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Abstract

In perceptual learning, stimuli are usually assumed to be presented to a constant retinal location during training. However, due to
tremor, drift, and microsaccades of the eyes, the same stimulus covers different retinal positions on sequential trials. Because of these
variations the mathematical decision problem changes from linear to non-linear (Zhaoping, Herzog, & Dayan, 2003). This non-linearity
implies three predictions. First, varying the spatial position of a stimulus within a moderate range does not deteriorate perceptual learn-
ing. Second, improvement for one stimulus variant can yield negative transfer to other variants. Third, interleaved training with two
stimulus variants yields no or strongly diminished learning. Using a bisection task, we found psychophysical evidence for the first
and last prediction. However, no negative transfer was found as opposed to the second prediction.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Perceptual learning

Perceptual learning is the ability to improve perception
per se. Examples are the improvement of vernier discrimi-
nation (e.g., McKee & Westheimer, 1978; Poggio, Fahle, &
Edelman, 1992), stereoscopic depth perception (e.g.,
Ramachandran & Braddick, 1973), grating waveform dis-
crimination (e.g., Fiorentini & Berardi, 1980), orientation
discrimination (e.g., Vogels & Orban, 1985), and motion
direction discrimination (e.g., Vaina, Sundareswaran, &
Harris, 1995; Watanabe, Nanez, & Sasaki, 2001). Perceptu-
al learning gained increasing interest in recent years since it
is concerned with the creation of the building blocks of per-
ception. We perceive the world, at least partly, according to
how we have learned to perceive it. However, the mecha-
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nisms underlying perceptual learning are still largely
unknown (e.g., Fahle & Poggio, 2003).

Perceptual learning is specific for many stimulus param-
eters. For example, no transfer of learning occurs when the
orientation, the spatial frequency, or the position of stimuli
change (e.g., Ahissar & Hochstein, 1997; Crist, Kapadia,
Westheimer, & Gilbert, 1997; Fahle, Edelman, & Poggio,
1995; Karni & Sagi, 1991; Schoups, Vogels, & Orban,
1995; Shiu & Pashler, 1992). After the change, observers
have to re-train to improve performance. Most models of
perceptual learning (for a review see Tsodyks & Gilbert,
2004) implicitly assume that stimuli are projected exactly
to the same retinal position at each trial. However, this
assumption is not met in the experimentation. Because of
eye tremor, drifts, and microsaccades, eye positions change
from trial to trial and, hence, stimuli are never presented
exactly to just one retinal position. Nevertheless, our per-
ceptual performance often achieves a spatial acuity much
finer than the typical magnitudes in the positional changes
of the stimulus. This is, for instance, the case in the bisec-
tion task studied in this contribution. As shown in Fig. 1,
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Fig. 1. Bisection stimuli. A spatial interval, delineated by two outer
elements, is bisected in two unequal components by a central element. The
task is to judge the resulting proportion, i.e., is the central element closer
to the left or to the right outer delineator? The schematics correspond to
bisection stimuli used in the experiments. (A) Line bisection (an outer line
distance of 120000 is shown). (B) Dot bisection. (C). Dot-line bisection. (D)
Line bisection with lines having only half length.
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observers are asked to judge whether a middle element is
closer to one or the other of two outer elements. Thresh-
olds in these tasks are in the order of a few tens of arc sec-
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early sensory neurons to the visual stimuli. For example,
this quantity could be a linear weighted sum of responses
from neurons tuned to orientation and/or spatial locations.
A non-linear problem means that this quantity is a non-lin-
ear (e.g., quadratic) function of the same sensory respons-
es. The purpose of the non-linear computation is to enable
the perceptual decision to be insensitive to the positional
variance of the stimuli. Consequently, the performance
after training will be improved over a reasonable spatial
range of stimulus positions.

