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1. INTRODUCTION

Treatment of covariates or concomitant variables arises in many statisti-
cal investigations. In classification, covariates are often handled by using
the residual vector of regression of the discriminators on the covariates in
the discriminant function. See Cochran and Bliss [3]. Without much
analytic investigation, Cochran [2] claims that the discriminators subject
to the suggested treatment generally improve the performance of the dis-
criminant function since internal correlations have been incorporated in the
procedure. Memon and Okamoto [8] re-examines the same problem and
reaches similar conclusions. In Memon and Okamoto [8], only continuous
discriminators are considered in a two-population problem under
homogeneous dispersion matrices for both populations with a zero
threshold. Their conclusion draws criticism since the argument is based on
an asymptotic expansion in Okamoto [9] which is invalid for a nonzero
threshold with unknown Mahalanobis distance.
In this article, we consider a similar problem with mixed discrete and

continuous variables. Classification of mixed discrete and continuous
variables is prevalent in many situations. See Daudin [4], Krzanowski
[5], and Vlachonikolis and Marriott [13] for instance. Specifically, we
consider discrimination between two populations say, 61 and 62 with
mixed covariates amongst the discrete and continuous variables. Under
conditional homogeneity of discrete values specific dispersion matrices for
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both populations, an asymptotic overall expected error rate for the plug-in
covariates adjusted discriminant function is derived. The result is compared
to the corresponding error rate for the discriminant function without the
adjustments. Sufficient conditions are obtained in support of the covariates
adjusted discriminant function. Explicit statements are given in two special
cases. One of our results generalizes Memon and Okamoto [8] and
provides further theoretical justification of Cochran [2].

2. THE PROCEDURE

Existing procedures for classification between two populations say 61

and 62 using mixed discrete and continuous variables are based on the
location probability model of Olkin and Tate [10]. To simplify the discus-
sion, we adopt the formulation in Krzanowski [5]. Suppose that a vector
measurement u$=(y$, z$) is observed on an individual where z$=(z1 , ..., zr)
is a multinomial variable with r discrete states and y$=(y1 , ..., yp+q) is a
vector of p+q continuous variables. The vector z has only one nonzero
entry equal to one which is the incidence for the corresponding state.
The continuous variables consist of p discriminators and q covariates. To

simplify the discussion, suppose that the first p variables are the discrimina-
tors while the remaining q variables are covariates. Partition y$=(y(1)$, y(2)$);
where y(1)$=(y1 , ..., yp); y(2)$=(yp+1 , ..., yp+q). Similarly, let z$=(z(1)$, z(2)$);
where z(1)$=(z1 , ..., zr1) consists of r1 discrete discriminators and
z(2)$=(zr1+1 , ..., zr) denotes the discrete covariates (0<r1�r). Further-
more, it is assumed that for i=1, 2, Z |6itMultinomial(1, p (1)

i , p(2));
p(1)$i =( p1i , ..., pr1 i); p(2)=( pr1+1 , ..., pr); � r1

m=1 pmi+�r
l=r1+1 p l=1 and

for i=1, 2; m=1, ..., r; Y |Zm=1, 6 itNp+q(&mi , 7(m)) where &mi is a
p+q vector with the first p entries forming a p vector equal to
+mi=E(Y (1) |Zm=1, 6 i) and the last q entries forming a q vector equal to
*m=E(Y (2) |Zm=1, 6i).
Let 7(m) be partitioned as

7(m)=_7
(m)
11

7 (m)
21

7 (m)
12

7 (m)
21 &

and ;m=7 (m)
12 7 (m)&1

22 ; where 7 (m)
ij =Cov(Y (i), Y ( j)), i, j=1, 2; m=1, ..., r.

