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Abstract

This work deals with a family of dynamical systems which wargoduced in [M.L. Bertotti,M. Delitala, From discrete
kinetic and stochastic game thgdo modelling complex systems in appliedesates, Math. Models Miods Appl. $i. 7 (2004)
1061-1084], modkng the evolution of a population of ietacting individuals, distinguished ligeir social state. The existence
of cettain uniform distribution equilibria is proved and the asymptotic trend is investigated.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction and the mathematical model

Several recent papers show an interest of appliechemaaticians in developinethods of non-equilibrium
statistical nechanics and mathematical kireetheory for active particles]] in life sciences: among otherg49,
with reference to social sciences, politics, psychology and biology.

Along this line of research, a mathematical model describing social dynamics of interacting individuals with
different social positions, e.g. different levels of wealth, was proposed(j ¢orresponding to a society where
interactions express competition andémoperation. The model refers to thengealized kinetic theory for active
paticles whose microscopic state includes the mechanical variables, typically position and velocity, but also an
additional variable, called “activity”, corresponding tonan-mechanical function of thparticles. Mathematical
frameworks for models with a continuous microscopic state are proposed el]iwith special emphasis on
modadling biological systems. In contrast, the mathematical structures consider&d topcern the case of discrete
socbbiological states.

Specifically, in [LO] thefollowing structure has been used toward modelling of social systems:

d.I: n n . n )
= Ji[f]=ZZnhkA'hkfhfk— fi Znik fi, 1=1,...,n, (1.1)

h=1k=1 k=1
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where f; denotes the fraction(th respect to the overall number of individuals) with social statbelonging to the
set

luy ={ug,...,Un,...,Un},
and theinteraction rateis given by

nhk = n(Uh, Uk) : 1y x Ty > Ry,

while thetransition probability density is given by

n
A= Alln, U Ui) sy x lyx ly— Ry, with Y Ay =1, Vhk=1...n
i=1
The above terms have been modelled, inspired by the following phenomenological observation (and with the
consciousness that this is nothing more than a conceivable example among several):

e when two individuals have close social states, then a competition occurs: the individual placed in the higher socia
postion improves its situation, while the one in a lower position faces a further decreampsdtitive behavior);

e when the social state of the individuals is sufficiently far away, the opposite behaltiariétic behavior) occurs.

To transhte these concepts into fouhas, besides the number of social classes, a parametar has been
introduced, possibly attaining any integer value between 0 ranrd 1, which represents the distance between
classes themselves and which distinguishes the conwesditid the altruistic behavior. This allows one to assign,
in correspondence to any natural numbhend b any irtegerm between 0 and — 1, the value ofAihk for every
i,h,k=1,...,n, constructing in this way a so-call¢dble of games. The non-null elements are

h=k: A"=1

h=1lorh=n: A3"=1
Ih—kl <m: htLhn: h<k: Afh=kh4=1
h#k: h>k: AMl=1
h<k: ARMt=1

h—Kkl>m: '
h=K h>k: A1—-1

In this note we prove for this family of dynamical systems, for suitable values of the parametatsm, the
existence of a uniform distribution equilibrium, discussing as well some qualitative properties of the flow.

2. Existence and stability of equilibrium configurations

The model summarized iBection lis characterized by the two parametesndm. Its appication to the analysis
of real world systems contemplates performing a qualitative analysis as well as computational simulations for the
initial value problem

df;

— = J[f
a ot (2.1)
fio= fi(t=0),
whereJi[ f]is defined in(1.1)and the set fio} is a discrete probability density,
n
Y fio=1 (2.2)

i=1

Recall, with reference tdl[], thatthe global &istence of solutions is proved by the following theorem:
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Theorem 2.1. Assumephkx < M for some positive constant M +oo, forany hk = 1, ..., n. Then, ér any given
set{ fip} suchhat fio > Ofori =1, ..., nand the sef fio} is a discrete probability density as indicated(ih2), the
solution f(t) = (f1(1), ..., fa(t)) of system(2.1) exigs and isunique for all t € [0, +00). In particular, one has

