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a b s t r a c t

In this paper we apply the dynamical systems method (DSM) proposed by A. G. Ramm,
and the variational regularization method (VRM), to obtain numerical solution to some
singularly perturbed ill-posed problems contaminated by noise. The results obtained by
these methods are compared to the exact solution for the model problems. It is found that
the dynamical systems method is preferable because it is easier to apply, highly stable,
robust, and it always converges to the solution even for large size models.

© 2009 Elsevier Ltd. All rights reserved.

In recent years, interest has substantially increased in the solution of singularly perturbed problems, see for example [1]
and the references cited therein. A singularly perturbation problem is a problem that depends on a parameter in such
a way that solutions behave non-uniformly as the parameter tends towards the limiting value of interest. Singularly
perturbed problems arise in various fields of science and engineering such as fluid mechanics, fluid dynamics, elasticity,
quantummechanics, chemical reactor theory, convection diffusion processes, optimal control and other branches of applied
mathematics. Such these problems depend on a small positive parameter in such a way that the solution varies rapidly in
some parts and varies slowly in some other parts (see for example [2,3] and the references cited therein). The analytic
solution of such problems usually exhibits thin transition layers, in which the solution varies rapidly. When the standard
numerical methods are used to solve such problem on a coarse mesh, large oscillations may arise and pollute the numerical
solution on the entire interval of integration.
The purpose of this paper is to present a numerical study of DSM and VRM for the singularly perturbed integral equations.

The singularly perturbed linear Fredholm integral equations of the second kind is of the form:

εy(t) = g(t)+
∫ b

a
K(t, s)y(s)ds, t ∈ I : (a, b), (1)

while the singularly perturbed linear Volterra integral equation is of the form:

εy(t) = g(t)+
∫ t

0
K(t, s)y(s)ds, t ∈ I : [0, T ] (2)

where y is an unknown function. Both g and the kernel K(t, s) are given functions and 0 < ε � 1. A simple model problem
of Eq. (2) is given by the following equation:

εy(t)+
∫ t

0
a(s)y(s)ds = g(t), t ≥ 0 (3)
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which is important because of its relationship to stiff initial value problem for linear first order differential equations where
a and g are smooth functions, a(t) > 0. The derivative of (3) yields

εy′(t)+ a(t)y(t) = g ′(t), t ≥ 0, y(0) =
g(0)
ε
. (4)

Moreover the linear overdamped initial value problem is of the form

εy(t)+
∫ t

0
[a0(s)+ (t − s)a1(s)]y(s)ds = g(t), t ≥ 0 (5)

where a0(s), a1(s) and g(t) are smooth functions. Eq. (5), which is special case from (2), is important because of its
relationship to the stiff initial value problem for linear second order differential equations. Some typical problems of type
(4) and (5) are electrical-circuit problems with large resistance and/or small induction, mechanical problems with small
masses and/or large damping, and the propagation of radiation through a high absorbing medium, for more details see [4].
By using discretization techniques like the θ-method, see [5], the Galerkin methodwith an orthonormal basis or quadrature
method, see [6,7] and [8], Eqs. (1) and (2) can be written as a linear system

f = Aεu. (6)

Problem (6) is called a discrete ill-posed problem if thematrix Aε is ill- conditioned, that is the condition number is large and
the singular values of Aε decay gradually to zero. Also the inverse of Aε may not exist or it may be unbounded. In practice
the left hand side f in (6) is measured with some error, so fδ is known, ‖fδ − f ‖ ≤ δ. In general, the system in (6) is known
to be severely ill-posed in the sense that a small change in the data may result in a dramatic change in the solution. Due to
the severely ill-posedness of the problem, numerical computation is very difficult. Our goal in this paper is to use the merits
of DSM and VRM to compute a stable approximate solution to the above system.

