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We study the point regular groups of automorphisms of some of
the known generalised quadrangles. In particular we determine all
point regular groups of automorphisms of the thick classical gen-
eralised quadrangles. We also construct point regular groups of
automorphisms of the generalised quadrangle of order (q−1,q+1)

obtained by Payne derivation from the classical symplectic quad-
rangle W(3,q). For q = p f with f � 2 we obtain at least two non-
isomorphic groups when p � 5 and at least three nonisomorphic
groups when p = 2 or 3. Our groups include nonabelian 2-groups,
groups of exponent 9 and nonspecial p-groups. We also enumerate
all point regular groups of automorphisms of some small gener-
alised quadrangles.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we investigate the regular subgroups of some of the known generalised quadrangles.
We demonstrate that the class of groups which can act as a point regular group of automorphisms of
a generalised quadrangle is much wilder than previously thought.

A finite generalised quadrangle Q is a geometry consisting of a finite set of points and lines such
that, if P is a point and � is a line not on P , then there is a unique line through P which meets �

in a point. From this property, if there are at least three points of Q or there is a point on at least
three lines, then one can see that there are constants s and t such that each line is incident with
s + 1 points, and each point is incident with t + 1 lines. Such a generalised quadrangle is said to have
order (s, t), and hence its point-line dual is a generalised quadrangle of order (t, s). The generalised
quadrangle is said to be thick if s, t � 2.
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A permutation group G on a set Ω acts regularly on Ω if it acts transitively on Ω and only the
identity of G fixes an element of Ω . Ghinelli proves in [10] that a Frobenius group or a group with a
nontrivial centre cannot act regularly on the points of a generalised quadrangle of order (s, s), where
s is even. S. De Winter and K. Thas [5] prove that if a finite thick generalised quadrangle admits an
abelian group of automorphisms acting regularly on its points, then it is the Payne derivation of a
translation generalised quadrangle of even order. Yoshiara [22] proved that there are no generalised
quadrangles of order (s2, s) admitting an automorphism group acting regularly on points.

Our first result is a complete classification of all regular subgroups of the thick classical generalised
quadrangles.

Theorem 1.1. Let Q be a finite thick classical generalised quadrangle and let G be a group of automorphisms
that acts regularly on the points of Q. Then one of the following holds:

1. Q = Q−(5,2) and G is an extraspecial group of order 27 and exponent 3.
2. Q = Q−(5,2) and G is an extraspecial group of order 27 and exponent 9.
3. Q = Q−(5,8) and G ∼= GU(1,29).9 ∼= C513 � C9 .

An alternative approach to the classification in Theorem 1.1 was independently undertaken in [7].
Most of the known generalised quadrangles are elation generalised quadrangles, and such a gener-

alised quadrangle Q of order (s, t) has a group of automorphisms G which fixes a point x and each
line on x, and acts regularly on the points not collinear with x. We call G an elation group and x a
base point of Q. Necessarily, G has order s2t . The only known generalised quadrangles which are not
elation generalised quadrangles are the Payne derived quadrangles and their duals.

Payne [18] gave a method for constructing a new generalised quadrangle from an old one. Take
a generalised quadrangle Q of order (s, s) and suppose it has a point x such that for every point
y not collinear with x, the set of points {x, y}⊥⊥ has size s + 1, where we use the notation S⊥ to
denote the set of all points collinear with every element of the set S . A new generalised quadrangle
Qx can be constructed whose points are the points of Q not collinear with x and the lines of Qx are:
(i) the lines of Q not incident with x, and (ii) the hyperbolic lines {x, y}⊥⊥ where y is not collinear
with x. Thus Qx is a generalised quadrangle of order (s − 1, s + 1). If we take Q to be the elation
generalised quadrangle W(3,q), then any point x will give rise to a Payne derived quadrangle Qx of
order (q − 1,q + 1) and if G is the elation group of the classical symplectic quadrangle W(3,q) about
the point x, then G is elementary abelian for q even and a Heisenberg group for q odd [13]. The
stabiliser H of the point x in the full automorphism group of Q acts as a group of automorphisms
of Qx and contains G as a normal subgroup. In fact for q � 5, H is the full automorphism group of
Qx [11]. However, the full automorphism group of Qx may contain point regular subgroups other
than G . In Section 3 we exhibit several other infinite families of regular subgroups and the results are
summarised in the following theorem.

Theorem 1.2. Let Qx be the generalised quadrangle of order (q − 1,q + 1) obtained by Payne derivation from
W(3,q). Then there exist distinct subgroups E and P of Aut(Qx) that act regularly on the points of Qx and for
q not a prime there also exists a further regular subgroup S such that E, P and S have the following properties:

1. E is an elation group of W(3,q) while P and S are not.
2. E � S and P � S.
3. E ∼= P if and only if q is not a power of 2 or 3.
4. For q even,

(a) E is elementary abelian while S and P have exponent 4 and are nonabelian except when q = 2;
(b) P ′ < Z(P ) and S ′ < Z(S) (in particular, P and S are not special).

5. For q = 3 f , E has exponent 3 while P and S have exponent 9.
6. For q odd, Z(P ) = P ′ = Z(E) = E ′ and Z(S) < S ′ (in particular, P and E are special while S is not).

More explicit details and constructions are given in Section 3. In particular, we construct more
regular subgroups than those described in Theorem 1.2; see Remark 3.17. The generalised quadrangle
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of order (2,4) obtained by Payne derivation from W(3,3) is isomorphic to Q−(5,2) [17, §6.1]. The
regular groups E and P occurring in Theorem 1.2 for this case are the two regular subgroups which
appear in Theorem 1.1.

