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Genes of murine cytomegalovirus exist as a number of distinct genotypes
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Abstract

Murine cytomegaloviruses encode a number of genes which modulate polymorphic host immune responses. We suggest that these viral genes
should themselves therefore exhibit sequence polymorphism. Additionally, clinical isolates of human cytomegalovirus (HCMV) have been shown
to vary extensively from the common laboratory strains. Almost all research conducted on murine cytomegalovirus (MCMV) has used the
laboratory strains Smith and K181, which have been extensively passaged in vitro and in vivo since isolation. Using the heteroduplex mobility
assay (HMA) to determine levels of sequence variation 11 MCMV genes were examined from 26 isolates of MCMV from wild mice, as well as
both laboratory strains. Both the HMA and sequencing of selected genes demonstrated that whilst certain genes (M33, mck-2, m147.5, m152)
were highly conserved, others (m04, m06, M44, m138, m144, m145 and m155) contained significant sequence variation. Several of these genes
(m06, m144 and m155) exist in wild MCMV strains as one of several distinct genotypes.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Murine cytomegalovirus (MCMV) is a double-stranded
DNA virus with a genome size of approximately 230 kb. It is
capable of forming life-long, asymptomatic, and persistent
infections, characterised by periodic reactivation from latency
(Sweet, 1999). Free-living mice may be infected with multiple
strains of MCMV (Booth et al., 1993), laboratory studies having
shown infection of mice with 2 strains of virus can happen
either concurrently or sequentially (Gorman et al., 2006).

The genome of MCMV is co-linear with that of human
cytomegalovirus (HCMV), consisting of approximately 200
open reading frames (Brocchieri et al., 2005; Rawlinson et al.,
1996) with approximately 50% of genes identified in MCMV
having homologues in HCMV. Targeted deletion studies of the
HCMV (Towne strain) genome have shown that over 72% of all
ORFs (117 ORFs from a total of 162) are dispensable for in vitro
growth, and presumably function to allow virus replication in
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vivo (Dunn et al., 2003).Whilst some of these genes encode cell-
tropism and anti-apoptopic factors, the majority appear to allow
virus survival in vivo by modulating host immune responses.

The complete genome of several different strains of HCMV
has been sequenced, either as viral DNA or as unrepaired BAC
clones (Chee et al., 1990; Murphy et al., 2003; Dolan et al.,
2004). Levels of amino acid sequence similarity between the
same gene from the different isolates range from 25% to 100%.
Laboratory strains of viruses that have had multiple passages
may have lost a significant number of genes (Cha et al., 1996).
Gene content may also vary between clinical isolates (Murphy
et al., 2003).

Interestingly, sequence variation in the UL18 MHC class I
homologue of HCMV results in differential avidity of binding to
the ILT2 receptor, possibly indicating functional variation
(Vales-Gomez et al., 2005).

As is the case with HCMV (Haberland et al., 1999), the
glycoprotein gB gene of MCMV also demonstrates genetic
heterogeneity (Xu et al., 1996), presumably due to selection for
evasion of host immune control. The ie1 gene product in
MCMV has also been shown to exist as a number of distinct
genotypes (Lyons et al., 1996) among isolates isolated from
wild mice.
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Table 1
Summary of HMA analyses of selected genes from 26 strains of MCMV

Gene Variation (vs. Smith) HMA genotypes

m04 ND NA
m06 + >4
M33 − NA
M44 + 3
mck-2 ex1 − NA
mck-2 ex2 − NA
m138 + >2
m144 + 3
m145 + ND
m147.5 − NA
m152 − NA
m155 + 2

Variation was initially determined by a capacity to form heteroduplexes when
compared against the Smith strain gene. Genotypes were further determined by
comparison against genes from other strains. ND = not determined. NA = not
applicable.
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The heteroduplex mobility assay (HMA) is a rapid method of
comparing PCR products. Two different PCR products are
mixed, denatured, and allowed to re-anneal. Where strands from
the separate PCR products re-anneal, regions of sequence
variation cause ‘bubbles’ along the double stranded DNA.
These imperfectly annealed regions result in a conformational
change to the DNA molecule, and can be detected due to a shift
in electrophoretic mobility. Variations of this methodology are
widely used to analyse viruses such as HIV, TT-virus, avian
hepatitis, and respiratory syncytial virus (Kuroiwa et al., 2004;
Sawadogo et al., 2003; White et al., 2000), particularly as a pre-
screen prior to large-scale sequencing.

We analysed genetic variation in 26 strains of MCMV using
PCR and HMA, in an attempt to identify the levels of variation
occurring in wild viruses. Genes in which sequence variation
was evident were sequenced from multiple isolates, to
determine the level and nature of this variation. We have
shown that several MCMV genes exist as multiple genotypes
within strains of virus isolated from free-living mice. These
results demonstrate that wild strains of MCMV are different
from the laboratory strains of virus and from each other,
suggesting that the large body of MCMV research conducted in
inbred mice using only 1 or 2 laboratory strains of MCMV may
not reflect aspects MCMV infection in wild mice.

Results

PCR primers were designed, using the published Smith
sequence, to amplify entire genes. These primers were designed
outside of the coding sequence so as not to bias the HMA results
due to included primer sequence. Should a ‘normal’ PCR
protocol not be able to amplify specific genes from a majority of
MCMV isolates, indicating sequence variation in the primer
binding sites, a ‘Touchdown’ protocol was used. Failed PCR
reactions were repeated at least twice, but failed reactions
proceeded into the heteroduplex assay to serve as additional
negative controls. PCR failures are assumed to be due to
significant sequence variation in one or both primer binding
sites.

For all genes, PCR products from all virus isolates were
initially compared with the PCR product amplified from the
Smith strain. If heteroduplexes were formed in this reaction, the
HMA was repeated using other isolates as comparators (Table
1). For all genes, selected PCR products were completely
sequenced to validate the HMA result, and to identify the
location and nature of any sequence variation identified.
Aligned gene sequences not presented in the results can be
found in the Supplementary Data (Figs. S2A-S2D).

Genes with low-levels of variation

M33
M33 is homologous to the HCMV gene UL33, encoding a

spliced 7-transmembrane-spanning protein with homology to
cellular chemokine receptors (Davis-Poynter et al., 1997). It has
recently been shown to functional similarities to the HCMV
gene UL28, in that it signals constitutively and is a ligand for
RANTES (Melnychuk et al., 2005; Waldhoer et al., 2002). This
gene was amplifiable from all but 1 of the 26 isolates tested.
HMA analysis compared to the Smith gene demonstrated that 5
isolates produced heteroduplexes, however the retardation of
these within the gel was not significant (Fig. S1A). Sequence
analysis of selected isolates identified very few SNPs within the
coding sequence, although higher levels of variation were found
within the intron (Supplementary Fig. S2A). Sequences were
deposited in the EMBL database under accession number
AM236129.