Notice that the role of Z(2) assumes that for i=1, 2; E(Z(2) |6i)= p(2) is
known. Similarly, the role of Y (2) assumes that the state specific mean *m
common to both 61 and 62 in state m, m=r1+1, ..., r is known.
To briefly state the problem, let *m=0 for m=1, ..., r in the sequel. With

complete knowledge of the parameters, the Bayes rule is given by the
location linear discriminant function. Specifically, for an object with

112 CHI-YING LEUNG



measurement (Y$, Z$)$ with Zm=1, m=1, ..., r, the rule with threshold
t # (&�, �) assigns the object to 61 if and only if Um>t, where

Um={Dm&log( pm2 �pm1),
Dm ,

for m=1, ..., r1
for m=r1+1, ..., r

with Dm=[Y (1)&;mY (2)& 1
2 (+m1++m2)]$ 7 (m)&1

1.2 (+m1&+m2) and 7 (m)
1.2 =

7(m)
11 &;m7 (m)

22 ;$m . Notice that Dm is the Fisher linear discriminant function
adjusted for the continuous covariates Y (2) for state m, m=1, ..., r when all
the parameters are known. See Memon and Okamoto [8].
The threshold t=0 is a common choice and 7(1)= } } } =7(r) is usually

assumed. See Krzanowski [5]. In practice, an approximate sample based
rule rather than the Bayes rule is used due to lack of knowledge of the
parameters. Suppose that random training samples of sizes n1 and n2
respectively from 61 and 62 are available. Let nmi observations from 6 i

fall in state m, with Y$mji=(Y (1)$
mji , Y

(2)$
mji ) denoting continuous measurements

on the jth sample in state m from 6i , j=1, ..., nmi ; m=1, ..., r; i=1, 2. Let
n(m)=nm1+nm2&2, m=1, ..., r. Unbiased continuous covariates adjusted
estimates specific to state m are

;� m=S (m)
12 S (m)&1

22 ;

7� (m)
1.2 =(n(m)&q)&1 (S (m)

11 &S (m)
12 S (m)&1

22 S (m)
21 ); +̂mi=Y� (1)mi &;� mY� (2)mi ,

where

Y� $mi=(Y� (1)$mi ; Y�
(2)$
mi ); Y� (&)mi=n&1

mi :
nmi

j=1

Y (&)
mi ; &=1, 2; m=1, ..., r,

and

:
2

i=1

:
nmi

j=1

(Ymji&Y� mi)(Ymji&Y� mi)$=S(m)=_S
(m)
11

S (m)
21

S (m)
12

S (m)
22 &

is similarly partitioned as 7(m) for m=1, ..., r.
From Kshirsagar [6, p. 20, Eq. (4.12)],

E(nmi |6 i , nr1+1i , ..., nri)

=(ni&nr1+1& } } } &nri) pmi (1& pr1+1& } } } & pr)&1.

Unbiased estimates of the state probabilities are obtained by adjusting the
known state probabilities in the last r&r1 multinomial cells for each of the
two discrete samples and are as follows: p̂mi= p~ mi (1& pr1+1& } } } & pr)
_(1& p~ (i)r1+1& } } } & p~ (i)r )&1; where p~ mi and p~ (i)l are the sample proportions
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of the m th and l th multinomial cells from the i th sample for m=1, ..., r1 ;
l=r1+1, ..., r and i=1, 2. A popular sample based approximation to Um

is the plug-in version of Um using above estimates due to its simplicity. In
the next section, an asymptotic expansion of the overall expected error rate
of the plug-in rule is given. The expansion provides an index of the long
term performance of the procedure.

3. THE EXPECTED ERROR RATE

For &�<t<�, given Zm=1, m=1, ..., r; i=1, 2, the probability of
misclassification is eim(t)=Pr[(&1) i U� m>(&1) i t |6 i]. With equal prior
for 61 and 62 , the overall expected error rate is given by e� (t)=
1
2 �

2
i=1 �

r
m=1 pmi eim(t) which admits an asymptotic expansion given below.

Details of the derivation are given in the appendix. To facilitate the deriva-
tion, the following results are needed.

