complexity of

the ten-component RNP found in yeast nuclei (�400 kDa;Walker

et al., 2010). Finding that PRORP1 is able to functionally replace
yeast nuclear RNase Pwas indeedmost surprising. Although the

enzyme swap resulted in a somewhat reduced growth rate, it

nevertheless demonstrated that at least under standard growth

conditions, PRORP1 is able to fulfill all the vital functions of yeast

nuclear RNase P, including any essential, non-tRNA-processing

functions. Considering this apparent exchangeability and the

possibly more widespread use of PRORPs as nuclear RNase P

in plants and algae, it is surprising that the RNP complex has

not generally been replaced with PRORP in Eukarya. The wide

phylogenetic distribution of PRORP orthologs suggests its emer-

gence before the last common ancestor of Eukarya, where it

must have been present together with the RNase P-RNP and

RNase MRP. Reducing the number of enzyme subunits from

ten to one should not only save costs in itself but also costs

related to the coordination of expression and complex assembly.

A one-protein enzyme might be physically more robust than

a noncovalent ten-subunit assemblage in conditions of cellular

stress and might have fewer constraints on its evolutionary

adaptability. On the other hand the greater number of compo-

nents might expand enzyme flexibility, provide more options of

regulation, and could permit a more intricate integration with

other cellular processes. In the end the reasons that prompted

the final loss of the RNA-world relic in several eukaryal branches,

while preventing its loss in others, are currently unclear. Our

yeast RNase P complementation model, however, should allow

to compare RNA-based and PRORP function in vivo in more

detail to possibly find out what limited the spread of PRORP as

nuclear RNase P and thereby shed light on the exceptional

evolution of this highly diverse enzyme family.

EXPERIMENTAL PROCEDURES

Expression and Purification of Recombinant Proteins

T. brucei PRORP1 fused to a C-terminal 63His tag was expressed in E. coli

and purified by immobilized-metal affinity chromatography (IMAC). PRORP2

(putative mitochondrial form) was fused to an N-terminal GST tag via a

protease cleavage site, and to a C-terminal 63His tag. The fusion protein

was expressed in E. coli and purified by IMAC. After protease cleavage,

uncleaved fusion protein andGSTwere removed by chromatography on gluta-

thione Sepharose. Affinity-purified proteins were separated on a Superdex 200

gel filtration column. See Extended Experimental Procedures for details of

constructs, expression, and purification.

tRNA Precursor Substrates and RNase P Activity Assay

Synthesis of labeled tRNA precursors and RNase P-processing reactions were

carried out essentially as previously described by Holzmann et al. (2008) and

Rossmanith et al. (1995). See Extended Experimental Procedures for details

of constructs and processing reactions.

Subcellular Localization by YFP Tagging and Immunofluorescence

Stable cell lines overexpressing PRORP1 or PRORP2 fused to YFP at their C

terminus were generated. Polyclonal antibodies were raised against purified

recombinant PRORP1 and PRORP2. PRORP1 antibodies were affinity purified

on immobilized recombinant PRORP1. Cells were stained with MitoTracker,

fixed with paraformaldehyde (detergent permeabilized, subjected to standard

immunofluorescent staining), and counterstained with Hoechst 33342. See

Extended Experimental Procedures for details of tissue culture, YFP con-

structs, antibody production, immunofluorescence, and staining.

Preparation of Whole-Cell Extracts and Immunodepletion

Cells were swollen in a hypotonic buffer, mechanically broken by pushing

through a needle, and extracted with 1% Triton X-100. The cleared lysate
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Figure 4. Rescuing the Deletion of Yeast Nuclear RNase P RNA by Expression of T. brucei PRORP1

(A) Cartoon of RPR1 gene disruption and tetrad analysis in the budding yeast S. cerevisiae is depicted. One copy of RPR1was replaced by the selectable marker

kanMX by homologous recombination (rpr1D::kanMX). Because RPR1 is an essential gene, dissection of meiotic tetrads yields only two viable spores.

(B) Rescue of RPR1 gene disruption by a plasmid expressing T. brucei PRORP1 is illustrated. Without selection for LEU2 the plasmid is frequently lost from wild-

type RPR1 spores, but never from rpr1D::kanMX [PRORP1] complementation spores.

(C) Genotyping of haploid strains derived from tetrad dissections of BY4743 RPR1/rpr1D::kanMX [PRORP1] is detailed. The analysis of a wild-type (RPR1) and

two complementation (PRORP1; genotype rpr1D::kanMX [PRORP1]) strains is shown. PCR screening for RPR1 by primer pairs spanning different parts of the

gene, for correct integration of the kanMX disruption cassette into RPR1, for T. brucei PRORP1, and for NME1 (the gene encoding the RNA component of RNase

MRP, unaffected by the genetic experiments, used as a control for DNA quality) is shown. The part of the gene interrogated by the genotyping PCR is indicated by

a black bar in the gene cartoon to the right of each agarose gel panel. PCR primers are listed in Table S1.

(D) Growth of haploid strains derived from tetrad dissections of BY4743 RPR1/rpr1D::kanMX [PRORP1] as analyzed in (C) is presented. Log10 dilutions of a wild-

type (RPR1) and two complementation (PRORP1; genotype rpr1D::kanMX [PRORP1]) strains were spotted on a YPD plate and incubated for 2 days at 30�C. Note
the smaller colony size of PRORP1 strains.
was subjected to immunodepletion essentially as previously described by

Rossmanith and Karwan (1993). See Extended Experimental Procedures for

details of antibody production and immunodepletion.

Yeast Genetics

S. cerevisiae strain BY4743 and standard methods of yeast genetics were

used. RPR1 was disrupted using a kanMX PCR cassette. PRORP1 was

expressed from a 2m plasmid under the control of the yeast ADH1 promoter.

See Extended Experimental Procedures for details of constructs and strain

genotyping.
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Hartmann, R.K., Rossmanith, W., and Giegé, P. (2010). A single Arabidopsis
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