MCK-2
MCK-2 is the product of a spliced transcript from the open

reading frames m131 and m129, and is a CC-chemokine
homologue (Fleming et al., 1999). It confers increased
inflammation, higher levels of viremia, and higher titers of
virus in salivary glands, consistent with a role in promoting
dissemination by attracting an important mononuclear leuko-
cyte population (Saederup and Mocarski, 2002). The 2 exons of
this gene were examined independently, as we hypothesised that
the intron would be a major source of variation. Both exon 1
(m131) and exon 2 (m129) were amplifiable from all isolates.
HMA analysis compared against the Smith gene produced no
heteroduplexes at all for exon 1, and whilst 6 of the isolates
produced heteroduplexes for exon 2 the degree of retardation
was minor, indicating very low level sequence variation (Fig.
S1B). Sequence analysis of selected isolates confirmed these
results, with exon 1 being identical for all isolates and only 7
variable nucleotides within the exon 2 sequence resulting in a
maximum of 4 amino acid substitutions (2 non-conservative)
(Supplementary Fig. S2B). Sequences were deposited in the
EMBL database under accession numbers AM236130–
AM236132.

m147.5
m147.5, (or mod b7.2) is a recently discovered gene which

encodes a spliced transcript (Loewendorf et al., 2004).. The
product of this gene is capable of down-regulating the
expression of CD86, a co-stimulatory molecule on the surface
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of MCMV-infected antigen-presenting cells. Exon 1 of this
spliced gene only consists of 59 nt, and it was therefore
considered unsuitable for this type of PCR-based analysis. Exon
2 could be amplified from all but 2 of the MCMV isolates tested
(and these 2 samples were amplified subsequently), and upon
HMA comparison to the Smith gene no heteroduplexes were
formed (Fig. S1C). Sequence analysis of the G4 isolate
confirmed this observation with only 3 SNPs within the 402
nt coding sequence, resulting in 2 conservative amino acid
substitutions (Supplementary Fig. S2C). Sequences were
deposited in the EMBL database under accession number
AM236133.

m152
Interestingly, the m152 gene product (gp40) has two

functions. It prevents the transport of MHC class I molecules
to the cell surface, causing them to be retained in the cis-Golgi
(Ziegler et al., 1997). It has also been shown to act similarly to
the m155 gene product in protecting infected cells against
clearance by NK cells, although by down-regulating a different
ligand for NKG2D, RAE-1 (Lodoen et al., 2003). m152 was
amplifiable from all isolates, and upon HMA comparison with
the Smith gene none of the isolates formed a heteroduplex (Fig.
S1D). Sequence analysis of isolates C4A and G4 confirmed
this, with only 14 variable nucleotides within the gene
(Supplementary Fig. S2D), resulting in a maximum of 10
amino acid substitutions (4 between Smith and G4, 8 between
Smith and C4A). Sequences were deposited in the EMBL
database under accession numbers AM236134–AM236135.

Genes which vary considerably between MCMV isolates

m04
m04 encodes a protein (gp34) which binds to MHC Class I

molecules without preventing expression on the cell surface
(Kleijnen et al., 1997), presumably preventing antigen presen-
tation (Kavanagh et al., 2001a, 2001b). Despite using 6
combinations of PCR primers (2 5′ to the gene and 3 3′ to
the gene), m04 was only amplifiable from 5 of the 26 MCMV
isolates (Smith, K181, G4, C4D and C12A) and was therefore
not analysed by HMA. Sequence analysis of the m04 gene from
these isolates demonstrated significant nt sequence variation
(ranging from 73% to 90% similarity to Smith), particularly at
the 5′ end of the gene (Fig. 1). Analysis of the predicted protein
sequence of this gene identified a conserved transmembrane
region and cytoplasmic tail, but a highly variable extracellular
domain (amino acid identity to Smith ranging from 58% to
84%). Sequences were deposited in the EMBL database under
accession numbers AM236096–AM236098.

m06
m06 encodes a protein (gp48) which interferes with the

MHC class I pathway of antigen presentation. This protein
binds to peptide-loaded MHC class I molecules in the ER and
transports them to the lysosome for degradation, therefore
preventing Class I expression at the cell surface (Bubeck et al.,
2002; Reusch et al., 1999). This gene was amplifiable from all
isolates tested (although isolate 16, K17A, only gave a faint
PCR product). Upon HMA analysis, several isolates formed
heteroduplexes against Smith, K181, G2 or W4. These data
suggest that the m06 gene exists as one of a number of
genotypes within the MCMV population (Fig. 2A). Sequence
analysis of PCR products from selected isolates demonstrates
that whilst SNPs occur at a low level throughout the gene (at 34
locations within the gene length of 1053nt), these predomi-
nantly occur in only one or two of the 11 isolates sequenced.
Almost 59% of the SNPs result in an amino acid change in at
least one of the isolates, although only 3 (8.8%) of these are
non-conservative substitutions. Interestingly, there are 3 regions
within the gene at which conserved indels (insertions or
deletions) are found. These are found in different combinations
in different isolates, suggesting that there may be up to eight
m06 genotypes circulating (23 combinations of indels) (Fig.
2B). However, we have currently only identified viruses
containing 5 of these possible genotypes. The distribution of
these indels does not match the phylogeny of the total m06 gene
sequences derived using maximum parsimony as gaps are
excluded in this analysis (Fig. 2C). The distribution of indels is,
however, predicted by the heteroduplex patterns. The function-
ally important di-leucine motif encoded towards the 3′ end of
the gene is unchanged in all isolates (CTGCTC). Sequences
were deposited in the EMBL database under accession numbers
AM236099–AM236108.

M44
M44 (encoding pp50) is the MCMV homologue of the

HCMV DNA polymerase accessory protein gene UL44 (Loh et
al., 2000), and was originally chosen for analysis as it was
assumed that it would be highly conserved between viruses.
UL44 has sequence identity of between 98 and 99% between 6
laboratory and clinical isolates of HCMV (Murphy et al., 2003).
This gene was consistently not amplifiable from 4 of the 26
MCMV strains, immediately indicating a level of sequence
variation not seen in HCMV. Upon HMA (compared to the
Smith gene) more than half of all isolates produced hetero-
duplexes with significantly retarded mobility through the gel
(Fig. 3A). Sequencing of selected isolates demonstrated that the
level of SNPs is low throughout the gene sequence, however all
isolates contained a deletion (compared to the Smith sequence)
at the 3′ end of the gene (C-terminal end of the protein). This
deletion was only 3nt (a single amino acid) in isolates G4 and
C4B, but was 12nt (4 amino acids) in isolate WP36A. In none of
the isolates were the previously identified RGD motif or nuclear
localisation signal affected by the deletions (Fig. 3B).
Sequences were deposited in the EMBL database under
accession numbers AM236109–AM236110.

