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Kernel Density Estimation on Random Fields 

LANH TAT TRAN 

Indiana University 

Communicated by the Editors 

Let ZN, N> 1, denote the integer lattice points in the N-dimensional Euclidean 
space. Asymptotic normality of kernel estimators of the multivariate density of 
stationary random fields indexed by ZN is established. Appropriate choices of 
the bandwiths are found. The random fields are assumed to satisfy some mixing 
conditions. The results apply to many spatial models. 0 19W Academic Press, Inc. 

1. INTRODUCTION 

The nonparametric estimation of a probability density f(x) is an 
interesting problem in statistical inference and has an important role in 
communication and pattern recognition. The literature dealing with density 
estimation when the observations are independent is extensive. The reader 
is referred to Wegman [21] for a review. Our goal in this paper is to study 
density estimation for random variables which show spatial interaction. 

Let ZN, Na 1, denote the integer lattice points in the N-dimensional 
Euclidean space. Let (X,,} be a strictly stationary random field indexed by 
ZN and detined on some probability space (52,9, P). A point n in ZN will 
be referred to as a site and written as n= (n,, . . . . n,,,). Let S and S’ be 
two sets of sites. The Bore1 fields 99(S) = %9(X,,, n E S) and g(S’) = 
@(X,, n E S’) are the a-fields generated by the random variables X,, with n 
elements of S and S’, respectively. Let (i(S, S’) be the Euclidean distance 
between S and S’. We will assume that X, satisfies the following mixing 
condition: There exists a function p(t) JO as t -+ co, such that whenever S, 
S’CZN, 

cr(~(S),~(S’))=sup(IP(AB)-P(A)P(B)I,AEW(S), BESI(S')) 

< f(Card(S), Card(S’)) (p(c?(S, S’)), (1.1) 
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where Card(S) denotes the cardinality of S. Heref is a symmetric positive 
function nondecreasing in each variable. Throughout the paper, assume 
that p satisfies either 

f((n, m) 6 min{m, n} (1.2) 

or 

P@V)<C(n+m+l)$ (1.3) 

for some ft > 1 and some C > 0. If f= 1, then X, is called strongly mixing. 
In the case N= 1, many stochastic processes and time series are known to 
be strongly mixing. Withers [22] has obtained various conditions for 
linear processes to be strongly mixing. Under certain weak assumptions 
autoregressive and more generally bilinear time series models are strongly 
mixing with exponential mixing rates. See Pham and Tran [ 151 and Pham 
[ 141. Guyon [S] has shown that the results of Withers extend to random 
fields X,, = Z=N gjZ” _ j with the gj’s and Zl’s satisfying certain conditions. 
Here Zl’s are independent r.v.‘s. Conditions (1.2) and (1.3) are the same as 
the mixing conditions used by Neaderhouser [12] and Takahata [20], 
respectively, and are weaker than the uniform strong mixing condition used 
by Nahapetian [lo]. They are satisfied by many spatial models. Examples 
can be found in Neaderhouser [ 121, Rosenblatt [ 173, and Guyon [S]. For 
relevant works on random fields, see, e.g., Neaderhouser [12], Bolthausen 
[l], Guyon and Richardson [4], and Guyon [S]. 

Let I,, be a rectangular region defined by Z,, = {i: i E ZN, 1 < ik d nk, 
k = 1, . . . . N}. Assume that we observe {X,,} on Z,. Suppose X,, takes values 
in Rd and has density f(x). We write n + cc if min{n,} + co and 
In#z,l<Cfor some O<C<co, l<j, k<N. Let Ei=n,--.n,. The kernel 
density estimatorf,(x) (see Rosenblatt [16]) off(x) is defined by 

fn(x)=(hb~)-’ 2 K((x-xj)/bn), 

jk = 1 
k= l,...,N 

(1.4) 

where b, is a sequence of bandwiths tending to zero as n tends to infinity. 
The letter C will be used to denote constants whose values are unimportant 
and may vary from line to line. All limits are taken as n + co. For a site 
i, we denote llilj = (i: + . . . + ig)l12. 