Lemma 3.1. Under the formulation in section 2, with 7(1)= } } } =7(r)=
Ip+q , a ( p+q)_( p+q) identity matrix, if Zm=1, +m1=0, +m2=&$m ,
$$m=(2m , ..., 0), 0<2m=[(+m1&+m2)$ 7 (m)&1

1.2 (+m1&+m2)]
1�2, then for

given nm1 and nm2 , m=1, ..., r, the following hold.

(i) E2m( +̂m1)=0;

(ii) E2m( +̂m1&+̂m2)=$m ;

(iii) E2m(;� m)=0;

(iv) E2m(;� m;� $m)=bmIp , bm=q(n(m)&q&1)&1;

(v) E2m(7 (m)
1.2 )=Ip ;

(vi) E2m( +̂m1 +̂$m1)=n&1
m1 (1+bm) Ip ;

(vii) E2m(( +̂m1&+̂m2&$m)( +̂m1&+̂m2&$m)$)=(n&1
m1+n&1

m2 )(1+bm) Ip ;

(viii) E2m(( +̂m1&+̂m2&$m) +̂$m1))=n&1
m1(1+bm) Ip ;

(ix) E2m($$m(7 (m)
1.2 &Ip) $m)=(n(m))&1 (p+1) 22

m ;

(x) E2m(($$m(7 (m)
1.2 &Ip) $m)2)=2(n(m))&1 24

m ;

(xi) E2m(($$m(;� m;� $m&bmIp) $m)2)=2dm 24
m , dm=q[(n(m)&1)(n(m)

&q)&1 (n(m)&q&1)&1 (n(m)&q&3)&1+(n(m)&2)&2 (n(m)&4)&1].

Proof. Part (i) follows from the fact that given nm1 and nm2 and Zm=1,
Y� mi and 7� (m) are independently distributed with S (m)

11 &S (m)
12 S (m)&1

22 S (m)
21 t

Wp(Ip , n(m)&q), ;� m | S (m)
22 tNp, q(0, Ip , S (m)

22 ) and S (m)
22 tWq(Ip , n(m)).

Part (ii) follows similarly as Part (i).
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Part (iii) follows from E2m(;� m)=E2m(E2m, S
22
(m)(;� m | S(m)

22 )), where E2m, S
22
(m)( . )

denotes the conditional expectation with respect to S (m)
22 for given nm1 , nm2 .

Part (iv) follows since given S (m)
22 , the rows of ;� m are independent and

identically distributed asNq(0, S (m)&1

22 ) with E2m(S (m)&1

22 )=(n(m)&q&1)&1 Ip .
Part (v) follows from the Wishart distribution of S (m)

11 &S (m)
12 S (m)&1

22 S (m)
21 .

Part (vi) follows from E2m( +̂m1 +̂$m1)=n&1
m1E2m([Ip+;� m;� $m]).

Parts (vii) and (viii) follow similarly.
Parts (ix) and (x) follow from Anderson [1], Eq. (26) and Eq. (27),

p. 969 respectively.
Part (xi) follows from E2m(($$m(;� m;� $m&bmIp) $m)

2)=E1V2+V1E2 ,
where E2 and V2 denote respectively the conditional expectation and
variance given S (m)

22 and E1 and V1 stand for the expectation and
variance with respect to the distribution of S (m)

22 . Using ;� m$m | S (m)
22 t

Nq(0,22
mS

(m)&1

22 ) and Searle [11, Theorem 1, p. 55], V1E2=224
mq(n(m)&2)&2

(n(m)&4)&1. By Searle [11, Corollary 1.2, p. 57] and Srivastava and
Khatri [12, problem 3.2(iv) p. 97], E1V2=2 24

mq(n(m)&1)(n(m)&q)&1

(n(m)&q&1)&1 (n(m)&q&3)&1.