m138
m138 encodes a protein which is a functional homologue of

a cellular Fc-receptor. However, recombinant MCMVs con-
structed with an inactivated m138 gene are still attenuated for
growth in antibody-deficient mice (Crnkovic-Mertens et al.,
1998). This gene is amplifiable from all MCMV isolates,
however in some isolates faint amplification suggested possible



Fig. 1. Alignment of m04 sequences from isolates C12A, C4D, K181, and the published Smith strain. ‘Dot’ indicates sequence identical to Smith, ‘Dash’ indicates gap introduced into alignment.
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Fig. 2. Analysis of m06 gene variation. (A) HMA comparisons to the m06 genes from Smith, K181, G4 and C4C. Strains analysed and loaded in the order described in Table 3. (B) Alignments of m06 gene sequences
from 11 MCMV strains. Underlined is the sequence encoding the predicted transmembrane domain of the protein, and boxed is the sequence of the di-leucine motif vital for targeting of MHC Class I to the lysosome.
Indel loci are shaded. ‘Dot’ indicates sequence identical to Smith, ‘Dash’ indicates gap introduced into alignment. (C) Phylogenetic analysis of m06 gene sequences, with patterns of insertions/deletions at the 3 loci
identified by 1 or 0 as appropriate.
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Fig. 3. Analysis of M44 gene variation. (A) HMA comparisons to the M44 gene from Smith. Strains analysed and loaded in the order described in Table 3. (B) Alignments of M44 gene sequences from 3 MCMV strains.
Boxed sequence encodes the nuclear localisation signal, and underlined sequence encodes the RGD motif. ‘Dot’ indicates sequence identical to Smith, ‘Dash’ indicates gap introduced into alignment.
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sequence variation in the primer binding sites. When analysed
by HMA against the Smith gene, almost all isolates produced
heteroduplexes with significantly retarded mobility within the
gel (Fig. 4A). Sequence analysis confirmed the variability of the
m138 gene with MCMV isolates. Variable nucleotides are
distributed throughout the m138 gene sequence at up to 89 sites
(5.2% of the gene length), 49 of which result in an amino acid
substitution in at least one isolate. Of these possible substitu-
tions, 10 are non-conservative (Fig. 4B). There are also several
small indels towards the 3′ end of the gene, which do not disrupt
the reading frame. Sequences were deposited in the EMBL
database under accession numbers AM236111–AM236113.

m144
m144 encodes a homologue of an MHC class I molecule,

similar to that encoded by the HCMV gene UL18. Like UL18,
m144 is capable of bindingβ-2microglobulin, but unlike UL18 it
is unable to bind endogenous peptides (Chapman and Bjorkman,
1998) and it has been suggested that m144 mimics cellular MHC
class I molecules and acts as a decoy for NK cells by engaging
inhibitory NK-cell receptors (Cretney et al., 1999; Farrell et al.,
1997; Kubota et al., 1999). The m144 gene was amplifiable from
all but one isolate of MCMV. HMA analysis with comparison to
the Smith, C12A and G2 genes suggested that there are 3
genotypes of m144 within populations of MCMV, with one
genotype being rare (Fig. 5A). Sequence analysis of the m144
gene from several isolates shows that whilst variable nucleotides
are distributed throughout the gene they are more frequent in the
first 600nt of the gene sequence (Fig. 5B). Overall sequence
identity to the Smith isolate ranges from 94% to 99%. Of the 93
possible variant nucleotides, 35 result in amino acid substitutions
(10 of which are non-conservative). There are also 2 conserved
indels, one of 3nt and one of 6nt, which appear to correlate with
the genotypes identified byHMA andwith the phylogeny derived
using maximum parsimony (Fig. 5C). Sites of amino acid
variation for G4 and WP15B (compared to the Smith sequence)
were mapped onto the recently published crystal structure of the
m144 protein (Natarajan et al., 2006). Both isolates contained
variation within the α3 domain, with WP15B also varying within
the α2 domain. Both isolates also contained variation within the
region of protein for which no electron density could be observed,
which is the suggested ligand binding site (Fig. S3). Sequences
were deposited in the EMBL database under accession numbers
AM236114–AM236121.

m145
Along with m152 and m155, m145 encodes a protein which

down-regulates the cell surface expression of an NKG2D
ligand. In this case, m145 expression results in down-regulation
of the stress-induced ligand MULT-1 (Krmpotic et al., 2005).
The m145 gene was not amplifiable from 5 of the 26 isolates,
suggesting sequence variation within the primer binding
regions. HMA analysis compared to the Smith gene showed
that almost all viruses produced heteroduplexes, although the
gels were consistently unclear (Fig. 6A). Sequence analysis of
the m145 gene from 3 isolates identified a high level of
sequence variation, although once again SNPs are predomi-
nantly found in only one of the sequenced isolates. Each isolate
was found to contain one indel of 3 nt, again suggesting the
existence of multiple m145 genotypes (Fig. 6B). Sequences
were deposited in the EMBL database under accession numbers
AM236122–AM236124.

m155
The m155 gene product in MCMV down-regulates the level

of H60 on the surface of infected cells, thereby preventing H60
interaction with NKG2D and NK-cell clearance of infected cells
(Lodoen et al., 2004). The m155 gene was amplifiable from all
but 2 of the MCMV isolates (one of these was amplified
subsequently). HMA analysis compared to the Smith and G2
genes indicates that there are 2 genotypes of m155 within
MCMV populations, but one is comparatively rare (Fig. 7A).
Sequence analysis of the m155 gene from selected isolates
shows that isolates are either highly conserved compared to the
Smith sequence, or like isolate G3e are significantly different.
Between Smith and G3e there are 71 nt changes, 39 of which
result in amino acid changes (25 of which are non-conserva-
tive). There is also a conserved indel of 3nt (one amino acid)
when comparing the 2 genotypes (Fig. 7B). Sequences were
deposited in the EMBL database under accession numbers
AM236126–AM236128.

m157
The m157 gene product from the Smith strain of MCMV has

been shown to bind the NK-cell activating receptor Ly49H in
C57BL/6 mice (Smith et al., 2002). However this gene has
previously been shown to be highly variable in wild isolates of
MCMV , and therefore was not analysed in this research. This
sequence variation has also been shown to result in functional
variation, as the m157 gene product from several of these
isolates has been shown to be unable to bind to Ly49H (Voigt et
al., 2003).

