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Expression data can reveal subtle transcriptional changes that mediate the clinical phenotype of the disease
resulting from interaction between genetic and environmental factors, which offers us a new perspective to
prioritize candidate genes. Here, we proposed a novel differential expression pattern (DEP)-based approach
integrating numerous disease-specific expression data sets for prioritizing candidate genes. Using breast
cancer as a case study, we validated the efficiency of our approach through integrating 12 breast cancer-
related expression data sets based on the leave-one-out cross-validation. Particularly, prioritization based on
subtype-specific expression data sets could generate significantly higher performance. The performance could
be continually improved with the increasing expression data sets regardless of platform heterogeneity. We
further validated the robustness of this approach by application to prostate cancer. Additionally, our approach
showed higher performance in comparison with other expression-based approaches and better capability of
identification of less well-studied disease genes in comparison with other integration-based approaches.
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1. Introduction

Identification of disease genes plays critical roles in understanding
the pathogenesis of complex disease (e.g., cancer, heart disorder, and
diabetes) and developing new drugs for prevention and treatment of
complex disease. In the past two decades, a large number of linkage
analysis and association studies, which produce several hundreds of
candidate genes, have been performed. However, the experimental
evaluation of the complete list of candidate genes is time-consuming
and expensive. Hence, many bioinformatics approaches for prioriti-
zation of candidate genes have been developed to assist identification
of disease genes.

Previous prioritizingmethods use a variety of biological data, such as
sequence [1], function [2–6], expression [7–11], network [12–15], text-
mining [16–18], or combinations of them [19–26]. For example,
PROSPECTR [27] ranked candidate genes based on various sequence
features, which show a significant difference between known human
disease genes and genes not known to be involved in disease. Using
protein–protein interaction networks, Kohler et al. [28] proposed a
method that prioritizes candidate genes by use of a randomwalk-based
similarity measure. ENDEAVOUR [29] fused multiple biological data to
prioritize candidate genes by an order statistics-based computational
method.
Notably, among thesebiological data, expressiondata showthemost
rapid increase in the past ten years due to the advancement of all kinds
of high-throughput biological technologies, such as microarray and
next-generation sequencing. Indeed, most previous prioritization
approaches used expression data [1,2,6,14,24,29–32] to calculate
Pearson correlation coefficients between genes for approximately
quantifying potential functional relationships and prioritized candidate
genes by using these co-expression relationships based on the
hypothesis that disease genes tent to exhibit similar functions.However,
only single expression data were utilized (e.g., the human atlas
expression data [33]). Recently, many approaches based on multiple
expression data sets were developed for prioritization of candidate
genes. For example, TOM [34] extracted gene co-expression relation-
ships in a large number of expression data sets derived from different
anatomic sites and tissues, different platforms and different conditions
to prioritize candidate genes. Piro et al. [35] described a candidate gene
prioritization approach based on the spatial gene-expression patterns
generated by combining multiple 3D expression data from an entire
organ. Oti et al. [36] calculated evolutionary conservation co-expression
scores by integrating multiple non-disease-specific expression data
from five distinct species including yeast, worm, fly, mouse, and human
to prioritize candidate genes. However, Oti et al. [36] observed that the
performance is dependent on the expression data used, and cannot be
improved when combining more expression data sets.

Analyzing genome-wide transcriptional changeshas beenperformed
in a wide range of human diseases, which can effectively capture the
intermediate response of disease gene-induced phenotypes. Therefore,
transcriptional changes offer a possibility for identifying disease genes. A
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recent work designed by Chen et al. [37] demonstrated that highly
differentially expressedgenes aremore likely tobedisease genes, further
supporting the potential relationship between disease genes and
transcriptional changes. However, due to the influence of disease
heterogeneity, population difference, and environmental factors on
gene expression, the relationship can be unclear in the case of individual
expression studies. We postulated that transcriptional change patterns
(also termed differential expression patterns, DEPs) across a large
number of disease-associated expression studies can more comprehen-
sively and accurately reflect this potential relationship, which can be
used for assisting identification of disease genes.