Density estimation for dependent observations (N = 1) has received 
increasing attention recently. See, e.g., Masry [8,9], Ioannides and 
Roussas [7], Roussas [18, 193, and the references therein. 

Our paper is organized as follows: In Section 2, some preliminaries are 
presented and the asymptotic variance of f,,(x) is computed. In Section 3, 
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the asymptotic normality of f”(x) is obtained for random fields satisfying 
(1.1) and (1.2). Section 4 considersf,(x) under (1.1) and (1.3). 

In the case of independent observations, the asymptotic normality of 
kernel density estimators was obtained by Parzen [ 131. The key issue in 
this paper is to find appropriate conditions on b, forf.(x) to be asymptoti- 
cally normal. These conditions are explicitly given. They are more involved 
than those in the independent case. The required rates at which b, tends to 
infinity vary with the strengths of dependence. 

2. PRELIMINARIES 

The following lemma can be found in Ibragimov and Linnik [6] or 
Deo [2]. 

LEMMA 2.1. (i) Suppose (1.1) holds. Let 5$(y) denote the class of 
8-measurable r.u.‘s X satisfying IIXII, = (E IXIr)“‘< co. Let XE Z,(B(S)) 
and YE~~(~(S)). Suppose l<r, s, h<oo undr-‘+s-‘+h-‘=l, then 

WY- ExEYl d c Il~ll, II us 
x {f(Card(S), Card(r)) (p(d((s, s’))}‘lh. (2.1) 

(ii) For r.v.‘s bounded with probability 1, the right-hand side of (2.1) 
can be replaced by @Card(S), Card(r)) cp(a(S, s’)). 

The kernel function K is assumed to satisfy the following conditions: 

Assumption 1. (i) lK(x)l is uniformly bounded by a constant K and 

f  
[K(x)1 dx < 00. (2.2) 

Rd 

(ii) Assume K has an integrable radial majorant, that is, Q(x) = 
sup(K( y): II yJI > llxll } is integrable. 

Let 
K(x) = (l/b:) Q/b,), (2.3) 

?jtx) = Kn(x - xjh dj(x) = rljtx) - EVj(x). (2.4) 

Then 

f.(x)=%’ f K”(x-xj). 
jk= 1 

k=l,...,N 

(2.5) 
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Assumption 2. The joint probability densityfi,j(x, y) of Xi and Xj exists 
and satisfies Ifi.j(x, y) -f(x)f(,v)( < C for some constant C and for all x, 
y and i, j. 

In the case N= 1, Assumption 2 has been used by Masry [9]. The proof 
of the following result uses an argument similar to that of Theorem 3 of 
Masry. 

LEMMA 2.2. Assume Assumptions 1 and 2 hold and X,, satisfies (1.1) and 
(1.2) or (1.3) with C,z, i”-‘(q(i))“<cofor some O<a<i. Then 

lim Cibivar[fJx)] =f(x) JRd K’(u) du. (2.6) 

Proof Let 

r”(x)=e2 
jk= 1 

k = I,..., N 

W,(x)=C2 2 f lEdjtx) di(x)l. 

jk = 1 ik = 1 
k=l..../ N k=l,..., N 

(2.7) 

(2.8) 

Then Var f.(x) < T,(x) + R,(x). Observe that 

fib~l”(X) = bee di2(X) = b~[E~i’ - (E~j)*] 

=(l/b~)[EK2((x-Xj)/b”)- (EK((x-Xj)/b,)}2]. (2.9) 

Under Assumption 1, by the Lebesgue density theorem (see Chapter 2 of 
Devroye and Gyorfi [ 3]), 

lim (+ (l/b:) K2((x - uYb,)f(u) du =f(x) i, K*(u) du, 
(2.10) 