Evolutionary analysis of MCMV genes

The level of sequence variation within isolates of MCMV
was determined by sequencing of genes from selected isolates.
As most of the genes analysed in this study are involved in
modulating the host immune response to the virus, we were
interested in determining if genetic selection was occurring
within MCMV populations. For genes which exhibited high
levels of variation (m138, m144, m145 and m144), the level of
selection was determined by calculating the frequencies of
synonymous and non-synonymous mutations within each gene,
using a moving window analysis on pairwise comparisons of all
available sequences (Figs. 4D, 5D, 6D and 7D, respectively). If
a gene existed in clearly delineated genotypes, only one
sequence from each genotype was used in analysis. In none of
the genes did we find regions where the rate of non-
synonymous mutations was significantly greater than the rate
of synonymous mutations (i.e., dN/dS > 1), indicating that
positive selection is not acting on these genes. In fact, apart
from m138, all the genes contained windows where dS/dN > 5,
indicating strong purifying selection.



Fig. 4. Analysis of m138 gene variation. (A) HMA comparisons to the m138 genes from Smith, and C4A. Strains analysed and loaded in the order described in Table 3. (B) Alignments of m138 gene sequences from 4
MCMV strains. ‘Dot’ indicates sequence identical to Smith, ‘Dash’ indicates gap introduced into alignment. (C) Selection within m138 sequences as analysed by the rate of synonymous (dS) and non-synonymous (dN)
mutations.
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Fig. 5. Analysis of m144 gene variation. (A) HMA comparisons to the m144 genes from Smith, C12A, and G2. Strains analysed and loaded in the order described in Table 3. (B) Alignments of m144 gene sequences
from 9 MCMV strains. ‘Dot’ indicates sequence identical to Smith, ‘Dash’ indicates gap introduced into alignment. Shaded regions indicate conserved indels. (C) Phylogenetic analysis of m144 gene sequences, with
patterns of insertion/deletions identified by 1 or 0 as appropriate. (D) with m144 sequences as analysed by the rate of synonymous (dS) and non-synonymous (dN) mutations.
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Fig. 6. Analysis of m145 gene variation. (A) HMA comparisons to the m145 gene from Smith. Strains analysed and loaded in the order described in Table 3. (B) Alignments of m145 gene sequences from 4 MCMV
strains. ‘Dot’ indicates sequence identical to Smith, ‘Dash’ indicates gap introduced into alignment. (C) Selection within m145 sequences as analysed by the rate of synonymous (dS) and non-synonymous (dN)
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Fig. 7. Analysis of m155 gene variation. (A) HMA comparisons to the m155 genes from Smith and G2 . Strains analysed and loaded in the order described in Table 3. (B) Alignments of m155 gene sequences and
phylogenetic analysis of m155 gene sequences. ‘Dot’ indicates sequence identical to Smith, ‘Dash’ indicates gap introduced into alignment. (C) Phylogenetic analysis of m155 gene sequences. (D) Selection within m155
sequences as analysed by the rate of synonymous (dS) and non-synonymous (dN) mutations.
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Both m06 and m144 exist as a number of distinct genotypes,
and therefore aligned gene sequences were examined for
evidence of recombination. Using several different tests (RDP,
BOOTSCAN, and GENECONV), 2 regions of the m144 gene
(from approximately nt 120 to nt 246, and from approximately
nt 650 to nt 950) were identified as possible sites for
recombination, with P < 0.05.

Discussion

We have analysed the level of sequence variation in
selected genes of 26 isolates of MCMV, including both of the
commonly used laboratory isolates. Several of these genes
were shown to be highly variable or to exist as a number of
distinct genotypes, leading to speculation of functional
variation in naturally occurring MCMV infections and the
applicability of the laboratory strains to studies of ‘wild
strains’ of virus.

How representative are laboratory strains of MCMV of
circulating viruses?

Serial passage has altered the laboratory strains of HCMV
such that they are considerably different, both genetically and in
their growth characteristics, from strains of HCMV isolated
from patients (Murphy et al., 2003). Almost all laboratory
research on murine cytomegalovirus utilises either the Smith or
K181 strains of the virus. These strains have been serially
passaged in vivo and in vitro for, in the case of the Smith virus,
more than 50 years (Smith, 1956). For this reason, it can no
longer be assumed that the laboratory strains of MCMV are
representative of viruses circulating within wild mouse popula-
tions; indeed, it may be that the Smith virus found in one
laboratory may differ from the Smith strain found elsewhere
(Hudson et al., 1988; Osborn, 1982). Whilst we have not looked
for the large-scale genomic rearrangements found in HCMV,
sequence analysis of selected genes from 2 strains of MCMV
Table 2
Comparison of selected gene sequences from wild isolates G4 and C4A the publish

Gene Comparison Smith to:

G4 C4A

nt
(% identity)

aa
(% identity/% similarity)

nt
(% identity)

m04 96.9 91.0/93.2 NA
m06 98.5 98.0/98.6 97.8
M33 ND ND 97.8
M44 99.3 99.8/99.8 ND
mck-2 (ex1) 100 100/100 100
mck-2 (ex2) 99.5 98.5/99.5 99.5
m138 97.1 95.1/97.5 94.7
m144 97.9 97.1/98.4 97.2
m145 93.0 92/95.9 96.4
m147.5 (ex2) 99.3 98.5/99.2 ND
m152 99.5 98.9/99.5 98.9
m155 98.8 97.9/97.9 ND

NA—Gene not amplifiable from this isolate. ND—Sequence not determined.
shows significant levels of variation from the published Smith
sequence and from each other (summarised in Table 2). Due to
this level of variation, it is possible that ‘wild’ isolates of
MCMV may prove to be more reliable models of clinical
HCMV infection. Interestingly, the presence of different m06
genotypes in K181 and Smith suggests that K181 is not simply a
variant of the Smith virus, but a different isolate.

MCMV genes exist as a number of distinct genotypes

Several HCMV genes have been shown to exist as a number
of genotypes. These include those encoding surface glycopro-
teins gB and gN (Rossini et al., 2005; Steininger et al., 2005)
which are presumably under selective pressure, but also genes
such as the chemokine homologues UL74, UL144, UL146 and
UL147 (Arav-Boger et al., 2006; Stanton et al., 2005) which
have immune modulatory functions. Whilst a particular UL144
genotype was recently correlated with congenital HCMV
disease (Arav-Boger et al., 2002), no such correlation was
found with individual genotypes of UL146 or UL147, and
there was strong evidence of purifying selection within
genotypes of these genes (Arav-Boger et al., 2006). At least
3 of the genes examined in this study exist as distinct
genotypes in MCMV populations (m06 has at least 5
genotypes, m144 has at least 3 genotypes, and m155 has 2
distinct genotypes) and these genotypes are also evolving
under purifying selection.

Is there functional variation between the same gene from
different isolates?