n
vt>0: fitt)>0 foranyi=1,....,n and Zfi(t)zl. (2.3)
i=0

A corresponding theorem was also proveddpfpr models with continuous distribution over the microscopic state.
In particular, the positive invariance of the standard- 1)-simplex is proved for the flow of syste(2.1). Moreover,
one easily sees that thelstion daimed inTheorem 2.1s of classC* and the continuous dependence on the initial
conditions holds. If, moreover, the encounter rate is taken to be constant:

mk=¢c Vh,k=1,...,n (2.4)
for some positive constant then theexistence of at least one equilibrium solutiérof system(1.1), with f; > 0 for
alli =1,...,n,isguaranteed ([0]). We considethis case and, for simplicity, we assume the congtant(2.4)to
be equal to one. The systdih1)becomes then

df| n n . n

E:;;A}]kfhfk—fikzlfk, i=1,...,n (2.5)

An analytical study was carried out iti(] for the casesr = 3 (withm =0, 1, 2) andn = 4 (withm =0, 1, 2, 3).
At the level of computational simulations, a great number of cases were examined, corresponding to several values o
n andm. Analytically, both forn = 3 and forn = 4, degenerate (non-isolated) equilibria were found to exist in the
two extreme cases when = 0 andm = n — 1, all sharing the property of having some component equal to zero. On
the othethand, whemm = 0 andm # n — 1, namely fom = 3 andm = 1, forn = 4 andm = 1, 2, only isolated
equilibria were proved to exist. In particular, in each arfghese three cases only one equilibrium exists, having
all components different from zero. This “positive” equililtm was proved to be “globally asymptotically stable”,
namely stake and attractive with respect to all solutiohg) with initial data{ fo} satisfyingfio > Ofori =1,...,n
and(2.2), anddifferent from any of the equilibria coinciding with the vertices of the unitary simplex.

Remark 2.1. The study of the model under consideration seems to be more significant when the nuhbecial
classes is odd. It is indeed in such a case that a middle class exists.

Focusingattention on the general case of addve piove now he following fact.

Theorem 2.2. If n is odd and the parameter m takes the value=m (n — 1)/2, an equilibrium configuration
corresponding to the constant distribution exists; in other words, the point Rfy, ..., f,) with f = 1/n for
alli =1,...,nisan equilibrium.

Proof of Theorem 2.2. If n = 3 (andm = 1), this fact is proved in10]. So, it suffices here to assume> 5. Our
goal is to show that, in the case under consideration,
n

Z::ZAihkzn

h=1k=1

for anyi = 1,...,n. From this &ct, the vanishing of the right hand side of Ef.5) follows whenthe value
fi = 1/nforalli = 1,...,nis substituted into the equation itself, pnog the claim. We will distinguish three
cases, respectively=1,i =nand2<i <n-1:
— if i = 1, the only nonzero elemen#g,, turnout to be:

A%l =1

Al =1foranyk:2 <k =< (n+1)/2,

A}, = 1foranyk: 3 <k < min{(3+n)/2,n}.
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Hence,

n n
YN A =1+M+1/2-1+@+n/2-2=n.
h=1k=1

— If i = n, theonly nonzero elementd} , turnout to be:
Aﬂn =1,
Al =1foranyk: (n+1)/2<k=<n-1,
Al =1foranyk: maq(n—1)/2,1} <k <n-2.
Hence,
n

n
YN A=1l4n-14n-—2—(n-1/2+1=n
h=1k=1
— If2 <i <n-1,the only nonzero elemenx!x%]k are:

AEi =1,

A_j=1foranyk:i+(n—-1/2<k<n,

Ag_lk =1foranyk: maxi — (n+1)/2,1} <k <i — 2,

Al =1lforanyk:1<k<i—(n-1)/2,

Al =1foranyk:i+2 <k <min{i + (n+1)/2,n}.