(l/b:) It is easily seen that (l/bf)(EK((x - Xj)/b,)}2 = bi{E[ 

~((x-~j)/bn)l)2 +O. From (2.9) and (2.10) 

lim ;ibfT,,(x) =f(x) fRd K2(u) du. (2.11) 

Let c, = bid” ~ r)/“, where v=--N-s+(l---y)Na-’ with y and E being 
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small positive numbers such that u- ’ - (N + s)(N( 1 - y)) - ’ > 1. This can 
be done since 0 < a < 4. Also note that v > N( 1 - y). Define 

S,={i,jEI,IO<Li(i,j)~c,}, 

S,={i,jEZ,ILi(i,j)>c,}. 
(2.12) 

Split (2.8) into two separate summations over sites in S, and Sz. Let J, 
and J2 be as defined in (2.14) and (2.16) below. Then 

B,(x) < J, + J2. (2.13) 

Now 

J,=k2 11 lj 
Rdx Rd 

IKn(X-‘) Kn(X-U)I Ifi,j(4 U)-ff(‘)f(U)I dud’. 
i,j E SI 

(2.14) 

Under Assumption 1, 

JI 6 CiV2 (jRdjWW) ;z l~Cfi-‘c: 

= cfi-lb,W-y)lv - o(&d) - n 3 

since v > N( 1 - y ). Turning to J2, we have 

(2.15) 

J*=8-2 CC ICOV(K,(X-Xi), K”(X-Xj)}l. (2.16) 
i,jeS2 

Let 6 = 2( 1 - y)/y. Note that y = 2/(2 + 6) and 6/(2 + 6) = 1 - y. Applying 
Lemma 2.1 with r = s = 2 + 6, h = (2 + S)/S, 

Icov(Kn(x-xi)~ Kn(x-Xj)}l 

< C(E I~n(X-~i)12’s)’ {f(L 1) ddt{i}, {j}))Car4{i})}1-Y 

<C 
0 

IK,(x--~)l~+~f(u)du 
> 

’ {cp(ll(i-jl()}‘-“. (2.17) 
Rd 

Employing (2.17) 

< cfi-2&ydU+a) ” UP:) IK((x-u)lb,)12+6f(U)du 
> 
’ 

XCC b(lli-jll)P. (2.18) 
i,je& 
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Clearly 

zE, {dlli-jll)l’-‘bfi 1 {cp(llill)~‘-7. (2.19) 
llill > co 

Combining (2.18), (2.19), 

fibtJ2<b,d(1-“’ 
Rd (l/b:) IN:((~-W,)12+6fb) du 

> 
’ 

x C {cp(llill)~‘-~. (2.20) 
llill > c. 

By assumption, Cp”=r i”-‘(q(i))“< cc. Thus i”-‘(cp(i))“=o(l/i) or 
fp(i)=o(ipN’“) as i-+ co. Since cp is a nonincreasing function, we have 
q(x) = o(x-~‘~) as x + co. Therefore 

since v= -N-s+(l--y)Nu-‘. Thus 

Ililt’ {cp(llill)~‘-Y< a. (2.21) 
ik = I 

k = I...., N 

Using (2.20), (2.21) and noting that b;d(l--Y)~;Y = 1, we obtain 

< Clim sup b;d’l-y’c;’ c I/ill’ {cp(l(ill)}‘-7 
llill > c. 

G Clim sup 1 Ilill” (cp(llill)I1~~~ 
llill 5 c. 

(2.22) 

which tends to zero since c, + co. 

3. ASYMPTOTIC NORMALITY OF~,(X)UNDER (1.1) AND (1.2) 

We will need the following lemma from Nakhapeytyan [ 111: 

LEMMA 3.1. Let (tl, . . . . <,) be a random vector such that IE n:= i <i I < ~0, 
i= 1 3 . . . . n - 1, lC<,l < 1, i= 1, . . . . n. Then 
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Efi l,-fi El, 
S=l s=l 

Gyg: jz$+l IE(ri-l)(ti-I) 

Xs=Q+’ 5s-E(5i-l)E(5j-l) fi es’. 

s=j+l 

LEMMA 3.2. Suppose X, satisfies (1.1) and (1.2) with CP,, i”-‘(p(i))” 
c co for some 0 <a < 4. Suppose also that Assumptions 1 and 2 and the 

following conditions hold for some 0 < y < 1. 