The m157 gene has been shown to be highly variable, with
broadly 3 genotypes identified in 29 strains of MCMV (Voigt et
al., 2003). It has been shown that the m157 gene product binds
the Ly49I inhibitory NK-cell receptor (Arase et al., 2002).
Interestingly the Smith strain (and those with identical m157
sequences) and 2 other virus strains with high m157 sequence
ed Smith isolate sequence

Comparison G4 to C4A

aa
(% identity/% similarity)

nt
(% identity)

aa
(% identity/% similarity)

NA – –
97.4/99.1 97.1 96.6/97.7
99.5/100 – –
ND – –
100/100 100 100/100
98.5/99.5 100 100/100
91.2/95.8 96.2 94.4/97.2
96.3/98.7 97.2 95.6/97.7
96/97.9 93.6 92/96.3
ND – –
97.9/99.2 99.1 97.9/99.2
ND – –



Table 3
Isolates of MCMV used in this work

Number Virus
Isolate

Mouse
Trapped

Reference

1 K181PERTH

2 G4 Geraldton, WA Booth et al. (1993)
3 N1 Nannup, WA Booth et al. (1993)
4 C4A Canberra, ACT Gorman et al. (2006)
5 C4B Canberra, ACT Gorman et al. (2006)
6 C4C Canberra, ACT Gorman et al. (2006)
7 C4D Canberra, ACT Gorman et al. (2006)
8 C7A Canberra, ACT Gorman et al. (2006)
9 C12A Canberra, ACT Gorman et al. (2006)
10 W3 Walpeup, VIC Booth et al. (1993)
11 W4 Walpeup, VIC Booth et al. (1993)
12 W5 Walpeup, VIC Booth et al. (1993)
13 K4 Kerguelen Island Booth et al. (1993)
14 K6 Kerguelen Island Booth et al. (1993)
15 K7 Kerguelen Island Booth et al. (1993)
16 K17A Kerguelen Island Booth et al. (1993)
17 G1A Geraldton, WA Booth et al. (1993)
18 G2 Geraldton, WA Booth et al. (1993)
19 G3E Geraldton, WA Booth et al. (1993)
20 WP11A Walpeup, VIC unpublished
21 WP11B Walpeup, VIC unpublished
22 WP15B Walpeup, VIC unpublished
23 WP36A Walpeup, VIC unpublished
24 WP36B Walpeup, VIC unpublished
25 WP36C Walpeup, VIC unpublished
26 SMITH
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homology to Smith (N5 has 84.6% similarity and G1F has
86.7% similarity) are able to bind an NK-cell activating receptor
Ly49 H, which allows effective control of MCMV infection in
Ly49H+ mice (Voigt et al., 2003). It has also been suggested that
m157 may be able to bind other Ly49 receptors. As the Ly49
gene locus has been shown to be highly variable in wild mice,
with the complement of Ly49 genes varying between
individuals, then this may be the reason for existence of
multiple m157 genotypes within viral populations.

The effects of sequence variation within HCMV populations
has been demonstrated recently. Variation within the UL18 gene
of clinical isolates of HCMV has been shown to change the
binding avidity of the UL18 protein to the ILT2 receptor, with
reduced binding affinity correlating to a reduced ability to
inhibit ILT-2 expressing NK-cells in vitro (Vales-Gomez et al.,
2005).

Interestingly, it is generally the viral genes which interact
with polymorphic components of the murine immune response
(m04 and m06 with MHC class I, m145 and m157 with NK-cell
receptors) which are the most variable. The exception to this
rule is the m152 gene which is highly conserved, however
variation within this gene is probably limited as it serves 2
functions. The existence of a rare genotype of m155 is also of
interest, suggesting either a correspondingly rare genotype of
H60 (or an intermediate molecule), or a possible second
function for m155. H60 polymorphism has been demonstrated
at the level of expression (Malarkannan et al., 1998), with
sequence variation in the C57BL/6 H60 also being suggested if
not explicitly stated (Diefenbach et al., 2000). However it
should be noted that in contrast with MCK-2, the CC
chemokine homologue found in MCMV, the CXC chemokine
homologues found in HCMV, UL146 and UL147, have been
shown to be highly variable (Arav-Boger et al., 2006).

The recent crystal structure of the m144 gene product from
the Smith virus (Natarajan et al., 2006) included one region for
which no electron density was determined and therefore for
which no structure was predicted. However, it was suggested
that this region of apparent structural flexibility between the 2
α-helices could be the ligand binding site. As our data shows,
this site corresponds to a highly variable region of the m144
sequence, possibly suggesting that m144 binds a variable
ligand.

Multiple infection and gene variation

Four of the isolates used in this study, C4A, B, C and D, were
plaque purified viruses isolated from the same mouse, which
were identified as being distinct isolates due to their RFLP
patterns (Gorman et al., 2006). These isolates between them had
2 different m06 genotypes (A + B have the same genotype, as
do C + D), 3 different M44 genotypes (B + D have the same
genotype), 2 different m138 genotypes (A + D have the same
genotype, as do B + C), and 3 different m145 genotypes (A and
C have the same genotype). All 4 isolates have different m144
genotypes, and identical m155 genotypes. This pattern of
multiple viral genotypes within the same animal suggests that
these viruses are not simply variants of a progenitor virus which
have adapted to their particular host, but are distinct viruses
which co-exist within the host. We have recently shown that at
least 34% of free living mice are infected with at least 2 viruses
of differing ie1 genotypes (Gorman et al., 2006) and our current
research suggests that this is also true for multiple m06 and
m144 genotypes (unpublished data). This phenomenon,
combined with possible functional variation of virus genotypes,
may indicate that multiple cytomegaloviruses are capable of
complementing each other within a host, enhancing survival of
the entire virus population.

Materials and methods

Cells and viruses

Strains of MCMV were as described in Table 3. All viruses
had been previously subjected to 3 rounds of plaque purification
on murine embryo fibroblasts (MEFs). Isolates C4A, B, C, and
D were all isolated from the same mouse, as were isolates
WP11A and B, and isolates WP36A, B and C.

DNA extraction

Viruses were inoculated onto MEFs in 6-well trays. Upon
visible cytopathic effect (CPE), medium was removed from
cells and 4 M guanidine hydrochloride added to each well.
DNA was extracted by 3× extractions with phenol:chloroform
followed by ethanol precipitation, and resuspended in TE
buffer.