The reader may notice that the existence of a regular group of automorphisms implies that the
point graph is a Cayley graph with the same automorphism group as the generalised quadrangle.
Moreover, since E is normal in the full automorphism group of the Cayley graph, they are normal
Cayley graphs for E . However P is not normal in the full automorphism group of the Cayley graph,
and so when q is not a power of 2 or 3, the point graph is a normal and non-normal Cayley graph for
two isomorphic groups. That this is possible answers a question posed to the authors by Yan-Quan
Feng and Ted Dobson. The only previous instance of such a phenomenon in the literature known to
the authors was a single example studied by Royle [20].

In Section 4 we list all regular subgroups of the small Payne derived generalised quadrangles. For
q not a prime there are many more regular subgroups than just the groups E, P and S exhibited
in Theorem 1.2. In Section 5 we give an account of how our results relate to previous results and
conjectures in the literature.

Group theoretical terminology

Though our group theoretic notation is standard, we briefly review it for the sake of a reader
whose interest lies more in geometry than in group theory. We denote a cyclic group of order n
by Cn . If g and h are group elements, then we define their commutator as [g,h] = g−1h−1 gh. The
centre of a group G consists of those elements z ∈ G that satisfy [g, z] = 1 for all g ∈ G and is usually
denoted by Z(G). For an element g ∈ G , the centraliser of g in G is the set of all elements z ∈ G such
that [g, z] = 1 and is denoted by CG (g). If H, K are subgroups of a group G , then the commutator
subgroup [H, K ] is generated by all commutators [h,k] where h ∈ H and k ∈ K . The derived subgroup G ′
of G is defined as [G, G] and is the smallest normal subgroup N such that G/N is abelian. The symbol
γi(G) denotes the i-th term of the lower central series of G; that is γ1(G) = G , γ2(G) = G ′ , and, for
i � 3, γi+1(G) = [γi(G), G]. The nilpotency class of a p-group is the smallest c such that γc+1(G) = 1.
The Frattini subgroup Φ(G) of a finite group G is the intersection of all the maximal subgroups. If G is
a finite p-group, then Φ(G) = G ′G p where G p is the subgroup of G generated by the p-th powers of
all elements of G . In particular, Φ(G) is the smallest normal subgroup N such that G/N is elementary
abelian. The exponent of a finite group G is the smallest positive n such that gn = 1 for all g ∈ G .

A p-group P is called special if Z(P ) = P ′ = Φ(P ). It is called extraspecial if it is special and these
three subgroups all have order p. Extraspecial groups have order p1+2n for some positive integer n
and there are two extraspecial groups of each order. When p is odd they are distinguished by their
exponent: one has exponent p and the other has exponent p2. One class of special p-groups are
the (3-dimensional) Heisenberg groups. These are the p-groups which are isomorphic to a Sylow p-
subgroup of GL(3,q) for q = p f , that is, the group of lower triangular matrices with all entries on
the diagonal equal to 1. When q is odd, the Heisenberg groups have exponent p and for q = p are
extraspecial.

2. The classical case

The classical generalised quadrangles are rank 2 polar spaces, whereby the points and lines are
the singular one-dimensional and two-dimensional subspaces (resp.) of a vector space equipped with
a quadratic or sesquilinear form. Below is a table listing the thick classical generalised quadrangles
together with their orders and automorphism groups:

Generalised quadrangle Order Aut. Group

H(3,q2) (q2,q) P�U(4,q)

H(4,q2) (q2,q3) P�U(5,q)

W(3,q) (q,q) P�Sp(4,q)

Q(4,q) (q,q) P�O(5,q)

Q−(5,q) (q,q2) P�O−(6,q)
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It is well known that the first and last examples above are dual pairs and the third and fourth
examples are also dual. In a generalised quadrangle of order (s, t), a simple counting argument shows
that the number of points is (s + 1)(st + 1) and the number of lines is (t + 1)(st + 1). Now we give a
short proof of Theorem 1.1.

Proof of Theorem 1.1. The automorphism group of a classical generalised quadrangle acts primitively
on the points of the generalised quadrangle (as it is the natural action of the classical group), and by
hypothesis, it contains a regular subgroup G . The classification of all regular subgroups of almost sim-
ple primitive groups was established in the monograph [12] of Liebeck, Praeger and Saxl, from which
the examples in the above table are precisely the examples that arise in our context. The groups of
concern to us are dealt with in [12, Chapters 6 and 10]. The regular subgroups of P�U(n,q) in its
action on totally isotropic i-spaces and some other actions of classical groups were independently
determined by Baumeister [1,2]. The complete results of [12] require the Classification of Finite Sim-
ple Groups. However, for an individual family of groups it only requires precise information about
the subgroup structure, and for low-dimensional classical groups this can be obtained without the
Classification, for example [8,9,14–16,21,23]. �

Some other interesting consequences can be read off from the results of [12], namely: (i) only
metacyclic groups can act regularly on the points of a Desarguesian projective plane (cf., [12, Chap-
ter 5]); (ii) the classical generalised hexagons and octagons do not have a group of automorphisms
which act regularly on points (cf., [12, Chapter 12] and [2, Theorem 3]).

The examples below can also be found in [2, §10.1].

First example: Q = Q−(5,2)

The regular group G arising here is an extraspecial group of order 27 and exponent 3. Let A ∈
O −(2,2) be of order 3. Then

G =
〈( A 0 0

0 A−1 0
0 0 I

)
,

( I 0 0
0 A 0
0 0 A−1

)
,

( 0 I 0
0 0 I
I 0 0

)〉

where G preserves an orthogonal decomposition of the 6-dimensional vector space into 3 anisotropic
lines. If x is a nontrivial element of G with 1 as an eigenvalue then 1 has multiplicity 2 and the fixed-
point space of x is an anisotropic line. Thus the only nontrivial element of G which fixes a singular
vector is the identity. Since the order of G is equal to the number of points (i.e., 27), G is regular.