(i) The bandwith 6, tends to zerb in a manner such that 
fib&’ + (1 -Y)~N) --, oo 

’ (ii) Th ere exists a sequence of positive integers q = q. + CO with 
q = o((fibf’l +(l- y)2N))1’(2N)) such that n CE, iN- ‘q(iq) + 0. 

(iii) b, tends to zero in such a manner that 

b --d(’ -Y) 
n f i”-‘(cp(i))‘-’ + 0 as n-03. 

i=q 
(3.1) 

Let 

ts2 = f(x) fRd K’(u) du. (3.2) 

Then Wf)1’2 (Cf.(x) - Efi,.(x)lb) h as a standard normal distribution as 
n-boo. 

Proof By (i) and (ii), there exists a sequence of positive integers {s,} 
tending to infinity such that 

s,q,=o((~b~(‘+(‘-~)2N) 1/W) 
)  ) .  (3.3) 

Choose p. = p = [(ilb~)1’c2N)/s,]. By (3.3), qp-l< Cb$-Y) which tends to 
zero as n + co. Thus q < Cp. Multiplying s, by a constant if necessary, it 
can be assumed without loss of generality that q< p. Assume for some 
integers r,, . . . . rN, we have n, = r,(p + q), . . . . nN = rN(p + 4). Define Yj = 
bd12 A. and 

B J 

Then 

s,= f Yj. 
jk-1 

k= l,...,N 

S, = fibz2[f.(x) - EfJx)]. 
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The T.v.3 Yr’s are now set into large blocks and small blocks. Let 

ikcP+q)+P 

U(l,n,x,j)= C yi(x), 

rk=jkiP+y)+l 
k = L..., N 

ik(P+4)+P (jN+l)(p+4) 

W, n, x, j) = c 
ik=jk(p+y)+I h=j~(p+y)+p+l 

k=l....,N-1 

jktP+Y)+P (/N-l+l)(P+4) jivlp+4)+p 

u(3, n, 4 j) = C c c yi(x)3 
ik=Jk(p+YI+l iN-~=JN-~(p+4)+p+l i,v=j,dp+q)+l 

k=l,....N-2 

ik(p+q)+p (/N-l+l)(P+4) (jr++ l)(p+y) 

u(4, n, x, j) = 1 c c yi(x) 

ik=.ik(P+q)+l id-I=JN-~(p+y)+p+l iN=j,v(p+q)+p+l 
k= l,...,N-2 

and so on. Note that 
(jk+l)cP+q) JN(P+‘I)+P 

U(2N-1, n, x, j) = c c yi(x). 
ik=jk(p+y)+p+l i,v=j,dp+q)+l 

k= l,...,N- I 

Finally 

(k + 1 b(P + 4) 

U(2N,n,x,j)= c yi(x). 

ik’jk(P+Y)+P+l 
k= l,...,N 

For each integer 1 < i < 2N, define 

i--I 
T(n, x, i) = 1 U(i, n, x, 3. (3.4) 

jk = 0 
k= I,...,N 

Clearly S, = C:E, T(n, x, i). Note that T(n, x, 1) is the sum of the random 
variables Yi in large blocks. The T(n, x, i), 2 < i < 2N are sums of random 
variables in small blocks. If it is not the case that n, = r,(p + q), . . . . nN = 
r,(p -t q) for some integers rl, . . . . rN, then a term, say, T(n, x, 2 N + 1 ), con- 
taining all the Yr’s at the ends not included in the big or small blocks can 
be added. This term will not change the proof much. The general approach 
is to show that as n + co, 