1. Analysis of the DSM

The DSM analysis [9–19] (see also [20,21]) is based on a construction of a dynamical systemswith the trajectory; by using
the Cauchy problem for nonlinear differential equations in a Hilbert space; starting from an initial approximation point and
having a solution to the problem

F(u) = Au− f = 0, u ∈ H, (7)

where H is a Hilbert space and A is a linear operator in H which is not necessarily bounded but closed and densely defined.
It is proved in [18] that if Eq. (7) is solvable and ‖f − fδ‖ ≤ δ, the following results hold:

Theorem 1. Assume that f = Ay, y ⊥ N(A), A is a linear operator, closed and densely defined in H. Consider the problem

u′ = −u+ T−1ε(t)A
∗f , u(0) = u0,

where N(A) := {u : Au− f = 0}, u0 ∈ H is arbitrary, Tε = T + ε(t), T = A∗A, ε = ε(t) is a continuous function monotonically
decaying to zero at t → ∞ and

∫
∞

0 ε(s)ds = ∞. Then problem (7) has a unique solution u(t) defined on [0,∞), and the
following limit exists:

lim
t→∞

u(t) := u(∞) and u(∞) = y.

It is pointed out in [18] that if fδ is given in place of f , calculate its solution uδ(t) as t = tδ , it can be proved that:

lim
δ→0
‖uδ(tδ)− y‖ = 0.

If suppose that tδ is suitable chosen. The DSM to solve Eq. (7) consists of solving the Cauchy problem [22]

u′ = −P(Au(t)− f ), u(0) = u0, u0 ⊥ N, u′ =
du
dt
, (8)

and proving the existence of the limit limt→∞ u(t) = u(∞) and the relation u(∞) = y; i.e.,

lim
t→∞
‖u(t)− y‖ = 0.

Here P is a bounded operator such that T := PA ≥ 0 is selfadjoint, and denote by y the unique minimal-norm solution to
(7), y⊥ N := N(A) = {u : Au = 0}; Ay = f . We can make a choice of P; namely, P = (A∗A+ aI)−1A∗; a = const > 0.
The unique solution of Eq. (8) is:

u(t) = u0e−tT + e−tT
∫ t

0
esTdsPf . (9)
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For more details on DSM see ([23,22] and [9–19]). Eq. (9) leads to the following iterative formula [22]:

un+1 = un − (A∗A+ aI)−1(AA∗un − A∗fδ), u0 = 0. (10)

Iteration formula (10) will terminate if un satisfies the following condition:

‖Aun − fδ‖ ≤ 1.01δ.

Also, as suggested in [22] we can choose a that satisfy the condition

δ ≤ φ(a) := ‖A(A∗A+ aI)−1A∗fδ − fδ‖ ≤ 2δ. (11)

by the following iterations:

1. As an initial guess for a one takes a = δ‖A‖2

3fδ
.

2. Compute φ(a). If it satisfies (11), then we are done. Otherwise, we go to step 3.
3. If φ(a)

δ
= c > 3, then one takes a = a

2(c−1) ; as go back to step 2. If 2 < c ≤ 3 then one takes a =
a

2(c−1) and go back to
step 2. Otherwise, we go to step 4.

4. If φ(a)
δ
= c < 1, then a := 3a if the inequality c < 1 has occurred in an earlier iteration, we stop the iteration and use 3a

as our choice for a in iteration (10). Otherwise we go to back to step 2.

2. Variational regularization method

This method is the most common and well known technique for regularizing ill-posed problems (see [24,9,25] and [26]).
This method attempts to provide a good estimate of the solution of (7) by a solution uα,δ of the problem

min{‖Au− fδ‖2 + α‖u‖2}, (12)

where α is the regularization parameter, uα,δ is the regularization solution, fδ is a noisy data and ‖f − fδ‖ ≤ δ. The global
minimizer of the quadratic functional (9) is the unique solution to the linear system (A∗A + αI)uα,δ = A∗fδ , where I is the
unit matrix. This system has a unique solution uα,δ = (A∗A+αI)−1A∗fδ . To determine the suitable α, see algorithm 1 in [23].

3. Application

In this section we will consider a discrete quadrature method for solving numerically the singularly perturbed linear
integral Eqs. (1) and (2). In Example 1, we will apply the standard discrete quadrature method as in [6] to approximate the
integrals as follows:∫ b

a
y(s)ds ≈

n∑
j=1

wjy(sj),

where s1, . . . , sn are abscissas andw1, . . . , wn are corresponding weights. Then the integral in (1) is approximated by

εy(t) = g(t)+
n∑
j=1

wjK(t, sj)y(sj).