In our study,we proposed a novel DEP-based prioritization approach
(Fig. 1) by integratingmany disease-specific expression data sets. Using
breast cancer as a case study, we evaluated the performance of our DEP-
basedprioritizationapproachby the leave-one-out cross-validation.Our
results showed that the DEP-based approach can effectively prioritize
candidate genes, especially using subtype-specific expression data sets.
Several factors possibly influencing the performance were also
investigated, such as the number of expression data sets, platform
heterogeneity, and the number of known disease genes. We found that
the performance can be continually improved with the increase of
expression data sets used. We also compared with other expression-
based, sequence-based, and integration-based candidate gene prioriti-
zation approaches. Comparison results showed that the DEP-based
prioritization approach has better performance in comparison with
other expression-based and sequence-based prioritization approaches.
Comparisons with integration-based prioritization approaches sug-
gested that our approach can effectively identify less well-studied
disease genes.
Fig. 1. Workflow of the DEP-based prioritization approach. Candidate genes were prioritize
analysis. Step 1, multiple disease-specific case-control expression data sets were gathered fro
OMIM database. Step 2, the DEPmatrix was constructed on the basis of the occurrences of dif
sets using known disease genes and randomly selected non-disease genes. Step 4, 1000 ANN
these ANN classifiers, and the average predictive scores were calculated, which were used
2. Methods

2.1. Expression and Disease Gene Data

Disease-associated case-control expression data sets were obtained
from the GEO and ArrayExpress databases. In order to get more reliable
differential expression results, expression data sets with the number of
disease or normal samples less than four were removed. Each
expression data set was imputed using the k-nearest-neighbormethod,
and was then normalized using the median normalization method. All
gene expression values were log2-transformed. Known disease genes
were obtained from the Online Mendelian Inheritance in Man (OMIM)
database [38], and their corresponding chromosomal regions were
obtained from the Entrez Gene database.

2.2. DEP-based Prioritization Approach

2.2.1. Construction of the DEP Matrix
Given a specific disease which contains k known disease genes, N

case-control expression data sets were obtained. For each expression
data set, differentially expressed genes were determined using the
Statistical Analysis ofMicroarrays (SAM) algorithm [39]with a significant
level of 10% (pb0.1). M genes consistently present in all of these
expression data setswere defined as background genes. For a given gene i
in the background genes, a differential expression binary vector xi1,…,xij,
…,xiNwasproducedaccording to its expressionchanges across theN case-
control expression data sets,where xij indicateswhether the gene i shows
significantly differential expression in the jth expression data set. If the
gene i was identified as a differentially expressed gene in the jth
d based on their DEPs across numerous disease-specific expression data in a five-step
m the GEO and ArrayExpress databases and known disease genes were derived from the
ferentially expressed genes in these expression data sets. Step 3, construction of training
classifiers were built according to the DEPs. Step 5, candidate genes were predicted by

for ranking.
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expression data set, then xij=1, otherwise xij=0. Then, a M×N DEP
matrix was generated, in which each row represents a gene and each
column represents a case-control expression data set.

2.2.2. Construction of ANN Classifiers and Prioritization of Candidate
Genes

Given a candidate gene set (e.g., positional candidate genes from
linkage analysis), we constructed artificial neural network (ANN)
classifiers based on the DEP matrix to rank these candidate genes.

Let k′ be the number of known disease genes with expression values
in all of the N expression data sets and significantly differential
expression in at least one of these data sets. These genes were regarded
as the positive set for training the prioritization model. In order to
generate the negative set, we constructed an artificial non-disease gene
set that refers to all background genes excluding disease genes and
candidate genes. Due to the imbalance of the numbers of disease and
non-disease genes, we randomly selected k′ non-disease genes as the
negative set. Based on the DEPs of the positive and negative sets, a
typical ANN classifier was trained for assigning scores to candidate
genes. The scores were used for representing the probability of
candidate genes identified as disease genes.