Lemma 3.2. Under the assumptions in Section 2, given Zm=1,

(i) E1m( p~ mi)= pmi ; m=1, ..., r1 ; i=1, 2;

(ii) E1m(( p~ mi& p~ mi)
2)=n&1

i pmi (1& pmi); m=1, ..., r1 ; i=1, 2;

(iii) E1m(( p~ (i)l & pl)( p~ ( j)l $ & pl $))=0; l, l $=r1+1, ..., r; i{ j=1, 2;

(iv) E1m(( p~ (i)l & pl)2)=n&1
i p l(1& pl); l=r1+1, ..., r; i=1, 2;

(v) E1m((p~ (i)l & pl)(p~ (i)l $ & pl $))=&n&1
i plpl $ ; l{l $=r1+1, ..., r; i=1, 2;

(vi) E1m(( p~ mi& pmi)(p~ (i)l & pl))=&n&1
i pmipl ; m=1, ..., r1 ; l=r1+1,

..., r; i=1, 2.

(vii) E1m(( p~ mi& pmi)(p~ ( j)l & pl))=0, m=1, ..., r1 ; i{ j=1, 2.

Proof. This is obvious.

Lemma 3.3. For the two random training samples, suppose that the
following conditions are satisfied.

(C1) nm2n&1
m1 converges in probability to km>0, m=1, ..., r as n1 and

n2 tend to infinity.

(C2) ns1n&1
m1 converges in probability to ks, m>0, s, m=1, ..., r as n1

and n2 tend to infinity. Then given Zm=1, E1m(8(2&1
m [t+log( p̂m2 � p̂m1)&

22
m �2]))=8('1mt)+n&1 2&1

m ,('1mt) `( pm1 , pm2)+O(n&2); where
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`(pm1 , pm2)=[nn&1
1 p&1

m1 (1& pm1)+nn&1
2 p� (1& p� )&1]

_[ 3
4&2&2

m �2[t+log( pm2 �pm1]]

&[nn&1
2 p&1

m2 (1& pm2)+nn&1
1 p� (1& p� )&1]

_[ 1
4+2&2

m �2[t+log( pm2 �pm1]]

&n(n&1
1 +n&1

2 ) p� (1& p� )&1

_[ 1
4&2&2

m �2[t+log( pm2 �pm1)]];

with p� =�r
l=r1+1 pl .

Proof. Given Zm=1, m=1, ..., r1 , the result follows from a Taylor
series expansion of 8(2&1

m [t+log( p̂m2 � p̂m1)&2&2
m �2]) about p~ mi= pmi ,

p~ (i)l = pl , l=r1+1, ..., r; i=1, 2. Under (C1) and (C2), the remainder term
has order O(n&2). The result follows from Lemma 3.2.

Remark 3.1. It should be pointed out that Lemma 3.1 and Lemma 3.2
ensure that the expansions in the following theorem have the indicated
order of approximation.

Theorem 3.1 (Main Result). Suppose that (C1) and (C2) in Lemma 3.3
are satisfied. Let n=n1+n2&2r. Then

(a) n(n(m))&1 converges in probability to 1+k*m�0 as both n1 and
n2 tend to infinity and limn1 , n2�� n2n&1

1 =k>0.

(b) for t # (&�, �) and given Zm=1, m=1, ..., r1 ,

e1m(t)=8('1mt)+n&1,('1mt)(:1mt+{1mt+#1mt)+O(n&2); (3.1)

and for m$=r1+1, ..., r,

e1m$(t)=8('*1m$t)+n&1,('*1m$t)({*1m$t+#*1m$t)+O(n&2); (3.2)

where

'1mt=2&1
m [t+log( pm2 �pm1)&22

m �2];

:1mt=2&1
m [(1+k) p&1

m1 (1& pm1)+(1+k&1) p� (1& p� )&1]

_[ 3
4&2&2

m �2[t+log( pm2 �pm1]]&2&1
m [(1+k&1) p&1

m2(1& pm2)

+(1+k) p� (1& p� ))&1][ 1
4+2&2

m �2[t+log(pm2 �pm1)]]