The most straightforward discretization procedure is to equate (or collocate) the left and right hand side of (1) in n points
t1, t2, . . . , tn:

εy(ti) = g(ti)+
n∑
j=1

wjK(ti, sj)y(sj), i, j = 1, 2, . . . , n.

By using midpoint rule we take wi = b−a
n and ti = sj = a +

(j−0.5)(b−a)
n . Hence we obtain a system of linear algebraic

equations

εy = g + Ky, ⇒ (εI − K)y = g, ⇒ Aεx = b, (13)

where K is an n× nmatrix and I is the identity matrix. The elements of the matrix K , the right-hand side g and the solution
vector f are given by

kij = wjK(ti, sj), gi = g(ti) and yj = y(tj).

For more details see [7]. The system of equation in (13) is in most cases an ill-conditioned system. Moreover, we will solve
Eq. (13) after add random noise on vector b. The aim now is to solve the ill-condition system of the form

Aεx = bδ, ‖b− bδ‖ ≤ δ. (14)

We will apply DSM and VRM as stable methods to solve numerically the resultant system of equations.
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Table 1
Numerical results for Example 1 with δrel = 0.02.

ε n DSM VRM
Iteration Rerr Iteration Rerr

10−6 20 4 0.0119 1 0.0132
10−6 40 4 0.0071 1 0.0111
10−6 60 4 0.0042 1 0.0082
10−6 80 4 0.0021 1 0.0079
10−6 100 4 0.0031 1 0.0080
10−6 200 4 0.0029 1 0.0066

In Example 2 we will use θ-methods as a more general discrete quadrature method for solving (2). In the θ-methods we
consider h > 0 be a fixed step size and consider the grid tn = nh, n = 0, . . . ,N with tN = T .
Putting t = tn in (2) we obtain

εy(tn) = g(tn)+
∫ tn

0
K(tn, s)y(s)ds, (15)

and replacing K(tn, s)y(s) by

(1− θ)K(tn, tj)y(tj)+ θK(tn, tj+1)y(tj+1),

on the interval [tj, tj+1], we obtain the following iteration formula:

εyn = gn + h

[
(1− θ)Kn,0y0 +

n−1∑
j=1

Kn,jyj + θKn,nyn

]
, (16)

n = 1, 2, . . . ,N . Here yn is an approximation to y(tn), gn := g(tn) and Kn,j := K(tn, tj), y0 = g(0)/ε, ε > 0.
The system (16) is a lower triangular system of N linear equations which can be written as

Aεx = b, (17)

where

aij =

{
ε − θhKij, j = i;
−hKij, 1 ≤ j < i ≤ N;
0, otherwise.

x = [y1, y2, . . . , yN ]∗;
b = [g1 + a1, g2 + a2, . . . , gN + aN ]∗;
ai = h(1− θ)Ki0y0, i = 1, 2, . . . ,N.

For θ = 0, θ = 1/2, and θ = 1 these are direct quadrature methods based on the left rectangular rule (Forward Euler,
FE), the Trapezium rule (TR), and the right rectangular rule (Backward Euler, BE), respectively. The aim now is to solve the
ill-condition system of the form

Aεx = bδ, ‖b− bδ‖ ≤ δ.

Example 1. Consider the following integral equation

εf (x) = − cosh(x)+
∫ 1

−1
cosh(x+ y)f (y)dy,

which has the exact solution

f (x) =
2 cosh(x)

2+ sinh(2)− 2ε
.

The condition number of, for example, of matrix Aε with dimension n× n, n = 200, is equal to 2.8134× 106. Table 1 shows
values of n, the number of iterations and the relative errors (Rerr) for DSM and VRM respectively (see Figs. 1 and 2).

The third and fourth columns in Table 1 give the number of iterations and relative errors for both methods, respectively,
where the relative error Rerr = ‖uexact−uapprox‖

‖uexact‖ . The effect of the term ε on the singular perturbed linear Ferdholm integral
equation of the second kind is given in Table 2.
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Fig. 1. Plot of the exact solution and approximate solution obtained by using DSM and VRM at n = 200, where ε = 10−6 and δrel = 0.02.