Q1=1 

q. - I 
Eexp[iu7(n, x, l)] - n Eexp[iuU(l, n, x, j)] -+O. (3.5) 

jk = 0 
k= l,...,N 

Q,-ii-lE $ T(n,x,i) 2-+0. 
> 

(3.6) 
i=2 
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rk- 1 

Q,zfie-’ 1 E[U(1,n,x,j)]2+D2. (3.7) 
h-0 

k=l,...,N 

rk- 1 

Q4d-’ 1 E[(U(l, n,x,j))2Z(~U(l,n,x,j)~>di1’2}]-+O(3.8) 
jk = 0 

k=l,....N 

for every E > 0. Note that 

@by2 [f”(X) -Ef”(x)]/a = SJ(afi”‘) 
2N 

= T(n, x, 1)/(0fi”~ ) + C T(n, x, i)/(176”~). 
i=2 

The term Cfr, T(n, x, i)/(08”~) is asymptotically negligible by (3.6). The 
r.v.‘s U( 1, n, x, j) are asymptotically independent by (3.5). The asymptotic 
normality of T(n, x, l)/(~&‘/~) follows from (3.7) and the Lindeberg-Feller 
condition (3.8). Lemma 3.2 thus follows from (3.5)-(3.8). The argument 
here is reminiscient of those of Masry [9] and Nakhapetyan [ 111. It 
remains to show (3.5) to (3.8). 

Proof of (3.5). Enumerate the r.v.‘s U( 1, n, x, j) in an arbitrary manner 
and refer to them as D,, . . . . 0,. Note that M=n,N=, r,=fi(p+q)-N< 
Bp- N. Let 

Z(1, n, x, j) = {i :j,(p + q) + I< ik <j,(p + q) + p}. 

Distinct sets of sites Z( 1, n, x, j) are far apart by a distance of at least q. 
Clearly Z(1, n, x, j) contains pN sites. Z(1, n, x, j) is the set of sites involved 
with U( 1, n, x, j). Lemma 3.1 shows 

M-l M 

Q,G 1 
c I 

E(exp[iuUk] - 1) 
k=l j=k+l 

x (exp[iuUj] - 1) fi exp[iuZr,] 
s=j+l 

- E(exp[iuok] - ) E(exp[iuUj] - 1) fi exp[iuOS]. 
s=j+l 

Let $ be the sets of sites involved with flj. An application of Lemma 2.l(ii) 
gives 

JE(exp[iufil,] - l)(exp[iuUj] - l)-E(exp[iuZI,] - 1) E(exp[iuUj] - 1)1 

< Cq@(&, 7,)) pN 
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M-l M 
e, G CP” 1 2 (P(U,, 7,)) 

k=l j=k+l 

d CpNM ; (p(Li(&, Tk)) 

k=2 

<CpNM f c dci@, 3 7k,,,. 
i=l k:iq<d(T1,7k)<(i+l)q 

<CpNM f iN-‘cp(iq) 
i=l 

<Cii f iN-‘cp(iq), 
i- 1 

which tends to zero by Condition (ii). 

Proof of 3.6. To prove (3.6), it is enough to show that 

k’E[T(n, x, i)]‘-0 for each 2 < i 6 2N. (3.9) 

Without loss of generality, consider E[ T(n, x, 2)]‘. Enumerate the r.v.‘s 
U(2, n, x, j) in an arbitrary manner and refer to them as 8,, . . . . oM. Now 

E[T(n,x,2)]*= f  var(Oi)+2 F z cov( oi, Oj) 
j=O ix1 j=l 

i>j 
-A, +/I,. (3.10) 

Since X, is stationary, 

var( Oj) = var 

= P N-‘gvar Yi(X) 

+i i E i EYj(x) yi(x). (3.11) 
jk = 1 jN= 1 

k= l,...,N- 1 ,.;,==;Ll k-+=1 

ik#jkforsomel<k<N 

From (2.4) and the Lebesgue density theorem 

Var Yi(X) < biEKi(x - Xi) 