&2&1
m (2+k+k&1) p� (1& p� )&1 [ 1

4&2&2
m �2[t+log( pm2�pm1)]];
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p� = :
r

l=r1+1

pl ;

{1mt=&1
2q(1+k*m) 2&1

m [t+log(pm2 �pm1)&22
m�2];

and

#1mt=
1
4 (p&1)(1+k*m) 2m+

1
4 (p&1) 2&1

m

_[3(1+k) p&1
m1&(1+k&1) p&1

m2]&[t+log( pm2�pm1)]

_[ 3
2 ( p&1)(1+k*m) 2&1

m + 1
2 (p&3) 2&3

m [(1+k) p&1
m1

+(1+k&1) p&1
m2]]&2&1

m �2[t+log(pm2 �pm1)&22
m �2]

_[ 1
4[(1+k) p&1

m1+(1+k&1) p&1
m2]+2&2

m [t+log( pm2�pm1)]

_[(1+k&1) p&1
m2&(1+k) p&1

m1]+2&4
m [t+log( pm2 �pm1)]

2

_[(1+k) p&1
m1+(1+k&1) p&1

m2 +2(1+k*m) 22
m]].

'*1m$t , {*1m$t , and #*1m$t are obtained by putting pm1= pm2= pm$ in '1mt , {1mt ,
and #1mt respectively in (3.1) for m$=r1+1, ..., r.
In Eq. (3.1) and Eq. (3.2), 8( . ) and ,( . ) denote respectively the standard

normal distribution function and the density function.

Proof. The proof is given in the appendix.

Corollary 3.1. For m=1, ..., r1 , e2m(t) is obtained by interchanging m1

and m2 , k and k&1 and substituting &t for t throughout Eq. (3.1). For
m$=r1+1, ..., r, e2m$(t) is similarly obtained from Eq. (3.2).

Proof. The result follows from the fact that interchanging m1 and m2 in
U� m changes U� m to &U� m .

4. ASYMPTOTIC COMPARISON

To investigate the effect of covariate adjustments due to both discrete
and continuous variables, we need a similar expression for the overall
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expected error rate say e� $(t), where e� $(t)= 1
2 �

2
i=1 (�

r1
m=1 pmi e$im(t)+

�r
m$=1 pm$ e$im$(t)); and for i=1, 2; m=1, ..., r; e$im(t) is the probability of

misclassification when all covariates are considered as discriminators. It
follows from Leung [8] that e$im(t) can be obtained by dropping { imt , set-
ting p� =0 in :1mt and replacing p by p+q throughout #1mt for m=1, ..., r1
in Eq. (3.1). For m$=r1+1, ..., r, e1m$(t) can be similarly obtained from
e1m(t) using Eq. (3.2) and deleting {*1mt , m=1, ..., r. For m=1, ..., r, e$2m(t)
can be obtained similarly from Corollary 3.1.
Combining the above results, we have an asymptotic expression for the

difference e� $(t)&e� (t) which can be used to assess the effect of covariate
adjustments in the plug-in location linear discriminant function. We
highlight the assessment in two interesting cases where concrete conclu-
sions can be drawn. The first case is the classical problem of Cochran and
Bliss [3]. The second case examines the roles played by discrete covariates
in mixed variables discrimination. The results are stated in the following
corollaries.

Remark 4.1. It is of practical importance to retain all variables includ-
ing covariates in classification. Covariates not only provide information on
their own but also carry useful correlations to be used in classification.
Omitting the covariates amounts to throwing away essential information.

Corolary 4.1. Under the assumptions in Theorem 3.1, for t=0, r=1,
p11= p12=1 and 21=2>0,

e� $(0)&e� (0)=_qn
&1 2&1(3k&1&k+2)

4 & , \&2
2++O(n&2).

Corollary 4.2. For k=1, e� $(0)&e� (0)>0 up to the order of
approximation in Corollary 4.1.