Second example: Q = Q−(5,2)

Here G is an extraspecial group of order 27 and exponent 9. Let A ∈ O −(2,2) be of order 3. Then

G =
〈( 0 A 0

0 0 I
I 0 0

)
,

( 0 I 0
0 0 A
I 0 0

)〉

where again G preserves an orthogonal decomposition of the 6-dimensional vector space into 3
anisotropic lines. The elements of order 9 act irreducibly on the vector space while the elements
of order 3 are of the form( Ai 0 0

0 A j 0
0 0 Ak

)

where Ai+ j+k = I with i, j,k ∈ Z3 and at least two nonzero. The fixed-point spaces of such elements
are anisotropic lines. Thus the only nontrivial element of G which fixes a singular vector is the iden-
tity. Since |G| = 27 it follows that G is regular.
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Third example: Q = Q−(5,8)

Here G ∼= GU(1,29).9 ∼= C513 � C9.
The number of points of Q = Q−(5,8) is (8 + 1)(83 + 1), and this value is divisible by a primitive

prime divisor 19 of 86 −1. The normaliser of the Sylow 19-subgroup of P�O−(6,q) contains (and is in
fact equal to) (GU(1,29).9) : C2, where the involution on top is a field automorphism. This is a typical
example of a maximal subgroup of P�O−(6,q) in the “extension field groups” Aschbacher class. Now
the subgroup GU(1,29).9 is irreducible and has order (8 + 1)(83 + 1). The normal subgroup GU(1,29)

is the centraliser of the Sylow 19-subgroup and hence acts semi-regularly, whereas the 9 on top
is an automorphism of the field extension, which ensures that GU(1,29).9 also acts semi-regularly.
Therefore GU(1,29).9 acts regularly on the points of Q−(5,8).

3. Payne derived generalised quadrangles

Let q = p f for some prime p and consider the generalised quadrangle Q = W(3,q). Let x be a
point of Q. As outlined in the introduction, we can construct a new generalised quadrangle Qx whose
points are the points of W(3,q) which are not incident with x and whose lines of W(3,q) not incident
with x together with the hyperbolic lines containing x but not in x⊥ . This generalised quadrangle is
referred to as a Payne derived quadrangle and has order (q − 1,q + 1). The automorphism group of Qx

contains the stabiliser of x in P�Sp(4,q). When q � 5 this is the full automorphism group of Qx [11,
(2.4) Corollary].

We will use the following setup. Let V be a 4-dimensional vector space over GF(q), and consider
the following alternating form on V :

β(x, y) := x1 y4 − y1x4 + x2 y3 − y2x3.

The totally isotropic subspaces yield the points and lines of the generalised quadrangle W(3,q), with
isometry group Sp(4,q). Let x := 〈(1,0,0,0)〉. Then

Sp(4,q)x =
{(

λ 0 0
uT A 0
z v λ−1

) ∣∣∣ A ∈ GL(2,q), u,v ∈ GF(q)2, z ∈ GF(q),

A J AT = J , u = λv J AT , λ ∈ GF(q)

}

where J := ( 0 1
−1 0

)
.

Of particular importance is the subgroup

E :=

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 0 0 0
−c 1 0 0
b 0 1 0
a b c 1

⎞
⎟⎠ ∣∣∣ a,b, c ∈ GF(q)

⎫⎪⎬
⎪⎭ � Sp(4,q)x (1)

which has order q3. Let ta,b,c be the element of E defined by

ta,b,c :=
⎛
⎜⎝

1 0 0 0
−c 1 0 0
b 0 1 0
a b c 1

⎞
⎟⎠ .

Then a simple calculation shows that

ta,b,ctx,y,z = ta+x−bz+cy,b+y,c+z

for any (a,b, c) and (x, y, z). In particular (ta,b,c)
−1 = t−a,−b,−c and

[ta,b,c, tx,y,z] = t−a−x−bz+cy,−b−y,−c−zta+x−bz+cy,b+y,c+z = t−2bz+2cy,0,0 (2)

We record some properties of E in the following lemma.
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Lemma 3.1. Let E be the group defined in (1).

1. E has exponent p.
2. For q even, E is an elementary abelian 2-group.
3. For q odd, Z(E) = E ′ = Φ(E) = {ta,0,0 | a ∈ GF(q)}.
4. For q odd, E is a special group, and for q = p, E is extraspecial of exponent p.

Proof. The first two parts follow as (ta,b,c)
p = t0,0,0 for all a,b, c ∈ GF(q). For q odd, we have that

Z(E) = {ta,0,0 | a ∈ GF(q)}. Since E/Z(E) is elementary abelian, E ′ � Z(E) and equality holds since
by (2), each element of Z(E) is a commutator. For p-groups, the Frattini subgroup is the smallest
normal subgroup such that the quotient is elementary abelian, and so Φ(E) = E ′ = Z(E). Thus the
last two parts follow. �
Remark 3.2. The group E acts regularly on the points of W(3,q) not collinear with x and fixes each
line through x, that is, W(3,q) is an elation generalised quadrangle with elation group E . Moreover,
for p odd, E is isomorphic to the (3-dimensional) Heisenberg group.

For α ∈ GF(q) define

θα :=
⎛
⎜⎝

1 0 0 0
−α 1 0 0
−α2 α 1 0

0 0 α 1

⎞
⎟⎠ ∈ Sp(4,q)x.

Lemma 3.3. Let n � 1 be an integer and α ∈ GF(q). Then

θn
α =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

−nα 1 0 0
−n(n+1)

2 α2 nα 1 0

−n(n2−1)
6 α3 n(n−1)

2 α2 nα 1

⎞
⎟⎟⎟⎟⎠ .