i+1
Skipping some steps in the calculations, one gets

n n
Y Y Ak=1-maxi — (n+1)/2. 1} + minfi + (n+1)/2,n} =n. (2.6)
h=1k=1
The last equality irf2.6) requires some care, in view of the fact that tmax” and he “min” involved in it actually
depend on the value of To see whre it comes from, just notice that

i —(n+1)/2 ifi >((+3)/2

maxi — (n+1)/2,1} =31 ifi =M+ 3)/2
1 ifi <(+3)/2
n ifi >(n—-1)/2
min{i + (n+1)/2,n} = {n ifi=(mn-1)/2

i +(n+1/2 ifi <n-1)/2

The five subcasds< (n—1)/2,i = (n—1)/2,i = (n+1)/2,i = (n+3)/2,i > (n+ 3)/2 can then be separately
handled to get the conclusion. O

3. Simulations, comments and per spectives

All the conmputational simulations performed confirm a scenario similar to the one analytically proved for the cases
n = 3 andn = 4. Indeed, they constantly indicate thatnif#£ 0 andm £ n — 1, for any initial condition a unique
asymptotic state appears. In contrastmif= 0 (totally cooperative systems) an = n — 1 (totally competitive
systems), several asymptotic states appear, dependirtgeoimitial conditions. In particular, we want to stress the
following interesting output: whem is relatively small, i.e. when the system behaves with altruistic behavior, the
asymptotic configurations appear to dlearacterized by large concentratiamscentral values; conversely, wham
is relatively large, i.e. when the interactions are predominantly competitive, the asymptotic configurations show large
concentrations on the extreme values: 0 andu = 1. This appears clearly iRig. 3.1, which showshe asymptotic
configuration displayed by simulations in the cases 7, 9, 11 for different values of the parameter The same
“structure” for the solutions can be recognized.

Also, we point out, on the basis of several simulations, that in the casesnwittdd andm = (n — 1)/2, the
equilibrium configuratiorP = (fq,..., fn) with fi = 1/nforalli = 1, ..., n established imTheorem 2.1seems
to be the asymptotic state for all the initial conditidrfg} on the standar¢h — 1)-simplex but the shplex vertices.
In the casen = 3, this fact is proved in 10]. For general odah, the asymptotic stability ofP remains a conjecture. In
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n=7,m=1 n=7,m=3 n=7,m=5
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 l I l 0.2 0.2 I I
0 025 05 0.75 1 0 025 05 075 1 0 025 05 0.75 1
1 n=9, m=1 1 n=9, m=4 1 n=9, m=7
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
i | | " ”
ANEEEEREEREEN
0 025 05 075 1 0 025 05 075 1 0 025 05 0.75 1
1 n=11, m=1 1 n=11, m=5 1 n=11,m=9
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 I I I 0.2 0.2 I I
ANEEEEEEEENE
0 0.25 0.5 0.75 1 0 025 05 0.75 1 0 025 05 0.75 1

Fig. 3.1. Asymptotic configuration in the cases- 7, 9, 11, for different values ofn.

spte of what one could hope, an analytical proof for general ndbes not seem to be so easy to find, the difficulty
being related to the attempt at gertyalndeed, one should deal simultaneously with a countable family of systems of
increasing dimension and involving coef‘ficiewfﬁk depending om. Looking instead at a specific system, i.e. fixing

n (odd, withm = (n — 1)/2), a least the asymptotic stability of the uniform distribution equilibrium is expected to
be an accessible result. It is convenienthis connection to study the systemrof- 1 differential equations, obtained

by substitutingf; = 1 — Zi;ﬁﬁ fi, wherefi = (n + 1)/2, inthen — 1 equations of the systeif2.5) corresponding

to the indices # fi. The eigenvalues of the linearized vector field at equilibrium can then be easily evaluated by
means of a symbolic calculation program. As a matter of fact, they turn out to have negative real part for all values of
n which have been tested, say certainlyfioe= 5,7, 9, .... From the analytic point of view, a deeper understanding

of the common qualitative properties of these flows is a challenging problem. But, maybe, from the point of view of
applications, getting the information for fixed valuesxafan be sufficient.

Finally, let us remark that the model analyzed in this work does not preserve the overall wealth given by the first-
order momentum. Indeed, the model corresponds to an open system where the outer environment acts on the wealth
the lower and higher classes. An interesting perspective is considering a modified model which delivers a descriptior
corresponding to a closed system where the above-mentioned overall wealth is preserved.
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