Remark 4.2. Above result justifies the claim in Cochran [2]. The same
conclusion is reached in Memon and Okamoto [8] via efficiency
consideration.

Corollary 4.3. Under the assumptions in Theorem 3.1, for q = 0,

e� $(t)&e� (t)=_n
&1p� (1& p� )&1 (k&k&1)

4 &
__ :

r1

m=1

2&1
m ( pm1,('1mt)& pm2,('2mt))&+O(n&2).
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Proof. Observe that

e� $(t)&e� (t)= 1
2 :

2

i=1
\ :

r1

m=1

pmi[e$im(t)&eim(t)]

+ :
r

m$=r1+1

pm$[e$im$(t)&eim$(t)]+ .
From Theorem 3.1 and the arguments before Corollary 4.1, for q=0 and
m=1, ..., r1 ,

e$1m(t)&e1m(t)= 1
2[n

&1p� (1& p� )&1 (k&k&1)] 2&1
m ,('1mt)+O(n&2)

and

e$2m(t)&e2m(t)= 1
2[n

&1p� (1& p� )&1 (k&1&k)] 2&1
m ,('2mt)+O(n&2);

and for m$=r1+1, ..., r,

e$1m$(t)&e1m$(t)=O(n&2); and e$2m$(t)&e2m$(t)=O(n&2).

Hence, the result.

Corollary 4.4. Up to the order of approximation in Corollary 4.3,

1. If n1=n2 , then e� $(t)&e� (t)=O(n&2) for all t, &�<t<�;

2. If n1>n2 , then e� (t)<e� $(t), if and only if �r1
m=1 2

&1
m ( pm1,('1mt)&

pm2,('2mt))<0; and
3. If n1<n2 , then e� (t)<e� $(t), if and only if �r1

m=1 2
&1
m ( pm1,('1mt)&

pm2,('2mt))>0.

Remark 4.3. From Corollary 4.4, adjustment of discrete covariates in
discrimination of mixed variables without continuous covariates is essential
only if the two training samples are of very different sizes.

5. NUMERICAL RESULTS

In this section, selected values of e� $(t)&e� (t) are computed and reported
to pinpoint the implication of Corollary 4.3 in practice. To achieve this and
have the results conveniently presented, 21= } } } =2r1

=2=0.5, 1.0, 1.5;
t=&0.5, 0, 0.5; p� =0.2, 0.3 and n2=kn1 ; k=0.8, 1.5; n1=50, 100, 200 are
used throughout the study. Only small values of r, r&r1 and p� are con-
sidered because discrete discriminators including covariates are rare in
practice. The thresholds t=&0.5, 0, and t=0.5 are chosen so that the
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effect of departure from the zero threshold and symmetry of e� $(t)&e� (t)
about zero can be examined. To summarize the results of the computations
in a readable form, only the cases where (r1 , r)=(1, 2), and (r1 , r)=(2, 4)
are tabulated. Results for unequal values of 2m , m=1, ..., r1 are unlikely to
cause much difference due to the rather large values of n. Only positive
gains due to the adjustment are reported in Tables I and II. In our study,
for each given set of values of (r1 , r); p� and ( pm1 , pm2); for m=1, ..., r1 ;
and i=1, 2, there are 54 cases for all the combinations of t; 2; k; and n1 .
The number of cases showing positive gains, no gains and negative gains
are equally divided amongst each set of the 54 cases considered in our
study. An examination of Table I and Table II indicates that improvement
occurs only at nonzero thresholds. For all the cases considered, positive
gains occur at a negative threshold for n1>n2 . This feature is observed
again at a positive threshold for n1<n2 . To summarize, up to the order of
approximation given in Corollary 4.3, we have the following:

(i) A nonzero threshold and a substantial difference in the sizes of
the two training samples are crucial to a positive gain due to the adjustment.

(ii) Adjustment is beneficial when either n1>n2 and a negative
threshold is adopted or n1<n2 and a positive threshold is adopted.