Table 4
PCR primers used to amplify viral genes

Gene Primers (5′–3′)

m04 Forward: gagcgacggatggtacaag
Reverse: ccggaaaatggtttactcaa

m06 Forward: atggacaatgaagccaatct
Reverse: aggtactaaaacagtttcca

M33 Forward: gacgaccggctcgagatg
Reverse: gccgcgctgcgatcactg

M44 Forward: cagaataaggcattcagg
Reverse: tacatctccgcgggaatg

mck-2 exon 2 (m129) Forward: aggacacgaggtatgtcat
Reverse: tgtgtatatagatctcgg

mck-2 exon 1(m131) Forward: cataggcagtaacgacac
Reverse: caggtgagtgttttgatctg

m138 Forward: cgatgacttgagttacgt
Reverse: ggcagagccgaggcgatg

m144 Forward: agttacgcggccctcttttaca
Reverse: catgaatgtgagatgtcgc

m145 Forward: atacagagattcggacagtca
Reverse: ggtgtttcaactccgcga

m147.5 exon2 Forward: caacatcacacaagtttattg
Reverse: atgttaattttcacatacaga

m152 Forward: gccggtcgcacgaacatca
Reverse: cgatcgctagcctgtaca

m155 Forward: ggggggaccggggtgatcattt
Reverse: ttacagactttcgtcgaaaatg
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PCR

PCR primers were designed to amplify several genes from
the MCMV genome, based on the published Smith virus
sequence (Table 4). Primers were designed to start and finish
outside the gene open reading frame, so as not to bias the HMA
results. PCR annealing temperatures were determined by
amplification of Smith virus DNA. Genes which were not
amplifiable using this (or a slightly lower) annealing temper-
ature were PCR amplified using a touchdown protocol as
follows: Initial denaturation (95 °C for 2 min) followed by
touchdown protocol (15 cycles of 95 °C for 30 s, X °C for 60 s,
72 °C for 120 s, where X decreases from 63 °C by 1 °C per
cycle) and a normal PCR protocol (25 cycles of 95 °C for 30 s,
48 °C for 60 s, 72 °C for 120 s).

Each reaction contained 5 nmol each dNTP and 10 pmol each
primer. PCR products (2 μl) were analysed on a 1% agarose gel.

Heteroduplex mobility assay

PCR products were diluted 1:3 before use in the HMA. For
each virus, 1 μl diluted PCR product was mixed with 1 μl of a
‘standard’ PCR product (from whichever virus the samples were
being compared against) in a 10-μl volume containing 10 mM
Tris–HCL pH 7.8, 100 mM NaCl, 2 mM EDTA. Samples were
heated to 95 °C for 5 min, and then slow cooled to 68 °C at a rate
of 1 °C per minute. Samples were rapidly cooled to 4 °C and
stored on ice prior to loading on a gel. Samples were mixed with
loading buffer and loaded onto a 6% polyacrylamide:bis (19:1)
gel containing 15% urea. The gel was electrophoresed at 300v for
3 h, and stained with ethidium bromide for 15 min prior to
visualisation.
Sequencing and data analysis

PCR products were purified and sequenced by Macrogen Inc
(Seoul, Korea). Sequences were assembled and analysed using
the Vector NTi suite of programmes (Invitrogen Inc.). Multiple
sequence alignments were performed using CLUSTALW and
subsequently edited manually. Aligned sequences were com-
pared using MatGat (Campanella et al., 2003). Levels of
synonymous and nonsynonymous mutations were calculated on
aligned coding sequences using CRANN, with a moving
window of 10% of the gene length shifted by 20% of the
window length (Creevey and McInerney, 2003). The computer
program RDP-V2, implementing the RDP, BOOTSCAN, and
GENECONV, was used to analyse sequences for evidence of
recombination (Martin et al., 2005).

Acknowledgments

This work was supported by a grant from the Raine Medical
Research Foundation, at the University of Western Australia.
The authors would like to thank David Margulies (NIAID,
National Institutes for Health, USA) for his alignment of m144
sequence with protein structure. Several of the viral isolates
were obtained with assistance for the Pest Animal Control CRC,
Canberra, Australia.

Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.virol.2006.04.031.
References

Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B., Lanier, L.L., 2002. Direct
recognition of cytomegalovirus by activating and inhibitory NK cell
receptors. Science 296, 1323–1326.

Arav-Boger, R., Willoughby, R.E., Pass, R.F., Zong, J.C., Jang, W.J.,
Alcendor, D., Hayward, G.S., 2002. Polymorphisms of the cytomeg-
alovirus (CMV)-encoded tumor necrosis factor-alpha and beta-chemo-
kine receptors in congenital CMV disease. J. Infect. Dis. 186,
1057–1064.

Arav-Boger, R., Foster, C.B., Zong, J., Pass, R., 2006. Human cytomegalovirus-
encoded a-chemokines exhibit high sequence variability in congenitally
infected newborns. J. Infect. Dis. 193, 788–791.

Booth, T.W., Scalzo, A.A., Carrello, C., Lyons, P.A., Farrell, H.E., Singleton,
G.R., Shellam, G.R., 1993. Molecular and biological characterization of
new strains of murine cytomegalovirus isolated from wild mice. Arch.
Virol. 132, 209–220.

Brocchieri, L., Kledal, T.N., Karlin, S., Mocarski, E.S., 2005. Predicting coding
potential from genome sequence: application to betaherpesviruses infecting
rats and mice. J. Virol. 79, 7570–7596.

Bubeck, A., Reusch, U., Wagner, M., Ruppert, T., Muranyi, W., Kloetzel, P.M.,
Koszinowski, U.H., 2002. The glycoprotein gp48 of murine cytomegalo-
virus — proteasome-dependent cytosolic dislocation and degradation. J.
Biol. Chem. 277, 2216–2224.

Campanella, J.J., Bitincka, L., Smalley, J., 2003. MatGAT: an application that
generates similarity/identity matrices using protein or DNA sequences.
BMC Bioinformatics 4, 29.

Cha, T., Tom, E., Kemble, G.W., Duke, G.M., Mocarski, E.S., Spaete, R.R.,
1996. Human cytomegalovirus clinical isolates carry at least 19 genes not
found in laboratory strains. J. Virol. 70, 78–83.

http://dx.doi.org/doi:10.1016/j.virol.2006.04.031


464 L.M. Smith et al. / Virology 352 (2006) 450–465
Chapman, T.L., Bjorkman, P.J., 1998. Characterization of a murine cytomeg-
alovirus class I major histocompatibility complex (MHC) homolog:
comparison to MHC molecules and to the human cytomegalovirus MHC
homolog. J. Virol. 72, 460–466.

Chee, M.S., Bankier, A.T., Beck, S., Bohni, R., Brown, C.M., Cerny, R., Horsnell,
T., Hutchison III, C.A., Kouzardies, T., Martignetti, J.A., Preddie, E.,
Satchwell, S.C., Tomlinson, P., Weston, K.M., Barrell, B.G., 1990. Analysis
of the protein-coding content of the sequence of human cytomegalovirus strain
AD169. Curr. Topics Microbiol. Immunol. 154, 125–169.

Creevey, C.J., McInerney, J.O., 2003. CRANN: detecting adaptive evolution in
protein-coding DNA sequences. Bioinformatics 19, 1726.