= I Rd (l/b:) K2((x - u)/b,) f(u) du < c. (3.12) 
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Let 6 = 2( 1 - 7)/y. Again employing Lemma 2.1 and the Lebesgue density 
theorem as in (2.17), 

E I Yj(X) Yi(X)l 

<C 
0 

Rd lb,d’2K((x-~)lb,)12+Sf(~)~~ 
> 

)’ {d4{i}, {j))))‘p” 

dCb,d”~7){cp(lli-jll))‘~y. (3.13) 

Applying (3.11), (3.12) and (3.13) 

var(Oi)<CPNP’q 1 +b;J(‘-i’) i 
( 

i {~(llill)~‘:.) 
k=f.=;pl iN=’ 

P 
<cPN-lqb,d(‘-Y) c i {CpM))’ -1’. (3.14) 

By (3.10) to (3.14) 

A, 6 CMpN-lqb,d(‘-J’) ,Z’ i”-‘(q(i))‘-‘. (3.15) 

Let 

jN(P+q)+P+ 1 <i, <(j,+ l)(p+q)). 

Then U(2, n, x, j) is the sum of Yr with sites in Z(2, n, x, j). Since p > q, if 
j and j’ belong to two distinct sets I(2, n, x, j) and Z(2, n, x, j’), then j, # jb 
for some 1 <k<N and Ilj-j’ll >q. With (3.13), we obtain 

A,<C 2 5 EYi(x) Yj(x) 
jk = I ik = 1 

k=l,__., N k=l,..., N 
II-jll >Y  

< ,-b,d”-Y’fi 2 (cp(llill))l~~ 
ik = I 

k= l,...,N 
Ililt > Y  

(3.16) 
i=q 

683/34/l-4 
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From (3.10), (3.15), and (3.16): 

e-‘E[T(n,~,2)]‘dCMp~~‘qii-~‘h,~“~:” C iN ‘(cp(i))’ ; 
,=I 

+ chh’l’--:~J C ins ‘(cp(i))l boy. (3.17) 
r=y 

Next, 

MP N-lqfi-I~,d(l~y)~~(P+q)~NpN~lq~-I~~~(I~g, 

< (q/p)ly” -)” 

6 qs,@bi) - ‘l(2N) &d” --‘i) ” 
d(l+(lby)2Nl -l/(ZN) = qs.(iib, 1 9 (3.18) 

which tends to zero by (3.3). The last term of (3.17) tends to zero by 
assumption. The proof of (3.6) is completed by (3.17) and (3.18) 

Proof of (3.7). Let 
2” 

Sk = T(n, x, 1 ), Sf = C T(n, x, i). (3.19) 
i=2 

Then S:, is the sum of r.v.‘s Yj in large blocks and Sz is the sum of r.v.‘s 
in small blocks. Lemma 2.2 implies 8-‘E IS, I2 + 02. This combined with 
(3.6) shows ii - ‘E IS:, I2 + g2. Now 

rk- 1 

fi-‘E IS:,l2=fi-’ C E[U(1,n,x,j)Ij2+fip’ 
jk = 0 

k= l,....N 

‘k - I rk ~ I 

x c C cov{ Ul, 4 4i) U(L n, x, i)}. (3.20) 
jk = 0 ik = 0 

k=l,..., N k=l,.._. N 
ik + jk for some k 

Observe that (3.7) follows from (3.20) if the last term of (3.20) tends to 
zero as n + co. By the same argument used in obtaining a bound for A, 
defined in (3.10), the last term of (3.20) is bounded by 

Cb-d(‘-y’ ‘C 0 (cp(llill)}‘py 
ik = 0 

k=l,...,N 
llill > Y  

<C&+‘(‘--yJ f j”-‘(cp(j))‘-~, 

i=q 

(3.21) 

which tends to zero by Condition (3.1). 
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Proof of (3.8). Clearly 1 Yj[ SZ Cbid12. Therefore 1 U(1, n, x, j)l < 
CpNb, . di2 Hence 

rk- 1 

Q4 6 Cp2Nb,dfi-’ 1 P[U(l,n,x,j)>~ofi~‘~]. (3.22) 
jk = 0 

k = 1, ,... N 

Now 

U( 1, n, x, j)/(afi1’2) < CpN(fibi)-1’2 + 0, 

since p = [(fib,) d 1’(2N)/~,], where S, + co. Thus P[ U(1, n, x, j) > mfi1/2] = 0 
for all j for sufficiently large ri. Thus Q,+ = 0 for large fi. 