In order to avoid the overfitting of the ANN classifier trained, 1000
negative gene sets randomly selected from the artificial non-disease
gene set were generated, which, together with the same positive set,
were used to construct 1000 ANN classifiers. All candidate genes were
assigned with predictive scores using each ANN classifier. Subse-
quently, for each candidate gene, an average predictive score S across
these 1000 classifiers was calculated:

S =
∑
1000

l=1
sl

1000

where sl is the predictive score of this gene in the lth ANN classifier.
Finally, candidate genes were ranked according to the average
predictive scores in a descending order.

The ANN contained three layers: an input layer, a hidden layer and an
output layer. Every neuron in the hidden layer and output layer was
weightedly connectedwith all neurons in its previous layer and activated
by the tan-sigmoid transfer function. Thenumberof inputneuronswas set
to N and the number of neurons in the hidden layer was set to 20. The
output layer contained only a single neuron, whose output was a score
ranged from 0 to 1. The training of ANN classifiers and prediction were
carried out by using theMATLABNeural Network Toolbox (the number of
training cycles was set to 200 and the specified error goal was 1e−5).

2.3. Cross-validation

The performance of the DEP-based prioritization approach was
evaluated by the leave-one-out cross-validation. For each disease
gene, we constructed an artificial genetic interval of 20 Mb centered
on this disease gene because the resolution of traditional genetic
linkage analyses was usually restricted to 10 to 30 cM [40]. Those
genes within the artificial locus for which all expression data are
available were regarded as the test set, and the remaining disease
genes were denoted as the positive training set. Genes not belonging
to the positive and test sets were used to create 1000 negative training
sets. Then, we exploited the positive and negative sets to train the
prioritization models for ranking the test genes. The ranks of the test
genes were transformed into relative ranks by:

Ri =
n−rið Þ
n−1ð Þ

where n is the total number of the test genes and ri represents the
rank of a test gene i in the test set. The relative rank of the test gene at
the top of the rank list was set to 1.0, and the relative rank of the test
gene at the bottom was set to 0.0. Then, the relative rank of the true
disease gene was recorded.

The receiver operating characteristic (ROC) curve was used to
measure the performance of the DEP-based prioritization approach. It
was plotted as 1-specificity (i.e., false positive rate) versus sensitivity
for all thresholds in the range of relative ranks of disease genes. The
area under the ROC curve (AUC) was used as a standard measure for
evaluating the overall prediction performance of our approach. For
instance, an AUC value of 100% suggests that every disease gene was
ranked at the top of the corresponding test gene list.

2.4. Evaluation in Breast Cancer Using Original and Subtype-Specific
Expression Data Sets

Initially, we used original breast cancer expression data sets to
validate our prioritization model. Because breast cancer is generally
considered as a complex disease characterized by various intrinsic
subtypes which show genetic differences in the pathogenic mecha-
nisms, we constructed subtype-specific expression data sets using
these original data sets. For each original expression data set, its breast
cancer samples were divided into subtypes by using the strategy
described in [41], and then breast cancer samples with different
subtypes respectively together with normal samples were used for
forming new subtype-specific expression data sets. These subtype-
specific expression data sets with less than four disease samples were
removed. Using these subtype-specific expression data sets, we re-
evaluated the performance of the DEP-based prioritization approach.

2.5. The Influence Factors of the DEP-based Prioritization Approach

Several influence factors including the number of expression data
sets, sample size, the heterogeneity of microarray platforms, and the
number of disease genes aswell as the number of ANN classifiers were
evaluated independently. For each influence factor, we constructed
different DEP-based prioritization models by changing this factor and
assessed the effect of this factor on the performance. In order to assess
the effect of the number of expression data sets, many different DEP-
based prioritization models were created based on different numbers
of expression data sets. To explore the effect of sample size, we
randomly extracted different numbers of samples from a specific
expression data set, which combined with the other data sets, were
used to construct multiple prioritization models. As for the platform
heterogeneity, prioritization models were constructed using the same
number of expression data sets from mixed platforms and consistent
platforms. Different numbers of disease genes and ANN classifiers
were, respectively, used to construct prioritization models to detect
the influence of the numbers of known disease genes and ANN
classifiers. Details were supplied in the Supplementary Methods.