Fig. 2. Plot of the exact solution and approximate solution obtained by using DSM and VRM at n = 200, where ε = 10−6 and δrel = 0.05.

Table 2
Numerical results for Example 1 with δrel = 0.02.

ε n DSM VRM
Iteration Rerr Iteration Rerr

10−2 200 4 0.0056 1 0.0125
10−3 200 4 0.0029 1 0.0067
10−4 200 4 0.0029 1 0.0066
10−5 200 4 0.0029 1 0.0066

Example 2. Consider the problem

εy(t) =
∫ t

0
(1+ t − s)[1+ s− y(s)]ds

which has the exact solution

y(t) = t + 1+
1

γ1 − γ2

[(
γ2 − 1+

1
ε

)
exp(γ1t)−

(
γ1 − 1+

1
ε

)
exp(γ2t)

]
,
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Table 3
Numerical results for Example 2 at ε = h = 1

16 and δrel = 0.01.

n Trapezium rule (TR), θ = 1/2. Backward Euler method (BE), θ = 1.
DSM VRM DSM VRM
Iteration Rerr Iteration Rerr Iteration Rerr Iteration Rerr

20 4 0.1002 1 0.1316 4 0.0855 1 0.1056
40 5 0.1487 2 0.1633 5 0.1404 2 0.1437
60 6 0.1726 2 0.2065 6 0.1711 2 0.1850
80 6 0.1745 2 0.2169 6 0.1650 2 0.1995
100 7 0.1929 2 0.2504 7 0.1824 2 0.2354

Table 4
Numerical results for Example 2 at ε = 1

64 , h =
1
16 and δrel = 0.01.

n Trapezium Rule (TR), θ = 1/2 Backward Euler method (BE), θ = 1
DSM VRM DSM VRM
Iteration Rerr Iteration Rerr Iteration Rerr Iteration Rerr

20 5 0.1488 1 0.2154 4 0.1256 1 0.1595
40 5 0.1855 2 0.2134 5 0.1578 2 0.1782
60 6 0.1980 2 0.2481 6 0.1773 2 0.2194
80 7 0.1922 2 0.2504 7 0.1747 2 0.2272
100 8 0.2095 2 0.2759 8 0.1919 2 0.2585

Table 5
Numerical results for Example 2 at ε = 1

256 , h =
1
16 and δrel = 0.01.

n Trapezium Rule (TR), θ = 1/2 Backward Euler method (BE), θ = 1
DSM VRM DSM VRM
Iteration Rerr Iteration Rerr Iteration Rerr Iteration Rerr

20 5 0.1768 1 0.2472 5 0.1365 1 0.1764
40 5 0.2056 2 0.2319 5 0.1645 2 0.1893
60 6 0.2120 2 0.2602 6 0.1824 2 0.2296
80 7 0.2038 2 0.2600 7 0.1789 2 0.2355
100 8 0.2187 2 0.2829 8 0.1973 2 0.2648

Fig. 3. Plot of solutions with ε = 1
256 , h =

1
16 , θ = 1 and δrel = 0.01.

where the quantities γ1 and γ2 are defined as

γ1 =
1
2ε
(−1+

√
1− 4ε), γ2 =

1
2ε
(−1−

√
1− 4ε).

The numerical treatment are the followings:

1- Trapezium rule (TR), θ = 1
2 .

2- Backward Euler Method (BE), θ = 1.

In the following tables (Tables 3–5) we will consider two cases for solving Example 2 (see Fig. 3).
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Concluding remarks

In this paper numerical solutions to some singularly perturbed linear integral equations contaminated by noise using
DSM and VRM are presented. It is clear from the numerical experimental that both methods are converges to the stable
solution. The obtained solutions by DSM are relatively accurate than that of VRM method. The computational time is
relatively smaller using VRM, for example in test Example 1, the elapsed time by DSM is 3.74 s and by VRM is 1.21 s, where
the matrix in this case is of dimension 200. In test Example 2, the elapsed time using DSM is 2.12 second and by VRM is
1.91 second, where the matrix in this case is of dimension 100. All calculations are computed by MATLAB 7, on a computer
machine with CPU 2.40 GHz CPU and 225 MB RAM.
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