THEOREM 3.1. Suppose A’,, satisfies (1.1) and (1.2) with q(x) = O(xpp) 
for some p > 2N. Let 0 < y < (,u - N)p-I. Suppose there exists a sequence of 
positive integers q = q. + 00 such that 

q = o((fib$’ +(I -Y)~N))I/(~N)) 

If Assumptions 1 and 2 hold and 6, tends to zero in such a manner that 

A9 -p+O, (3.23) 

b-d(‘-~)~N-d-~)+(), 
n (3.24) 

then (fibt)“2 ([f.(x) - Efn(x)]/a) has a standard normal distribution as 
n-rco. 

Proof Note that Cp”=r iN-‘(cp(i))a< cc for some Nc(-l <a< f; and 

fi ~ iN-1 cp(iq) < Cfi f iN-‘(iq)-F = Cfiq-,’ 
i= I i=l 

which tends to zero by (3.23). Clearly p( 1 - y) > N and 

~ iN-1 (cp(i))‘-y < C f iN--l-P(l-Y)< C N-P(~-Y) 4 * 
i=q i=q 

Hence (3.24) implies (3.1). The theorem then follows from Lemma 3.1. 

Remark 3.1. Neither (3.23) implies (3.24) or vice versa. By (3.23), 

or 
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The ratio, say, R of the left-hand side of (3.23) over the left-hand side of 
(3.24) is 

fi[p(I-:‘,-- Nl;r/f/“-;‘, 
n 

R is marginally close to 6, “’ - ;” if ,u( 1 - y ) - N is small and close to 
[Eib~]“-y’ if ~(1 -y) 9 N. Hence R tends to zero in the former case and 
infinity in the latter case. 

In the important case that q(x) tends to zero at an exponential rate, we 
have 

THEOREM 3.2. Suppose X, satisfies (1.1). (1.2) with q(x)= O(e-<.‘) for 
some r > 0. Suppose Assumptions 1 and 2 hold and 6, tends to zero in such 
a manner that 

Cab, dll+(l-jd2N))(lI2Nl (logfj-l ~ co (3.25) 

for some 0 < y < 1, then (fib:)“’ ([f.(x) - EfJx)]/a) has a standard normal 
distribution as n + co with a as defined in (3.2). 

Proof: By (3.25), there exists a positive function g(n) increasing 
to infinity that (fib~(1+(‘-y)2N’)‘1’2N) (g(n) log A)-’ + 00. Let q = 
(fib ,ciei?~~;r~‘“~)(~h~~ g(n))- ‘. F or abitrarily C> 0, q > Clog fi for suf- 

a ~ iN-1 cp(iq) < Cfi f iN-l,-tiq 
i=l ,=I 

= cfie-tq f  (i+ l)N-1 e-5iy 

i=o 

which tends to zero by choosing C > l/r. Next for t’ < r, 

~ iN~1 ‘p(i)‘-Y<C 2 iN--‘e~r’(‘-7) 
i=q i=q 

<Cfe- C'i('-Y)~Ce-r'4cl-Y). 

i=q 

Note that bi> CC-’ and q > Clog ii. It is easily verified that (iii) of 
Lemma 3.2 is satisfied. 

Remark 3.2. In the case N= 1 and for y close to 1, Condition (3.25) is 
marginally close to the condition tht nbf + co of the independent case. 
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If Ef(x) -f(x) + 0 sufficiently fast, then (fib:)‘/’ [f.(x) -f(x)]/0 --f 
N(0, 1) under the conditions of Theorems 3.1 and 3.2, e.g., under the 
following additional assumption: 

Assumption 3. Suppose K is a probability density function on Rd and 
for any x, y E Rd and some constant p > 0 

If(x)-fc?J)l~P I/x- Yll. 