2.6. Comparisons with Other Prioritization Methods

We compared our approach with several expression-based
methods (co-expression, conserved co-expression [36] and differen-
tial expression ratio [37]) and sequence-based PROSPECTR as well as
integration-based ENDEAVOUR. In order to compare with these
methods, we performed the leave-one-out cross-validation. For each
disease gene, genes located at the 20 Mb region around this disease
gene were selected as the test set, and the rest of the disease genes
were called the training set. These methods were used to rank the test
genes based on the training set. Finally, we plotted ROC curves and
computed AUC scores to assess the performance of these methods.

The programs of our approach are available at http://bioinfo.
hrbmu.edu.cn/DEP/DEP.html. Detailedmethods for comparisonswere
provided in Supplementary Methods.

http://bioinfo.hrbmu.edu.cn/DEP/DEP.html
http://bioinfo.hrbmu.edu.cn/DEP/DEP.html
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3. Results

3.1. Evaluation of the DEP-based Prioritization Approach in Breast
Cancer

Through an extensive collection of breast cancer associated
expression data sets from the GEO and ArrayExpress databases, 12
breast cancer expression data sets derived from 12 distinct studies
were obtained (Supplementary Table S1). These expression data sets
included 908 samples (817 breast cancer and 91 normal samples), and
a total of 11,633 background genes present in these expression data
sets. In these background genes, 31 were referred to as known breast
cancer genes in the OMIM database (Supplementary Table S2).

We used the leave-one-out cross-validation to evaluate the perfor-
mance of ourDEP-based prioritization approach based on the12 original
breast cancer expression data sets. Fig. 2A shows the distribution of
relative ranks of all known breast cancer genes, which displays a right-
leaning trend. There were 64.5% of known breast cancer genes with
relative ranksN0.5. Especially, 32.2% were at 0.8 to 1.0 (Supplementary
Table S2).

It should be noted that breast cancer with different molecular
subtypes can be regarded as separable diseases [41]. Therefore, we
suspected that DEPs constructed by subtype-specific expression data
sets can further improve the performance of our approach. Based on
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expression patterns of 534 breast cancer “intrinsic genes”, we
classified 817 breast cancer samples into five subtypes using the
PAM algorithm. Thirty-four subtype-specific expression data sets
were generated by recombining breast cancer subtype samples with
corresponding normal samples. After filtering subtype-specific
expression data sets with less than four disease samples, 30
subtype-specific expression data sets containing 808 disease samples
(98 basal-like, 245 ERBB2, 447 luminal-A, 5 luminal-B and 13 normal-
like; Supplementary Table S3) were used to evaluate the perfor-
mance. As shown in Fig. 2B, the distribution of relative ranks shows a
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these positive sets. Subsequently, we ranked the test genes according
to the mean of the average predictive scores. Fig. 2D shows the ROC
curve for randomly selected positive sets. The AUC score was 50.4%,
approximating to the random case. Obviously, our approach reached a
higher AUC score using disease genes than that using randomly
selected genes, indicating that the DEP-based prioritization approach
can be sensitive and specific in prioritizing disease genes.

3.2. The Influence Factors of the DEP-based Prioritization Approach

3.2.1. The Number of Expression Data Sets
In order to evaluatewhether the number of expression data can affect

the performance of our approach, different numbers of expression data
sets thatwere randomly selected fromthe12original expressiondata sets
were used to construct prioritization models (Supplementary Methods).
With the increase of the number of expression data, the relative ranks
were obviously raised in the applications of both original and subtype-
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specific data (Fig. 3A and B). For original data sets, the average relative
ranks ranged from 0.36 to 0.62 when the number of expression data
increased from 2 to 11. Using subtype-specific data sets, the average
relative ranks increased from 0.59 to 0.74. The results strongly suggested
that increasing expression data sets can improve the performance of our
approach. Also, it supported the finding that disease subtype can bring
great improvement evenwith the application of few expression data sets.