Cretney, E., Degli-Esposti, M.A., Densley, E.H., Farrell, H.E., Davis-Poynter,
N.J., Smyth, M.J., 1999. m144, a murine cytomegalovirus (MCMV)-
encoded major histocompatibility complex class I homologue, confers
tumor resistance to natural killer cell-mediated rejection. J. Exp. Med. 190,
435–444.

Crnkovic-Mertens, I., Messerle, M., Milotic, I., Szepan, U., Kucic, N.,
Krmpotic, A., Jonjic, S., Koszinowski, U.H., 1998. Virus attenuation after
deletion of the cytomegalovirus Fc receptor gene is not due to antibody
control. J. Virol. 72, 1377–1382.

Davis-Poynter, N.J., Lynch, D.M., Vally, H., Shellam, G.R., Rawlinson, W.D.,
Barrell, B.G., Farrell, H.E., 1997. Identification and characterization of a G
protein-coupled receptor homolog encoded by murine cytomegalovirus. J.
Virol. 71, 1521–1529.

Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N., Raulet, D.H., 2000.
Ligands for the murine NKG2D receptor: expression by tumor cells and
activation of NK cells and macrophages. Nat. Immunol. 1, 119–126.

Dolan, A., Cunningham, C., Hector, R.D., Hassan-Walker, A.F., Lee, L.,
Addison, C., Dargan, D.J., McGeoch, D.J., Gatherer, D., Emery, V.C.,
Griffiths, P.D., Sinzger, C., McSharry, B.P., Wilkinson, G.W.G., Davison,
A.D., 2004. Genetic content of wild-type human cytomegalovirus. J. Gen.
Virol. 85, 1301–1312.

Dunn, W., Chou, C., Li, H., Hai, R., Patterson, D., Stolc, V., Zhu, H., Liu, F.,
2003. Functional profiling of a human cytomegalovirus genome. Proc. Natl.
Acad. Sci. U.S.A. 100 (24), 14223–14228.

Farrell, H.E., Vally, H., Lynch, D.M., Fleming, P., Shellam, G.R., Scalzo, A.A.,
Davis-Poynter, N.J., 1997. Inhibition of natural killer cells by a
cytomegalovirus MHC class I homologue in vivo.[comment]. Nature 386
(6624), 510–514.

Fleming, P., Davis-Poynter, N., Degli-Esposti, M., Densley, E., Papadimitriou,
J., Shellam, G., Farrell, H., 1999. The murine cytomegalovirus chemokine
homolog, m131/129, is a determinant of viral pathogenicity. J. Virol. 73 (8),
6800–6809.

Gorman, S., Harvey, N., Moro, D., Lloyd, M.L., Smith, L.M., Lawson, M.,
Shellam, G.R., 2006. Mixed infection with multiple strains of murine
cytomegalovirus occurs following simultaneous or sequential infection of
immunocompetent mice. J. Gen. Virol. 87, 1123–1132.

Haberland, M., Meyer-Konig, U., Hufert, F.T., 1999. Variation within the
glycoprotein B gene of human cytomegalovirus is due to homologous
recombination. J. Gen. Virol. 80, 1495–1500.

Hudson, J.B., Walker, D.G., Altamirano, M., 1988. Analysis in vitro of two
biologically distinct strains of murine cytomegalovirus. Arch. Virol. 102,
289–295.

Kavanagh, D.G., Gold, M.C., Wagner, M., Koszinowski, U.H., Hill, A.B.,
2001a. The multiple immune-evasion genes of murine cytomegalovirus are
not redundant. M4 and m152 inhibit antigen presentation in a complemen-
tary and cooperative fashion. J. Exp. Med. 194, 967–978.

Kavanagh, D.G., Koszinowski, U.H., Hill, A.B., 2001b. The murine
cytomegalovirus immune evasion protein m4/gp34 forms biochemically
distinct complexes with class I MHC at the cell surface and in a pre-Golgi
compartment. J. Immunol. 167, 3894–3902.

Kleijnen, M.F., Huppa, J.B., Lucin, P., Mukherjee, S., Farrell, H., Campbell,
A.E., Koszinowski, U.H., Hill, A.B., Ploegh, H.L., 1997. A mouse
cytomegalovirus glycoprotein, gp34, forms a complex with folded class I
MHC molecules in the ER which is not retained but is transported to the
cell surface. EMBO J. 16, 685–694.

Krmpotic, A., Hasan, M., Loewendorf, A., Saulig, T., Halenius, A., Lenac, T.,
Polic, B., Bubic, I., Kriegeskorte, A., Pernjak-Pugel, E., Messerle, M.,
Hengel, H., Busch, D.H., Koszinowski, U.H., Jonjic, S., 2005. NK cell
activation through the NKG2D ligand MULT-1 is selectively prevented by
the glycoprotein encoded by mouse cytomegalovirus gene m145. J. Exp.
Med. 201, 211–220.

Kubota, A., Kubota, S., Farrell, H.E., Davis-Poynter, N., Takei, F., 1999.
Inhibition of NK cells by murine CMV-encoded class I MHC homologue
m144. Cell. Immunol. 191, 145–151.

Kuroiwa, Y., Nagai, K., Okita, L., Tsutsumi, H., 2004. Genetic variability and
molecular epidemiology of respiratory syncytial virus subgroup a strains in
Japan determined by heteroduplex mobility assay. J. Clin. Microbiol. 42,
2048–2053.

Lodoen, M., Ogasawara, K., Hamerman, J.A., Arase, H., Houchins, J.P.,
Mocarski, E.S., Lanier, L.L., 2003. NKG2D-mediated natural killer cell
protection against cytomegalovirus is impaired by viral gp40 modulation of
retinoic acid early inducible 1 gene molecules. J. Exp. Med. 197,
1245–1253.

Lodoen, M.B., Abenes, G., Umamoto, S., Houchins, J.P., Liu, F., Lanier, L.L.,
2004. The cytomegalovirus m155 gene product subverts natural killer cell
antiviral protection by disruption of H60-NKG2D interactions. J. Exp. Med.
200, 1075–1081.

Loewendorf, A., Kruger, C., Borst, E.M., Wagner, M., Just, U., Messerle,
M., 2004. Identification of a mouse cytomegalovirus gene selectively
targeting CD86 expression on antigen-presenting cells. J. Virol. 78,
13062–13071.

Loh, L.C., Locke, D., Melnychuk, R., Laferte, S., 2000. The RGD sequence in
the cytomegalovirus DNA polymerase accessory protein can mediate cell
adhesion. Virology 272, 302–314.

Lyons, P.A., Allan, J.E., Carrello, C., Shellam, G.R., Scalzo, A.A., 1996. Effect
of natural sequence variation at the H-2Ld-restricted CD8+ T cell epitope of
the murine cytomegalovirus ie1-encoded pp89 on T cell recognition. J. Gen.
Virol. 77, 2615–2623.