(iii) At a zero threshold, there is practically no improvement by
adjustment no matter the sizes of the two training samples.

(iv) The gain due to the adjustment is unlikely to be dramatic con-
sidering the large sample sizes of the two training samples and the other
values of the relevant quantities in e� $(t)&e� (t).

TABLE I

Valuesa of e� $(t)&e� (t) for 21= } } } =2r1
=2=0.5, 1.0, 1.5; t=&0.5, 0.5; p� =0.2, 0.3; n2=kn1 ,

k=0.8, 1.5; n1=50, 100, 200 and (r1 , r)=(1, 2) for Cases Where Improvement Is Observed

k=8 t=&0.5 k=1.5 t=0.5

n1= 50 100 200 50 100 200

p� =0.3 p11=0.7 p12=0.7 2=0.5 9.30 4.54 2.25 12.24 6.02 2.99
=1.0 6.16 3.01 1.49 8.11 3.99 1.98
=1.5 3.77 1.84 0.91 4.96 2.44 1.21

p� =0.2 p11=0.8 p12=0.8 2=0.5 6.20 3.03 1.50 8.16 4.01 1.99
=1.0 4.11 2.01 0.99 5.41 2.66 1.32
=1.5 2.51 1.23 0.61 3.30 1.63 0.81

a Actual figures equal 10&5 times the tabulated values.
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TABLE II

Values of e� $(t)&e� (t) for 21= } } } =2r1
=2=0.5, 1.0, 1.5; t=-0.5, 0.5; p� =0.2, 0.3; n2=kn1 ,

k=0.8, 1.5; n1=50, 100, 200 and (r1 , r)=(2,4) for Cases Where Improvement Is Observed.

k=0.8 t=&0.5 k=1.5 t=0.5

p� =0.3 n1= 50 100 200 50 100 200

p11=0.4 p12=0.2 2=0.5 9.27 4.42 2.16 9.32 4.51 2.22
p21=0.3 p22=0.5 =1.0 5.50 2.62 1.28 6.92 3.35 1.65

=1.5 3.54 1.69 0.82 4.56 2.21 1.08

p11=0.1 p12=0.3 2=0.5 4.13 1.97 0.96 1.44 0.70 0.34
p21=0.6 p22=0.4 =1.0 4.92 2.34 1.15 7.28 3.52 1.73

=1.5 3.39 1.62 0.79 4.54 2.20 1.08

p11=0.2 p12=0.4 2=0.5 7.18 3.43 1.67 12.03 5.82 2.86
p21=0.5 p22=0.3 =1.0 5.33 2.54 1.24 7.14 3.45 1.70

=1.5 3.51 1.68 0.82 4.59 2.22 1.09

p11=0.3 p12=0.1 2=0.5 11.08 5.28 2.58 5.36 2.59 1.27
p21=0.4 p22=0.6 =1.0 5.61 2.67 1.31 6.38 3.08 1.52

=1.5 3.50 1.67 0.82 4.40 2.13 1.05

k=0.8 t=&0.5 k=1.5 t=0.5

p� =0.2 n1= 50 100 200 50 100 200

p11=0.5 p12=0.3 2=0.5 5.86 2.79 1.37 7.61 3.68 1.81
p21=0.3 p22=0.5 =1.0 3.78 1.80 0.88 4.91 2.37 1.17

=1.5 2.42 1.15 0.56 3.14 1.52 0.75

p11=0.6 p12=0.1 2=0.5 1.61 0.77 0.38 0.17 0.08 0.04
p21=0.2 p22=0.7 =1.0 1.83 0.87 0.43 1.48 0.72 0.35

=1.5 1.41 0.67 0.33 1.62 0.78 0.39

p11=0.3 p12=0.5 2=0.5 5.86 2.79 1.37 7.61 3.68 1.81
p21=0.5 p22=0.3 =1.0 3.78 1.80 0.88 4.91 2.37 1.17

=1.5 2.42 1.15 0.56 3.14 1.52 0.75

p11=0.1 p12=0.6 2=0.5 0.13 0.06 0.03 2.10 1.01 0.50
p21=0.7 p22=0.2 =1.0 1.14 0.54 0.27 2.37 1.15 0.56

=1.5 1.25 0.59 0.29 1.83 0.89 0.44

Thus, discrete covariate adjustment is essential for a nonzero threshold
and is recommended in situations which are considered appropriate.