Zhaoping et al. (2003) proposed that the non-linear
computation could be achieved by recurrent connections
between the non-linear sensory neurons before the neural
responses are sent to the next, linear decision stage. In
particular, the recurrent connections might be between
V1 neurons, and could be modified during perceptual
learning. Meanwhile, feedforward linear weights in the
decision template of the subsequent linear decision stage
depend on the resulting recurrent connections in the
non-linear stage. They can be learned concurrently
and, since mathematically they are much more easily
and straight-forwardly learned, were suggested to corre-
spond to the fast phase of perceptual learning (Zhaoping
et al., 2003). To better understand the consequences of
changing from a linear to a non-linear solution, we per-
formed computer simulations with a recurrent network
emulating this ideal observer model. In this network,
the recurrent connections are specific to the task or the
separation between the outer lines in the stimulus
(Fig. 2B). They link neurons which are separated by dis-
tances about half of the outer element distance. In effect,
they assess the distances between two stimulus lines sep-
arated by roughly half of the outer element distance, i.e.,
the left-to-center distance or the right-to-center distance,
rather than the absolute locations of the lines. In doing
so, they amplify the effect of the distance between ele-
ments and reduce the effect of the absolute stimulus
locations.

Our non-linear recurrent model for perceptual learning
is consistent with the observation that recurrent connec-
tions are known to be extensive between V1 neurons,
extending over a distance up to a few millimeters (Gilbert
& Wiesel, 1983; Rockland & Lund, 1983) and are modifi-
able by perceptual learning (Crist, Li, & Gilbert, 2001).
In particular, the length of these V1 recurrent connections
suggests that neurons can be linked with each other even
though they are responding to two stimulus lines. Such
connections are sufficient for our stimulus configurations.
The degree of uncertainty in the spatial location of the
visual stimulus is unlikely to be much more than one degree
in visual angle for stimuli near the fovea. If the overall loca-
tion of the stimulus changes from trial to trial by more than
this amount, we assume that the brain could give a quick
and rough estimate of the overall location with a similar
degree of spatial precision or uncertainty, before the deci-
sion is made on the perceptual task at hand. Our analysis
and the model lead to three predictions.
1.2.1. First prediction

If the bisection stimulus is presented at random posi-
tions, improvement of performance is comparable to when
the bisection stimulus is presented constantly at one posi-
tion. This positional invariance is reached by the recurrent
neural connections in the network.

1.2.2. Second prediction

Training with a bisection stimulus of one given outer
element distance can yield negative transfer to bisection
stimuli with other outer element distances. Negative
transfer means that performance in the pre-training
conditions is superior to the post-training conditions.
For positive transfer the opposite is true. This prediction
arises from the fact that different recurrent connections
would be used for different outer element distances. In
particular, a connection between two neurons may be
excitatory for one outer element distance and inhibitory
for another outer element distance. Hence, if perceptual
learning is achieved for the first outer element distance,
the recurrent connections learned would be detrimental
for the second outer element distance, causing negative
transfer.

1.2.3. Third prediction

Improvement of performance can be diminished or
even abolished if bisection stimuli with two different out-
er element distances are presented randomly interleaved
during training. This prediction arises naturally from
the second prediction, considering that perceptual learn-
ing would have to do the impossible: simultaneously
achieve an excitatory connection between two neurons
for one outer element distance and an inhibitory connec-
tion between the same neural pair for another outer ele-
ment distance.

In the following, we will test these three predictions.

2. General methods

2.1. General set up

Stimuli appeared on an X–Y-display (HP 1332A, 1333A or Tektron-
ix 608), either controlled by a Macintosh computer or PC via fast 16 bit
D/A converters (1 MHz pixel rate). Lines were composed of dots drawn
with a dot pitch of 250–350 lm at a dot rate of 1 MHz. The dot pitch
was selected so that dots slightly overlapped, i.e., the dot size (or line
width) was of the same magnitude as the dot pitch. Stimuli were
refreshed at 200 Hz or else 100 Hz. Luminance of a dot grid (same
dot pitch and refresh rate as above) measured with a Minolta LS-100
luminance meter was 80 cd/m2. The room was dimly illuminated
(0.5 lux) and background luminance on the screen was below 1 cd/m2.
Viewing distance was 2 m.