3.2.2. Sample Size
The large range of sample sizes across different studies may

influence the performance of our approach. The smallest sample size
in the 12 original expression data sets is 22 (GSE8977), and the largest
sample size is 196 (GSE5346). To detect the influence of sample size, we
generated multiple prioritization models with different numbers of
samples for a specific data set and then calculated corresponding
average relative ranks. By analyzing three expression data sets with the
largest sample sizes (GSE5364, GSE9309, and GSE3165), we found that
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the average relative ranks have a slight increase with the increase of
sample size (Fig. 3C and Supplementary Fig. S1). A possible explanation
is that the increase of sample size canoffermore accurate transcriptional
changes between case and control subjects.

3.2.3. The Heterogeneity of Microarray Platforms
Despite the rapid increase of expression data, the heterogeneity of

platforms used in differentmicroarray studiesmight greatly impede the
integration of a large number of currently available expression data sets.
The 12 original breast cancer associated expression data sets were
detected by 4 distinct microarray platforms. To investigate whether the
heterogeneity of platforms could affect the performance of the DEP-
based prioritization approach, we compared results calculated by
randomly selecting four expression data sets withmixed and consistent
platforms (Supplementary Methods). Fig. 3D shows that the average
relative rank corresponding to the mixed platforms was slightly higher
than those from the consistent platforms (p=0.90 for Affymetrix chip
and p=0.07 for Agilent chip, t-test). This suggested that prioritization
using expression data sets from mixed platforms provides comparable
results with consistent platforms, that is, the heterogeneity of
microarray platforms has little influence on the performance of our
approach, which may be attributed to a recent observation that both
Affymetrix and Agilent chips display high consistence with PCR and
TaqMan [42].We also found that the average relative rank calculated by
Affymetrix chip is slightly higher than that from Agilent chip, but
without statistical significance (p=0.14, t-test).

3.2.4. The Number of Disease Genes
A large number of disease genes with modest effect on complex

diseases were not identified yet. We therefore suspected whether
diseases with a few disease genes identified can be suitable for
prioritization using this approach. We investigated the influence of the
number of known disease genes on the prioritization results (Supple-
mentary Methods). Eleven known breast cancer genes were randomly
selected as the test genes. From the remaining 20 genes, different
numbers of disease geneswere randomly selected as the positive sets to
train ANN classifiers, and then the relative ranks for the 11 test genes
were calculated. As shown in Fig. 3E, the average relative rank changed
slightly when the number of disease genes varied from 20 to 4, and the
standard deviation increased as the number of disease genes were
reduced. We repeated the above process 10 times and obtained similar
results (Supplementary Fig. S2), suggesting that our approach was
robust to thenumber of knowndiseasegenes and canbe effectively used
for complex diseases even with a few known disease genes.

3.2.5. The Number of ANN Classifiers
In order to evaluate the effect of the number of ANN classifiers on

our approach, we built multiple prioritization models with different
numbers of ANN classifiers. We observed that the average relative
ranks show a slight increase when the number of ANN classifiers
varies from 10 to 50 (Fig. 3F). When the number of ANN classifiers is
greater than 50, the average relative ranks reached a steady state
(approximately 0.74). Together, our findings suggested that the
number of ANN classifiers has minimal effect on our approach.

3.3. Comparisons with Other Candidate Gene Prioritization Approaches

Expression data have been comprehensively used for prioritiza-
tion of candidate genes. Most of the expression-based prioritization
methods calculated co-expression relationships among genes using
different expression data to prioritize candidate genes. When compared
with the co-expression approach, we found that our approach signifi-
cantly outperforms the co-expression approach based on both the
human atlas expression data and the merged breast cancer expression
data set (Fig. 4A). Interestingly, the performance based on multiple
breast cancer expression data sets is significantly lower than that based
on the atlas expression data, which indicated that the performance of
the co-expression method may be dependent on the expression data
sets used. Recently, a conserved co-expression prioritization approach
integrating multiple non-disease-specific expression data from five
species was developed [36]. As shown in Fig. 4A, the DEP-based
approachwas superior to it (AUC score: 74.1% versus 63.5%). In addition,
we also compared our approach with a DER-based method [37] that
calculated the ratio of the count of differential data sets to the count of all
data sets. Obviously, our approachhad a higher AUC score than theDER-
based approachusing the12original and30 subtype-specific expression
data sets (AUC scores: 65.8% for original expression data sets and 69.9%
for subtype-specific expression data sets).