APPENDIX

In this section, we prove Theorem 3.1.

Proof. A simple calculation gives part (a). It remains to derive
Eq. (3.1). Given Zm=1, m=1, ..., r1 , define Tm , Wm , Hm and Vm as follows
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+̂m1&+̂m2=$m+(n(m))&1�2 Tm ;

+̂m1=(n(m))&1�2 Wm ;

;� m;� $m=bmIp+(n(m))&1�2 Vm ; bm=q(n(m)&q&1)&1;

7� (m)
1.2 =Ip+(n(m))&1�2 Vm .

A conditional argument shows that e1m(t)=E1m(E2m(8(Gm))) where
E2m( . ) and E1m( . ) denote respectively the conditional expectation given
nm1 and nm2 and the expectation with respect to nm1 and nm2 with

Gm=am 2&1
m _t+log( p̂m2� p̂m1)&

22
m

2 &
+(n(m))&1�2 Lm+(n(m))&1 Qm+r1m ;

where

am=[(n(m)&q&1)(n(m)&1)&1]1�2;

Lm=am 2&1
m _$$mWm&$$mTm+

$$mVm$m
2 &

&a3
m2

3
m _t+log( p̂m2 � p̂m1)&

22
m

2 &
__a&2

m ($$mTm&$$mVm$m)&
$$mHm$m

2 & ;
Qm=am 2&1

m _T $mWm&$$mVmWm+$$mVmTm&
T $mTm

2
&

$$mV 2
m$m
2 &

&_t+log( p̂m2 � p̂m1)&
22

m

2 &
__2

&3
m a3

m

2
[a&2

m (T $mTm&4$$mVmTm+3$$mV 2
m$m)

+2$$mHmTm&3$$m(HmVm+VmHm) $m]

&
32&5

m a5
m

2 {a&2
m ($$mTm&$$mVm$m)+

$$mHm$m
2 =

2

&
&a3

m 2&3
m _a&2

m ($$mTm&$$mVm$m)+
$$mHm$m

2 &
__$$mWm&$$mTm+

$$mVm$m
2 & ;
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and r1m is a remainder term such that E1m(E2m(r1m))=O(n&2) under (C1)
and (C2). It follows from Anderson [1, p. 968, Eq. (21)] that

e1m(t)=E1m \8 \am2&1
m _t+log( p̂m2 � p̂m1)&

22
m

2 &++
+n&1E1m(Am)+O(n&2); (1)

where

Am=n, \am 2&1
m _t+log( p̂m2� p̂m1)&

22
m

2 &+
__(n(m))&1�2 E2m(Lm)+(n(m))&1

_{E2m(Qm)&
am2&1

m

2 _t+log( p̂m2 � p̂m1)&
22

m

2 & E2m(L2
m)=& .

By Lemma 3.1, E2m(Lm)=0. Using the probability limits of am , bm and
dm , we have

n&1E1m(Am)=n&1,('1mt) #1mt+O(n&2). (2)

An application of Lemma 3.3 with a similar calculation in the expansions
of 8(am2&1

m [t+log( p̂m2 � p̂m1)&22
m�2]) and ,(am2&1

m [t+log( p̂m2 � p̂m1)&
22

m�2]) leads to

E1m \8 \am2&1
m _t+log( p̂m2 � p̂m1)&

22
m

2 &++
=8('1mt)+n&1,('1mt)(:1mt+{1mt)+O(&2). (3)

Combining Eq. (2) and Eq. (3) gives Eq. (3.1). This proves part (b).
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