Proof. The lemma is clearly true for n = 1 so assume it is true for some n = k − 1 � 1. Then

θk
α = θαθk−1

α =

⎛
⎜⎜⎜⎝

1 0 0 0

−α 1 0 0

−α2 α 1 0

0 0 α 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0 0

−(k − 1)α 1 0 0
−(k−1)k

2 α2 (k − 1)α 1 0

−(k−1)k(k−2)
6 α3 (k−1)(k−2)

2 α2 (k − 1)α 1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

−kα 1 0 0
−k(k+1)

2 α2 kα 1 0

−k(k2−1)
6 α3 k(k−1)

2 α2 kα 1

⎞
⎟⎟⎟⎟⎠ .

Thus the result follows by induction. �
Corollary 3.4. For p > 3 and α ∈ GF(q)\{0} the element θα has order p while for p = 2,3 the element θα has
order p2 . In all cases

θ−1
α =

⎛
⎜⎝

1 0 0 0
α 1 0 0
0 −α 1 0
0 α2 −α 1

⎞
⎟⎠ .
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Let

R := {
ta,b,0

∣∣ a,b ∈ GF(q)
}
.

Then R is an elementary abelian subgroup of E of order q2. By Remark 3.2, R acts semi-regularly on
the set of points of W(3,q) not collinear with x. Let Z := {ta,0,0 | a ∈ GF(q)} and note that Z = Z(E)

when q is odd.
For p = 3 and α ∈ GF(q)\{0} we have

θ3
α =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−α2 0 0 1

⎞
⎟⎠ ∈ Z(E)

while for p = 2 we have

θ2
α =

⎛
⎜⎝

1 0 0 0
0 1 0 0
α2 0 1 0
α3 α2 0 1

⎞
⎟⎠ ∈ R.

We collect together the following relations between the θα and elements of E .

Lemma 3.5. Let a,b, c,α,β ∈ GF(q).

1. θ−1
α ta,b,cθα = t−2α2c−2αb+a,αc+b,c .

2. [ta,b,c, θα] = t−α(c2+2αc+2b),αc,0 .

3. θαθβ = tα2β,αβ,0θα+β .

4. [θα, θβ ] = tαβ(α−β),0,0 .

Proof. The first part follows as⎛
⎜⎝

1 0 0 0
α 1 0 0
0 −α 1 0
0 α2 −α 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
−c 1 0 0
b 0 1 0
a b c 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
−α 1 0 0
−α2 α 1 0

0 0 α 1

⎞
⎟⎠

=
⎛
⎜⎝

1 0 0 0
α − c 1 0 0
αc + b −α 1 0

−α2c − αb + a α2 + b −α + c 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
−α 1 0 0
−α2 α 1 0

0 0 α 1

⎞
⎟⎠

=
⎛
⎜⎝

1 0 0 0
−c 1 0 0

αc + b 0 1 0
−2α2c − 2αb + a αc + b c 1

⎞
⎟⎠ .

The second part follows as⎛
⎜⎝

1 0 0 0
c 1 0 0

−b 0 1 0
−a −b −c 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
−c 1 0 0

αc + b 0 1 0
−2α2c − 2αb + a αc + b c 1

⎞
⎟⎠

=
⎛
⎜⎝

1 0 0 0
0 1 0 0
αc 0 1 0

2

⎞
⎟⎠ .
−α(c + 2αc + 2b) αc 0 1
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The third part follows from

θαθβ =
⎛
⎜⎝

1 0 0 0
−α 1 0 0
−α2 α 1 0

0 0 α 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
−β 1 0 0
−β2 β 1 0

0 0 β 1

⎞
⎟⎠

=
⎛
⎜⎝

1 0 0 0
−α − β 1 0 0

−α2 − αβ − β2 α + β 1 0
−αβ2 αβ α + β 1

⎞
⎟⎠

=
⎛
⎜⎝

1 0 0 0
0 1 0 0

αβ 0 1 0
α2β αβ 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
−(α + β) 1 0 0
−(α + β)2 α + β 1 0

0 0 α + β 1

⎞
⎟⎠ .

Finally,

θ−1
α θ−1

β θαθβ

⎛
⎜⎝

1 0 0 0
α 1 0 0
0 −α 1 0
0 α2 −α 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
β 1 0 0
0 −β 1 0
0 β2 −β 1

⎞
⎟⎠

×
⎛
⎜⎝

1 0 0 0
−α − β 1 0 0

−α2 − αβ − β2 α + β 1 0
−αβ2 αβ α + β 1

⎞
⎟⎠

=
⎛
⎜⎝

1 0 0 0
α + β 1 0 0
−αβ −α − β 1 0
α2β α2 + αβ + β2 −α − β 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
−α − β 1 0 0

−α2 − αβ − β2 α + β 1 0
−αβ2 αβ α + β 1

⎞
⎟⎠

=
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

αβ(α − β) 0 0 1

⎞
⎟⎠ . �

We will need the following lemma.

Lemma 3.6. Let S be the Sylow p-subgroup of GL(4,q) for q = p f . If p > 3 then S has exponent p, while if
p = 2,3 then S has exponent p2 .

Proof. Let g ∈ S . Then the Jordan blocks of g have sizes 1,2,3 or 4. If � � p, a Jordan block of size
� has order p as an element of GL(�,q). Hence if p � 5 then g has exponent p. When p = 3, Jordan
blocks of size 4 have order 9, while for p = 2, Jordan blocks of size 3 and 4 have order 4. Hence for
p = 2,3, S has exponent p2. �

We will also need the following.