2.2. Observers

Data were obtained from two of the authors and paid graduate stu-
dents from the University of Bremen, Germany. Before the experiment
proper took place, the general purpose of the experiment was explained
to every observer. Moreover, subjects were told that they could quit the
experiment at any time they wished. After observers signed a consent
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form, acuity was determined by means of the Freiburg visual acuity test
(Bach, 1996). To participate in the experiments subjects had to reach a val-
ue of 1.0 (corresponding to 20/20) at least for one eye.

2.3. Stimuli and task

We presented bisection stimuli comprising two outer markers,
delineating a horizontal, diagonal, or vertical interval, and a central
element positioned between the outer elements. In line bisection, line
length was either 120000 (arc sec) or 60000 (Figs. 1A and D). Dots of dot
bisection stimuli were composed of four pixels for each dot (Fig. 1B).
Bisection stimuli could also be a combination of dots and lines
(Fig. 1C). Stimulus duration was 150 ms. No fixation spot was presented
to prevent subjects from judging the position of the center element relative
to this fixation spot stored in memory. Each trial started with four markers
at the corners of the screen presented for 500 ms followed by a blank
screen for 200 ms. The screen was blank for 500 ms between response
and subsequent trial. A block of stimulus presentations consisted of 80
trials (except for Experiment 3).

Observers had to discriminate, in a binary forced choice task, whether
the central element was closer to the left (or upper) or else to the right (or
lower) outer element by pressing one of two buttons. Incorrect responses
were followed by an auditory error signal produced by the computer. We
determined thresholds of 75% correct responses with an adaptive staircase
method and maximum likelihood estimation of the parameters of the psy-
chometric function (PEST; Taylor & Creelman, 1967). In Experiment 3,
we used also percentages of correct responses to determine bisection
acuity.

Before and after the training of a particular task, we determined base-

line performance for various bisection stimuli. For every subject, these pre-
and post-training conditions were measured twice and the order of condi-
tions was randomized to reduce the influence of learning or fatigue effects.
After every condition had been measured once, the order of conditions
was reversed for the second set of measurements in order to, at least part-
ly, compensate for possible learning effects in these baselines.

2.4. Data analysis

Data points in graphs showing performance during training corre-
spond to the mean threshold (or mean percentages of correct responses)
across subjects for a given training block. Standard errors of the mean
(s.e.m.) were computed across subjects. To determine a possible improve-
ment of performance during training, we fitted regression lines to the data
of each subject and computed a one sample t test (a = 0.05) comparing the
slopes of regression lines with the hypothesis of no change due to training,
i.e., a slope of zero.

To determine individual pre-training performance, we averaged for
each observer the two thresholds of a given baseline condition (for the
trained condition in Experiments 1 and 2, these are the first two training
blocks). Post-training performance was determined accordingly. Hence,
individual baseline thresholds were determined on the basis of 160 trials
per observer. To compare performance, we computed the ratio of post-
training thresholds to pre-training thresholds for each observer. Data
points in baseline graphs correspond to the mean ratios. Standard devia-
tions (s.d.) were computed across subjects. To determine if learning has
taken place, we computed one sample t tests (a = 0.05) with the hypothesis
of no change in performance, i.e., a ratio of one.

3. Results

3.1. Experiment 1: Spatial position uncertainty during

training

The eye never stays still and therefore stimuli presented
on one constant position at the screen stimulate retinal
positions differing from trial to trial. Obviously, perceptual
learning is possible under such conditions. However, the
exact degree of the variation is unknown. The first predic-
tion of the model states that learning is also possible if the
stimulus position can moderately vary on the screen. To
test this prediction, we presented a line bisection stimulus
with its position randomly chosen in an area of twice the
size of the stimulus itself.