Besides expression data, other biological resources were also used
for prioritization, such as sequence information. We compared our
approach with PROSPECTR [27]. Obviously, our approach was
significantly superior to PROSPECTR (Fig. 4B). When compared with
integration-based ENDEAVOUR, we found that ENDEAVOUR exhibited
an overall better performance than our approach (Fig. 4B). Noticeably,
in the four disease genes (DIRAS3, LSP1, RB1CC1, and SLC22A18)
associated with the fewest PubMed IDs, two had higher ranks in our
approach than those in ENDEAVOUR, one had the same ranks, and one
was ranked slightly lower in our approach (Supplementary Table S4).
Also, we used our approach and ENDEAVOUR to prioritize two
recently identified breast cancer genes (LAPTM4B and YWHAZ) [43],
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with all 31 known breast cancer genes as the training set. Both genes
had higher ranks in our approach (Supplementary Table S5). These
results suggested that the DEP-based prioritization approach inte-
grating a large number of expression data sets can be used to identify
less well-studied genes.

3.4. Another Case Study: Prostate Cancer

In order to further validate the DEP-based prioritization approach,
another case study regardingprostate cancerwasperformed. A total of 9
prostate cancer-associated case-control expression data sets (Supple-
mentary Table S6) containing 5051 background genes were obtained
from the GEO and ArrayExpress databases, and 14 known prostate
cancer genes derived from the OMIM database were present in the
background genes. As expected, prioritization using known prostate
cancer genes significantly outperformed that using random selected
genes. There were 78.6% of known prostate cancer genes with relative
ranksN0.5 (42.9% were at the interval from 0.8 to 1.0; Supplementary
Table S7). In addition, applying the same methods used in our study of
breast cancer, we found similar effects of the number of expression data
sets, sample size, the number of disease genes, and the number of ANN
classifiers as those in the breast cancer study (Supplementary Figs. S3
and S4). Since the platforms used by these expression studies were
completely different, the influenceof theheterogeneity of platformswas
not analyzed. Taken together, successful application of our approach to
prostate cancer further supported the efficiency and feasibility of the
DEP-based approach for prioritization of candidate genes.

3.5. Application to four breast cancer susceptibility loci

Two recent genome-wide association studies identified four breast
cancer susceptibility loci on 14q24.1 (rs999737), 3p (rs4973768), 17q
(rs6504950) and1p11.2 (rs11249433). Using all 31knownbreast cancer
genes as the positive training set, we applied our approach to prioritize
genes located at 10 Mb upstream and 10 Mb downstream of these risk
SNPs. The top 10 genes for these four breast cancer susceptibility loci
were obtained (Supplementary Table S8). Some genes show strong
associations with other cancers. For example, NOTCH2 located in the
distal region from the rs11249433 was ranked 7th in the corresponding
candidate gene list. It plays an important role in the development and
repair of organizations. This gene has been widely demonstrated to be
linked with multiple diseases, such as colorectal cancer, chronic
lymphocytic leukemia, type 2 diabetes, and pancreatic cancer. THRB
ranked 7th in the candidate gene list of rs4973768 is considered as a
tumor suppressor involved in cell proliferation, differentiation, and
apoptosis. Many studies have found the aberrant methylation or
inactivation of THRB gene in renal cell carcinoma, lung cancer, prostate
carcinoma, and colorectal cancer. Further, Ling et al. recently demon-
strated that THRB shows abnormal expression and frequent hyper-
methylation of the promoter region in breast cancer [44].