Lemma 3.7. Let q = 2 f with f � 2. Then {αβ(α + β) | α,β ∈ GF(q)} = GF(q) for f � 3 and {αβ(α + β) |
α,β ∈ GF(4)} = {0,1}.
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Proof. Let S = {αβ(α + β) | α,β ∈ GF(q)}. We can easily check that S = {0,1} when q = 4 so we
may assume that f � 3. Clearly S �= {0} and so there exists x, y ∈ GF(q) such that xy(x + y) = a �= 0.
Then for all ω ∈ GF(q), (ωx)(ωy)(ωx + ωy) = ω3a. Thus if a ∈ S then S contains {ω3a | ω ∈ GF(q)}.
Let T be the set of nonzero cubes in GF(q). If T = GF(q)\{0} then S = GF(q) so we may assume
that f is even. Then the set of nonzero elements of GF(q) can be partitioned into the three sets
T , ξ T and ξ2T , where ξ is a primitive element of GF(q). It remains to show that S contains at
least one element from each of these three sets, and then the result will follow. Now S contains
the subset X = {α2 + α | α ∈ GF(q)}. The map α 	→ α2 + α is GF(2)-linear with kernel GF(2). Hence
|X | = 2 f −1. For f � 3, we have |X | > |T | and so X meets at least two of the sets T , ξ T and ξ2T . Thus
|S| � 2(2 f − 1)/3 > |X | and so there exists μ ∈ GF(q) such that the image Y of the GF(2)-linear map
α 	→ α2μ + αμ2 is not X . Then as Y is another GF(2)-subspace of GF(q) not equal to X it follows
that |X ∩ Y | = 2 f −2 and so |X ∪ Y | = 2 f − 2 f −2 > 2(2 f − 1)/3. Hence S meets each of T , ξ T and ξ2T
and so S = GF(q). �
Construction 3.8. Let {α1,α2, . . . ,α f } be a basis for GF(q) over GF(p). Let

P := 〈R, θα1 , . . . , θα f 〉.
Note that P is independent of the choice of basis {α1,α2, . . . ,α f } of GF(q) over GF(p) since, by Lemma 3.5(3),
P contains θα for all α ∈ GF(q).

Lemma 3.9. The group P has order q3 and has the following properties:

1. P/R is elementary abelian of order q.
2. For q > 2, P is nonabelian.
3. For q = 2, P ∼= C4 × C2 .
4. For q odd, Z(P ) = P ′ = Φ(P ) = Z(E).
5. For q > 2 even Z(P ) = R. Moreover, P ′ = Z for q � 8 and P ′ = {t0,0,0, t1,0,0} for q = 4.
6. For p > 3, P has exponent p.
7. For p = 2,3, P has exponent p2 .

Proof. By Lemma 3.5(1) each θαi normalises R , and by Lemma 3.5(3), θαθβ ∈ Rθα+β . Thus |P | = q3

and P/R is isomorphic to the additive group of GF(q) (and so (1) holds). Hence P ′ � R . It follows from
Lemma 3.5(1) that for q > 2, P is nonabelian (and so (2) holds). Moreover, for q odd, C R(θα) = Z(E)

and it follows that Z(P ) = Z(E). For q even we have C R(θα) = R and if q > 2 it follows that Z(P ) = R .
For q = 2, P is an abelian group of exponent 4 and so is isomorphic to C4 × C2. Thus (3) holds.

When q is odd, Lemma 3.5(1) and (3) implies that P/Z(E) is an elementary abelian group of order
q2 and so P ′ � Z(E). Moreover, by Lemma 3.5(2) each element of Z(E) is a commutator of elements
of P . Thus P ′ = Φ(P ) = Z(E) and so (4) holds.

For q even, Lemma 3.5(4) implies that for q > 2 we have X = 〈tαβ(α+β)0,0 | α,β ∈ GF(q)〉 � P ′ .
Lemma 3.7 implies that X = Z when q � 8 while X = {t0,0,0, t1,0,0} for q = 4. Since P/X is abelian
(Lemma 3.5(2) and (4)), it follows that P ′ = X and hence (5) holds.

Since P is contained in a Sylow p-subgroup of GL(4,q), Lemma 3.6 implies that the exponent of
P is p for p � 5 (and (6) holds) and at most p2 for p = 2,3. For p = 2,3, each θα ∈ P has order p2

and so the exponent of P is indeed p2. Therefore, (7) holds. �
Corollary 3.10. For p = 2,3, P � E.

Proof. This follows by comparing the exponents of E and P . �
Lemma 3.11. For q = p f with p > 3, E ∼= P .
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Proof. Define the map

φ : P → E,

ta,b,0 	→ ta,b,0, a,b ∈ GF(q),

θαi 	→ t0,−α2
i /2,αi

, i = 1, . . . , f ,

which maps a set of generators of P to a set of generators for E . The generators for each
group have order p. Since [θα, θβ ] = tαβ(α−β),0,0 = [t0,−α2/2,α, t0,−β2/2,β ] and [ta,b,0, θα] = t−2αb,0,0 =
[ta,b,0, t0,−α2/2,α] this map extends to an isomorphism. �
Lemma 3.12. The group P acts regularly on the set of points of W(3,q) not collinear with x. Moreover, P fixes
the line 〈(1,0,0,0), (0,1,0,0)〉 but transitively permutes the remaining q lines through x.

Proof. Consider the image of y = 〈(0,0,0,1)〉 under g ∈ P . Then g = ta,b,0θ
n1
α1 θ

n2
α2 . . . θ

n f
α f

for some
ta,b,0 ∈ R and integers n1, . . . ,n f . The third coordinate of (0,0,0,1)g is equal to n1α1 + · · · + n f α f .
Thus if g ∈ Py then n1α1 +· · ·+n f α f = 0. Since {α1, . . . ,α f } is a linearly independent set over GF(p)

it follows that p divides ni for all i. Hence for each i, θ
ni
αi ∈ R and so g ∈ Ry . However, R acts semi-

regularly on the set of points not collinear with x. Thus g = 1 and since |P | = q3, we have that P acts
regularly on the set of points of W(3,q) not collinear with x.

Since each θαi induces
( 1 0
αi 1

)
on x⊥/x it follows that P fixes one line through x and transitively

permutes the remaining q. �
For q = 3 the groups E and P are the two regular subgroups of Q −(5,2) given in Theorem 1.1.