Malarkannan, S., Shih, P.P., Eden, P.A., Horng, T., Zuberi, A.R., Christianson,
G., Roopenian, D., Shastri, N., 1998. The molecular and functional
characterization of a dominant minor H antigen, H60. J. Immunol. 161,
3501–3509.

Martin, D.P., Williamson, C., Posada, D., 2005. RDP2: recombination detection
and analysis from sequence alignments. Bioinformatics 21, 260–262.

Melnychuk, R.M., Smith, P., Kreklywich, C.N., Ruchti, F., Vomaske, J., Hall,
L., Loh, L., Nelson, J.A., Orloff, S.L., Streblow, D.N., 2005. Mouse
cytomegalovirus M33 is necessary and sufficient in virus-induced vascular
smooth muscle cell migration. J. Virol. 79, 10788–10795.

Murphy, E., Yu, D., Grimwood, J., Schmutz, J., Dickson, M., Jarvis, M., Hahn,
G., Nelson, J., Myers, R., Shenk, T., 2003. Coding potential of laboratory
and clinical strains of human cytomegalovirus. Proc. Natl. Acad. Sci. U.S.A.
100, 14976–14981.

Natarajan, K., Hicks, A., Mans, J., Robinson, H., Guan, R., Mariuzza, R.,
Margulies, D., 2006. Crystal structure of the murine cytomegalovirusMHC-I
homologue m144. J. Mol. Biol. 358 (1), 157–171.

Osborn, J.E., 1982. Cytomegalovirus and Other Herpesviruses. In: Foster, H.L.,
Small, J.D., Fox, J.G. (Eds.), The Mouse in Biomedical Research, vol. II,
pp. 267–292.

Rawlinson, W.D., Farrell, H.E., Barrell, B.G., 1996. Analysis of the complete
DNA sequence of murine cytomegalovirus. J. Virol. 70, 8833–8849.

Reusch, U., Muranyi, W., Lucin, P., Burgert, H.G., Hengel, H., Koszinowski,
U.H., 1999. A cytomegalovirus glycoprotein re-routes MHC class I
complexes to lysosomes for degradation. EMBO J. 18, 1081–1091.

Rossini, G., Pignatelli, S., Dal Monte, P., Camozzi, D., Lazzarotto, T.,
Gabrielli, L., Gatto, M.R., Landini, M.P., 2005. Monitoring for human
cytomegalovirus infection in solid organ transplant recipients through
antigenemia and glycoprotein N (gN) variants: evidence of correlation
and potential prognostic value of gN genotypes. Microbes Infect. 7,
890–896.

Saederup, N., Mocarski Jr., E.S., 2002. Fatal attraction: cytomegalovirus-
encoded chemokine homologs. Curr. Top. Microbiol. Immunol. 269,
235–256.

Sawadogo, S., Adje-Toure, C., Bile, C.E., Ekpini, R.E., Chorba, T., Nkenga-
song, J.N., 2003. Field evaluation of the gag-based heteroduplex mobility
assay for genetic subtyping of circulating recombinant forms of human



465L.M. Smith et al. / Virology 352 (2006) 450–465
immunodeficiency virus type 1 in Abidjan, Cote d'Ivoire. J. Clin. Microbiol.
41, 3056–3059.

Smith, M.G., 1956. Propagation in tissue cultures of a cytopathogenic virus from
human salivary gland virus (SGV) disease. Proc. Soc. Exp. Biol. Med. 92,
424–430.

Smith, H.R., Heusel, J.W., Mehta, I.K., Kim, S., Dorner, B.G., Naidenko, O.V.,
Iizuka, K., Furukawa, H., Beckman, D.L., Pingel, J.T., Scalzo, A.A.,
Fremont, D.H., Yokoyama, W.M., 2002. Recognition of a virus-encoded
ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. U.S.
A. 99, 8826–8831.

Stanton, R., Westmoreland, D., Fox, J.D., Davison, A.J., Wilkinson, G.W.,
2005. Stability of human cytomegalovirus genotypes in persistently infected
renal transplant recipients. J. Med. Virol. 75, 42–46.

Steininger, C., Schmied, B., Sarcletti, M., Geit, M., Puchhammer-Stockl, E.,
2005. Cytomegalovirus genotypes present in cerebrospinal fluid of HIV-
infected patients. AIDS 19, 273–278.

Sweet, C., 1999. The pathogenicity of cytomegalovirus. FEMS Microbiol. Rev.
23, 457–482.

Vales-Gomez, M., Shiroishi, M., Maenaka, K., Reyburn, H.T., 2005. Genetic
variability of the major histocompatibility Class I homologue encoded by
human cytomegalovirus leads to differential binding to the inhibitory
receptor ILT2. J. Virol. 79, 2251–2260.

Voigt, V., Forbes, C.A., Tonkin, J.N., Degli-Esposti, M.A., Smith, H.R.,
Yokoyama, W.M., Scalzo, A.A., 2003. Murine cytomegalovirus m157
mutation and variation leads to immune evasion of natural killer cells. Proc.
Natl. Acad. Sci. U.S.A. 100, 13483–13488.

Waldhoer, M., Kledal, T.N., Farrell, H., Schwartz, T.W., 2002. Murine
cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit
similar constitutive signaling activities. J. Virol. 76, 8161–8168.

White, P.A., Li, Z., Zhai, X., Marinos, G., Rawlinson, W.D., 2000. Mixed viral
infection identified using heteroduplex mobility analysis (HMA. Virology
271, 382–389.

Xu, J., Lyons, P.A., Carter, M.D., Booth, T.W., Davis-Poynter, N.J., Shellam,
G.R., Scalzo, A.A., 1996. Assessment of antigenicity and genetic
variation of glycoprotein B of murine cytomegalovirus. J. Gen. Virol. 77,
49–59.

Ziegler, H., Thale, R., Lucin, P., Muranyi, W., Flohr, T., Hengel, H., Farrell, H.,
Rawlinson, W., Koszinowski, U.H., 1997. A mouse cytomegalovirus
glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi
compartments. Immunity 6, 57–66.


	Genes of murine cytomegalovirus exist as a number of distinct genotypes
	Introduction
	Results
	Genes with low-levels of variation
	M33
	MCK-2
	m147.5
	m152

	Genes which vary considerably between MCMV isolates
	m04
	m06
	M44
	m138
	m144
	m145
	m155
	m157

	Evolutionary analysis of MCMV genes

	Discussion
	How representative are laboratory strains of MCMV of circulating viruses?
	MCMV genes exist as a number of distinct genotypes
	Is there functional variation between the same gene from different isolates?
	Multiple infection and gene variation

	Materials and methods
	Cells and viruses
	DNA extraction
	PCR
	Heteroduplex mobility assay
	Sequencing and data analysis

	Acknowledgments
	Supplementary data
	References