THEOREM 3.3. Assume the conditions of Theorems 3.1 and 3.2 are 
satisfied except with (2.2) replaced by the stricter condition that 
jRd llxll [K(x)1 dx < 00. Suppose in addition that Assumption 3 is satisfied and 
fibf+2 + 0. Then (Iibf)1’2 ([f.(x) -f(x)]/a) h as a standard normal distribu- 
tion as n + 00. 

Proof: Following the proof of Lemma 3.1 of Roussas [ 191 and using 
Assumption 3 and the fact that fRd llxll [K(x)1 dx< co, 

IWn(x) -f(x)1 = .r, K(z) f(x) dz - Jbd K(z)f(x - bnz) dzi 

6 pbn s Rd llzll I&)l dz = CL (3.26) 

From (3.26) 

(fibd)1/2 cEf(x) -f(x)l < C(fib;)“2 b, --t 0 
” 3 

a 
(3.27) 

since iibz+* + 0. The theorem follows from Theorems 3.1 and 3.2 and 
(3.27). 

4. ASYMPTOTIC NORMALITY OFT, UNDER (1.1) AND (1.3) 

LEMMA 4.1. Suppose X,, satisfies (1.1) and (1.3) with xi”=, i”-’ 
(q(i))” c co for some 0 <a < 4. Suppose also that Assumptions 1 and 2 and 
the following conditions hold: 

(i) The bandwith b, tends to zero in a manner such that 
fib:” +(‘--y)2N) + 00 for some 0 < y < 1. 

(ii) There exists a sequence of positive integers q = q” + co with q = 
o(@b $’ +(1-y)2N))1/(2N)) such that fi(fi&‘)(- l)‘* Cz l i”-‘cp(iq) +O, where 
1 is the constant of (1.3). 
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(iii) b, tends to zero as n --) co in such a manner that 

b-d” -Y) 
n 

~ iN-1 (cp(i))~‘~)‘-+O as n-+ co. (4.1) 
i=q 

Let g2 be as defined in (3.2). Then (fib:)“* ([f,(x)-Ef.(x)]/a) has a 
standard normal distribution as n + co. 

Proof: The proof is a slight variation of the argument of Lemma 3.2. 
The only significant difference is the verification of (3.5). Let or, . . . . 0, be 
as in Lemma 3.2. Note that now 

IE(exp[iuUk] - l)(exp[iuOj] - 1) - E(exp[iuZi,] - 1) E(exp[iuDj] - l)/ 

G Crp@(& I,))[p”+ pN + 1)” < c&q& 7&P. 

Thus 

Ql < CpNEM f iN-‘cp(iq) < CiipN(‘-‘) 
i=l 

< C’fi[(iib~)1”2N)/s,]N(K-11) f iNp l’p(iq), 
i= 1 

which tends to zero by Condition (ii) of the lemma. 

THEOREM 4.1. Suppose X, satisfies (1.1) and (1.3) with cp(x)=O(x-W, 
for some ,u > 2N. Let 0 < y < (p - N)p- ‘. Suppose there exists a sequence of 
positioe integers q = qD --) co such that q = o((fib$’ +(l -y)2N))1’(2N)). If 
Assumptions 1 and 2 hold and 6, tends to zero in such a manner that 

@fib;)+ 1)/z q-P + 0, (4.2) 
b-d(l-~)qN-id--yl+o, 

n (4.3) 

then (fib:)‘/* [f.(x) - Ef”(x)]/o h as a standard normal distribution as 
n-co. 

Using Lemma 4.1, Theorem 4.1 can be obtained by an argument similar 
to the proof of Theorem 3.1. Analogues of Theorems 3.2 and 3.3 can also 
be obtained under (1.1) and (1.3). The details are omitted for brevity. 
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