Lemma 3.13. Let Qx be the generalised quadrangle obtained by Payne derivation from W(3, p) for p � 5 a
prime and suppose that G acts regularly on the set of points of Qx. Then G ∼= E ∼= P .

Proof. Since |G| = p3 and is contained in a Sylow p-subgroup of GL(4, p), by Lemma 3.6, G has ex-
ponent p. Thus by inspecting the five groups of order p3 (namely C p3 , C p2 × C p , C3

p and the two
extraspecial groups) we deduce that either G ∼= E or G is elementary abelian. By [5, Main Theo-
rem 2.6] the latter is not possible. �
Construction 3.14. For q = p f with f � 2, let U ⊕ W be a decomposition of GF(q) into GF(p)-subspaces and
let {α1, . . . ,αk} be a basis for U . Define

SU ,W = 〈R, θα1 , . . . , θαk , t0,0,w | w ∈ W 〉.
Note that SU ,W is independent of the choice of basis {α1,α2, . . . ,αk} of U over GF(p) since, by Lemma 3.5(3),
SU ,W contains θα for all α ∈ U .

Lemma 3.15. The group SU ,W given by Construction 3.14 has order q3 and has the following properties:

1. SU ,W is nonabelian;
2. for q odd, Z(SU ,W ) = Z(E) while

(SU ,W )′ = 〈
Z(E), t0,α1 w1+···+αk wk,0

∣∣ wi ∈ W
〉

which has order qp� where � = dimGF(p)(α1W + · · · + αk W );
3. for q even, Z(SU ,W ) = R and

(SU ,W )′ =

⎧⎪⎪⎨
⎪⎪⎩

〈Z , tα1 w2
1+···+αk w2

k ,α1 w1+···+αk wk,0
| wi ∈ W 〉 for k � 3,

〈t1,0,0, tα1 w2
1+α2 w2

2,α1 w1+α2 w2,0 | wi ∈ W 〉 for k = 2,

〈tα1 w2
1,α1 w1

| w1 ∈ W 〉 for k = 1;
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4. for p > 3, SU ,W has exponent p;
5. for p = 2,3, SU ,W has exponent p2 .

Proof. Now (θαi )
p ∈ R and by Lemma 3.5(1), each θαi normalises 〈R, t0,0,w | w ∈ W 〉. Hence

|SU ,W | = q3. Since θαi does not centralise elements t0,0,w for w ∈ W \{0}, it follows that SU ,W is
nonabelian. Hence (1) holds.

For q odd we have that Z(SU ,W ∩ E) = Z(E). Since C E (θαi ) = Z(E) it follows that Z(SU ,W ) = Z(E).
For q even we have that SU ,W ∩ E is elementary abelian. Moreover, by Lemma 3.5(1), θαi centralises
R and so R � Z(SU ,W ). Since θαi does not centralise any element of SU ,W ∩ E outside R it follows
that Z(SU ,W ) = R .

By Lemma 3.5(1), (3) and (4), SU ,W /R is elementary abelian of order q and so (SU ,W )′ � R . For q
odd all elements of Z(E) can be written as commutators of θα1 and elements of R (Lemma 3.5(2)).
Hence Z(E) � (SU ,W )′ . Moreover, [θαi , t0,0,w ] = t−αi(w2+2αi w),αi w,0 for all w ∈ W . Thus

X = 〈
Z(E), t0,α1 w1+···+αk wk,0

∣∣ wi ∈ W
〉
� (SU ,W )′.

By Lemma 3.5(1) and (3), SU ,W /X is abelian and so (SU ,W )′ = X , which has order qp� . Thus (2) holds.
For q even, by Lemma 3.5(2) and (4), [θαi , t0,0,w ] = tαi w2,αi w,0 and [θαi , θα j ] = tαiα j(αi−α j),0,0. Thus

X = 〈
tαβ(α+β),0,0, tα1 w2

1+···+αk w2
k ,α1 w1+···+αk wk,0

∣∣ wi ∈ W , α,β ∈ GF(q)
〉
� (SU ,W )′.

Moreover, by Lemma 3.5(1), θ−1
αi

ta,b,cθαi = ta,αi c+b,c = tαi c2,αi c,0ta,b,c . Since E is abelian and ta,b,c ∈
SU ,W if and only if c ∈ W , it follows that SU ,W /X is elementary abelian. Hence (SU ,W )′ = X . The
expression for (SU ,W )′ given in (3) then follows from Lemma 3.7.

Since SU ,W is contained in a Sylow p-subgroup of GL(4,q), Lemma 3.6 implies that the exponent
of SU ,W is p for p � 5 and at most p2 for p = 2,3. For p = 2,3, each θαi ∈ SU ,W has order p2 and so
the exponent of SU ,W is indeed p2. Hence (4) and (5) hold. �
Corollary 3.16. Let U be a 1-dimensional subspace of GF(q) over GF(p). Then P � SU ,W � E.

Proof. This follows for q > 4 by comparing the orders of the derived subgroups. Note that � =
dim(W ) = f − 1. A Magma [4] calculation verifies the result for q = 4. �
Remark 3.17. Note that |SU ,W ∩ E| = q2 p f −k . Since E � �Sp(4,q)x it follows that if dim(U1) �=
dim(U2) then SU1,W1 is not conjugate to SU2,W2 in �Sp(4,q)x . However, if dim(U1) = dim(U2) it
is possible for SU1,W1 to still not be conjugate to SU2,W2 . For example, when q = 8, Magma [4] cal-
culations show that there are two conjugacy classes of subgroups SU ,W with U a 2-dimensional
subspace.