4. Discussion

Transcriptional changes of disease genes caused by the interaction
between genetic and environmental factors can result in disease
phenotype. Based on the potential relationship between disease genes
and transcriptional changes, we developed a novel DEP-based approach
which takes advantage of a large number of disease-specific case-
control expression data to prioritize candidate genes. Analysis using the
leave-one-out cross-validation suggested that the DEP-based prioriti-
zation approach can effectively identify candidate disease genes.

In particular, the performance was further improved using subtype-
specific expression data, whichmay be attributed to an evidence that the
pathological subtypes of breast cancer are indeed biologically distinct
entities [45]. Many studies have demonstrated that breast cancer can be
divided into multiple subtypes on the basis of mRNA expression, miRNA
expression, and DNA methylation. These subtypes show significant
differences in expression patterns, clinical outcomes and survival, which
may be caused by different genetic mutations. Therefore, original
expression data sets cannot exactly reflect the relationship between
disease genes and transcriptional changes. In contrast, subtype-specific
expression data sets provide more precise delineation about the
relationship. For example, RB1CC1, a key regulator of the tumor
suppressor gene RB1, showed the significant improvement of relative
rank from 0.24 to 0.79 when subtype-specific expression data sets were
used. Despite no direct evidence about the subtype specificity of RB1CC1,
its closely associated target RB1 shows strong subtype specificity. Loss of
heterozygosity of the RB1 gene has the highest frequency in basal-like
tumors but with an obviously low overall frequency, and the significantly
different expression patterns of RB1 are present in different subtypes [46].
Consistently, we observed significantly differential expression of RB1CC1
in all basal-like subtype-specific data sets, whereas the differential
expression pattern cannot be characterized using original data sets.

More importantly, the performance of our approach showed a
continuous improvement with the increase of publicly available
expression data sets. Moreover, comparisons with other expression-
based prioritization methods further supported the superiority of our
approach. The majority of expression-based prioritization methods
used only single expression data regardless of a large number of
disease-specific expression data. Although the conserved co-expres-
sion approach prioritized candidate genes by integrating multiple
expression data sets, the performance was obviously dependent on
expression data sets selected, that is, integration of more expression
data sets could not improve the performance and may even result in
limited performance. Through comparison with ENDEAVOUR, we
found that this approach based on integration of diverse biological
data can largely improve the performance, but it may be biased to the
discovery of well-studied disease genes. Conversely, our approach
integrating a number of expression data can be used to discover less
well-studied genes. This may be attributed to the fact that expression
data can be used to infer novel biological hypotheses. Thus,
integration of a large number of expression data and various other
biological resources may be more effective for prioritization of
candidate genes in the future.

BecauseDEPswere only dependent onwhether geneswere identified
as differentially or non-differentially expressed genes, regardless of up-
and down-regulation information as well as the degree of expression
changes, we reconstructed DEPs using a binary encoding strategy to
consider this information. Nevertheless, the performance was not
significantly improved, and the AUC score only increased from 74.1% to
76.0%.

There were some limitations in the DEP-based prioritization
approach. First, because the approach was dependent on a large number
of expression data, it was not suitable for some diseases with few
expression studies. Second, it shouldbenoted that althoughourapproach
provides better prioritization capability for less well-studied genes, the
probes for these less well-studied genes may not always be included in
different microarray platforms. With the development of next-genera-
tion sequencing technologies (e.g., RNA-Seq), genome-wide transcrip-
tional levels can be comprehensively detected, independent of the
designedprobes inmicroarray. Integrating these expressiondata setswill
bemore effective for prioritizing less well-studied genes. Third, although
the performance of our approach was robust to the number of known
disease genes, it cannot be used for diseases with very few or no known
disease genes. Fourth, only expression data were used in our approach.
Other biological resources, such as function annotation, protein
interaction network, and text information, would be integrated into
our approach in futureworks,whichmightmore efficiently improve the
performance of our approach.

In summary,weproposed anovelDEP-basedprioritization approach
by integrating a large number of disease-specific case-control expres-
sion data sets. It will be helpful for identifying disease genes as one of
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supplementary prioritization strategies.We believed that integration of
dramatically increasing expression data is useful for further improving
the results of the prioritization approach.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ygeno.2011.04.001.
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