As for isomorphism classes, sometimes it can be read off from the order of derived subgroups
that two such groups are nonisomorphic. For example when q = 8 comparing orders of derived sub-
groups yields SU ,W � SW ,U when U is a 1-space. Moreover, if U is a 2-space then SU ,W � P even
though they have derived subgroups of the same order. It is even possible for SU1,W1 � SU2,W2 when
dim(U1) = dim(U2). Indeed for q = 16, Magma [4] calculations show that there are two isomorphism
classes of subgroups SU ,W with U a 3-dimensional subspace: one has Frattini subgroup of order 27

and one has Frattini subgroup of order 28.

Lemma 3.18. The group SU ,W acts regularly on the set of points of W(3,q) not collinear with x. More-
over, SU ,W fixes the line 〈(1,0,0,0), (0,1,0,0)〉 but permutes the remaining q lines through x in orbits of
length pk.

Proof. Consider the image of y = 〈(0,0,0,1)〉 under g ∈ SU ,W . Then g = ta,b,cθ
n1
α1 θ

n2
α2 . . . θ

nk
αk

for some
ta,b,c ∈ E ∩ SU ,W and some integers ni . The third coordinate of (0,0,0,1)g is equal to n1α1 + · · · +
nkαk + c where c ∈ W . Thus if g ∈ (SU ,W )y then n1α1 + · · · + nkαk + c = 0. Since {α1, . . . ,αk, c} is
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Table 1
The isomorphism types of regular subgroups of the generalised quadrangle of order (3,5).

Group # Comment Group # Comment Group # Comment
9 1 90 7 215 1 special

18 1 92 1 219 1 special
23 6 102 1 224 1 special
32 5 136 2 226 1 special, D8 × D8

33 3 138 2 227 1 special
34 1 139 2 232 2 special
35 4 193 1 SU ,W 241 1 special
56 1 P 199 1 242 1 special, Sylow 2-subgroup of GL(3,4)

60 4 202 2 264 1
88 1 206 1 267 1 E

a linearly independent set over GF(p) it follows that p divides each ni . Hence each θ
ni
αi ∈ R and so

g ∈ Ry . However, R acts semi-regularly on the set of points not collinear with x. Thus (SU ,W )y = 1.

Since θα induces
( 1 0
α 1

)
on x⊥/x it follows that SU ,W fixes one line through x and permutes the

remaining q in orbits of size pk . �
Proof of Theorem 1.2. The group E is the group defined in (1), the group P is as provided by
Construction 3.8 and the group S can be taken to be SU ,W given by Construction 3.14 with U a 1-
dimensional subspace of GF(q) over GF(p). The theorem then follows from Lemmas 3.1, 3.9, 3.12, 3.15
and 3.18, and Corollaries 3.10 and 3.16. �
4. Small generalised quadrangles

In general, the generalised quadrangle Qx of order (q−1,q+1) obtained by Payne deriving W(3,q)

has more regular subgroups than those exhibited in Section 3. In this section we catalogue the point
regular groups of automorphisms of small generalised quadrangles. The results suggest that the prob-
lem is wild.

For q = 3 we have Qx ∼= Q−(5,2) and so the point regular groups of automorphisms are given by
Theorem 1.1. They are simply conjugates of the groups E and P from Section 3.

For q = 4 the full automorphism group of Qx is C6
2 � (3.A6.2), which acts transitively on the

lines of Qx (see [19, §V]). Hence the dual of Qx is a generalised quadrangle of order (5,3) with a
point-transitive automorphism group.

Example 4.1. Let Qx be the generalised quadrangle of order (3,5) obtained by Payne derivation from
W(3,4). A Magma [4] calculation1 reveals that Aut(Qx) has 58 conjugacy classes of regular subgroups
with 30 different isomorphism classes occuring. In Table 1 we document the number in the Small
Group Database of Magma of each isomorphism class and the number of conjugacy classes (indicated
by the symbol #) of regular subgroups of that isomorphism type. We also give information about
various groups in the list and identify E , P and the SU ,W . In this case all the SU ,W are conjugate
in Sp(4,4)x . We note that E is normal in Aut(Qx) and is the only abelian regular subgroup. The
groups occuring have nilpotency class 1, 2, 3 or 4. Note that the list of regular groups includes a
group isomorphic to a Sylow 2-subgroup of GL(3,4) so it is possible for a Heisenberg group of even
order to act regularly on the points of a generalised quadrangle. This was previously believed to not
be possible [6, p. 241].

Example 4.2. Let Q be the generalised quadrangle of order (5,3), the dual of the generalised quad-
rangle of order (3,5) in Example 4.1. Then Q has 96 points and 64 lines and has automorphism group
C6

2 � (3.A6.2) (see [19]). It is known that Aut(Q) contains a regular subgroup on points [7, p. 46]. In

1 Our use of the computer was not complicated. We simply used the command Subgroups(G:IsRegular), for the most
part.
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Table 2
Regular subgroups of the generalised quadrangle of order (5,3).

Group Shape Notes

H1 C4
2 � S3 Z(H1) = 1, H ′

1 = C4
2 � C3

H2 22+3
� C3 Z(H2) = 1, H ′

2 = C4
2

H3 22+3
� C3 Z(H3) = 1, H ′

3 = C2
4

H4 C2
4 � S3 Z(H4) = 1, H ′

4 = C2
4 � C3

H5 C4
2 � S3 |Z(H5)| = 2, H ′

5 = C3
2 � C3

H6 22+2
� S3 |Z(H6)| = 2, H ′

6 = Q 8 � C3

Table 3
Numbers of conjugacy classes of point regular subgroups of the Payne derived generalised quadrangle from W (3,q).

q # regular subgroups Comments

2 4 23, C4 × C2, 2 D8’s, conjugacy in P�Sp(4,2)x

3 2 this is Q−(5,2)

4 58 30 isomorphism classes

5 2 E and P

7 2 E and P

8 14 8 isomorphism types, nilpotency class 1 or 2

2 conjugacy classes of subgroups isomorphic to P

1 conjugacy class of SU ,W with U a 1-space

2 conjugacy classes (but 1 isomorphism class) of SU ,W with U a 2-space

2 further conjugacy classes of groups isomorphic to SU ,W with U a 2-space

9 5 distinct isomorphism types, nilpotency class 2 or 3

1 class of SU ,W

11 2 E and P

13 2 E and P

16 231 1 conjugacy class of SU ,W for U a 1-space

2 isomorphism (and conjugacy) classes of SU ,W for U a 3-space

10 conjugacy classes of SU ,W for U a 2-space (all isomorphic)

nilpotency classes 1, 2, 3, 4, 5, 6 and 7

17 2 E and P

19 2 E and P

23 2 E and P

25 7 nilpotency class 2 or 3

1 conjugacy class of SU ,W

fact the automorphism group contains 6 different conjugacy classes of regular subgroups on points
(by a Magma calculation). They have shape as given in Table 2. By 2a+b we mean a 2-group P with
center an elementary abelian group of order 2a and P/Z(P ) is elementary abelian of order 2b .

For q � 5, the full automorphism group of Qx is P�Sp(4,q)x [11], which is not transitive on the
lines of Qx . In Table 3 we list, for certain values of q, the number of conjugacy classes of point
regular subgroups of Aut(Q) where Q is the generalised quadrangle of order (q − 1,q + 1) obtained
from W(3,q) obtained by Payne derivation.

Example 4.3. Let Q be the generalised quadrangle of order (15,17) arising from the Lunelli–Sce hy-
peroval. Then Q has 4096 points and 4608 lines. It follows from [3] that its automorphism group is
isomorphic to G = 212 � H where H is the stabiliser in �L(3,16) of the hyperoval. The group H has
shape (31+2+ × C5) � (C8 × C2).

A Magma [4] calculation shows that the group G contains 54 conjugacy classes of groups regular
on points. This includes the elementary abelian 2-group which is the socle of G . There are 16 iso-
morphism types of groups and one further conjugacy class of subgroups for which we are unable to
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determine whether they are isomorphic to any of the former 16 types. There are no special 2-groups
on the list. The nilpotency classes of the groups are 1, 2, 3, 4 and 7. There are two conjugacy classes of
groups of nilpotency class 7 and all such groups are isomorphic. Every member of this isomorphism
class has centre of order 2, derived subgroup of order 27 and exponent 16.

It is proved in [7, p. 46] that the generalised quadrangle of order (17,15) arising as the dual of Q
has no point regular groups of automorphisms. This was confirmed by computer calculations.

5. Conjectures in the literature

We note that the second and third examples of Theorem 1.1 appear to have been overlooked in
the classification of subgroups of P�U(4,q) transitive on lines given in [14, Corollary 5.12].

In [6] the authors prove

Theorem 5.1. Let Q be a generalised quadrangle of order (s, t) admitting a point regular group G, where G is
a p-group and p is odd. Suppose |Z(G)| � 3

√|G|. Then the following properties hold.

1. We have t = s + 2, and there is a generalised quadrangle Q′ of order s + 1 with a regular point x, such
that Q is Payne derived from Q′ with respect to x. The generalised quadrangle Q′ is an elation generalised
quadrangle with elation group K isomorphic to G.

2. We have |Z(G)| = 3
√|G|, that is, |Z(G)| = s + 1.

For q odd, the groups P and S from Theorem 1.2 satisfy the hypotheses of Theorem 5.1 with Q
being a generalised quadrangle of order (q − 1,q + 1). Hence there should be generalised quadrangles
of order q with elation groups K and K ′ isomorphic to P and S respectively. However, the only gener-
alised quadrangle of order 3 is W(3,3) [17, §6.2] and this does not have an elation group isomorphic
to P . The theorem seems to also fail with respect to P for larger values of q.

Thus we also have a counterexample to the following conjecture of [6].

Conjecture 1. If Q is a generalised quadrangle admitting a point regular group of automorphisms G, then
there exists an elation generalised quadrangle Q′ of order s with elation group G ′ , such that Q can be obtained
from Q′ by Payne derivation with respect to x, and such that G ∼= G ′ .

In [6] the authors also make the following conjecture.

Conjecture 2. If a finite generalised quadrangle admits a point regular group of automorphisms G, such that
G is a p-group, p odd, with the property that |Z(G)| � 3

√|G|, then G is isomorphic to a Heisenberg group of
dimension 3 over GF(q), where q is a power of p.

Moreover, in [7, Conjecture 4.4.1] the following more general conjecture is made:

Conjecture 3. If a finite thick generalised quadrangle Q admits a group of automorphisms G which acts regu-
larly on the set of points, then either Q is the generalised quadrangle of order (5,3), or G is (1) an elementary
abelian 2-group, or (2) an odd order Heisenberg group, and in (1)–(2) Q is a Payne derived generalised quad-
rangle arising in the usual way from an elation generalised quadrangle with elation group isomorphic to G.

The authors state in [7] that perhaps ‘Heisenberg’ could be replaced by ‘special’ in the above
conjecture. The groups P for q = 3 f and SU ,W for q odd and not a prime are not Heisenberg groups
and so are counterexamples to Conjectures 2 and 3. The groups SU ,W are not special. Moreover, when
q is even, P and SU ,W are nonabelian 2-groups acting regularly on a generalised quadrangle and so
are further counterexamples.

The example of C513 � C9 acting regularly on the points of Q −(5,8) is a particularly interesting
counterexample to Conjecture 3 as Q −(5,8) is not Payne derived and the group is not nilpotent. It
is however meta-abelian, but we saw in Example 4.1 that there are 4 groups acting regularly on the
generalised quadrangle of order (3,5) that are not meta-abelian.
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