3.1.1. Methods

Nine observers trained with line bisection stimuli with
an outer line distance of 120000 (Fig. 1A). The orientation
of the lines was either vertical (four observers) or horizon-
tal (five observers) but fixed for each subject. The center of
the bisection stimulus appeared in a region from �60000 to
60000 either to the left or right of the center of the screen for
vertical and above and beneath for horizontal lines. Conse-
quently, the position of the whole stimulus array was var-
ied (pseudo)-randomly from trial to trial within an area
240000 wide, twice the size of the entire bisection stimulus.
Hence, the leftmost line in one trial could be presented at
the same position as the rightmost line in another trial.
Subjects were trained in 14 blocks comprising 1120 trials.

Before and after training, we determined performance
for the trained line bisection stimulus with its position fixed
at the center, for a dot bisection stimulus, and for a line
bisection stimulus oriented orthogonally to the trained
stimulus. The stimulus position for dot and orthogonal
stimuli was randomized from trial to trial as in the trained
condition. Outer element distance was 120000 in all
conditions.

3.1.2. Results and discussion

Performance improves with a mean slope of linear
regression lines of �1.62 during training (one sample t test,
p value: 0.014; Fig. 3A). For seven observers, individual
regression lines had negative slopes ranging from �0.71
to �4.11. Performance remained constant for one observer
(slope: 0.01) and deteriorated slightly for another one
(slope: 0.87).

For baseline conditions, mean ratios of post- to pre-
training performance are plotted in Fig. 3B. The ratio for
the trained, ‘jittered’ line bisection stimulus was significant-
ly below one indicating that training had taken place (mean
ratio: 0.66; one sample t test, p value: 0.005). We found a
similar improvement of performance for the line bisection
stimulus with fixed position (mean ratio: 0.73; one sample
t test, p value: 0.012). The mean threshold difference
between this stationary and the ‘‘random’’ line condition
was 1.500 in the pre- and �2.400 in the post-training measure-
ments. Hence, randomizing the position of the line bisec-
tion stimulus yields comparable performance to a
stationary line bisection stimulus.

No significant change in performance occurs for the dot
bisection stimulus (mean ratio: 1.03). On average, there
was a slight improvement of performance for the orthogo-
nal stimulus (mean ratio: 0.91), however, this was non-sig-
nificant and mainly caused by one observer.
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As predicted by the model, the human brain can
improve performance with line bisection stimuli even
though the positional variation of the bisection stimulus
is about a factor of 50 larger than bisection acuity thresh-
olds (see Fig. 2B, ‘‘error rates’’).

Moreover, this experiment clearly demonstrates that
perceptual learning occurs under position variant condi-
tions even if subjects would fixate perfectly.

3.2. Experiment 2: Transfer of learning

In the last experiment, the position of the bisection stim-
ulus was varied. Strong transfer of learning occurred to a
condition when the stimulus was displayed constantly at
the same position in accordance with the first prediction
of the model. In the second experiment, observers trained
line bisection at a constant stimulus position with a line
bisection stimulus of an outer line distance of 120000. In
the first part of the experiment, we determined the degree
of transfer to a number of line stimuli with different outer
line distances. In the second part, we reduced the number
of baseline conditions to avoid possible training effects dur-
ing extensive baseline testings. In both parts, we were par-
ticularly interested whether or not negative transfer occurs
with one of these distances as the second prediction states.

3.2.1. Methods

Eight observers participated in the first part of the
experiment. In the training session, we presented a line
bisection stimulus with an outer line distance of 120000

(Fig. 1A). The lines were oriented either vertically (six
observers) or horizontally (two observers). The orientation
was constant for each subject. Stimuli were presented
always in the center of the screen. Subjects were trained
in 14 blocks comprising 1120 trials.

The model predicts that negative transfer occurs for
some outer line distances relative to the trained distance.
However, the model did not confidently predict quantita-
tively the exact distances at which this negative transfer
occurs. Therefore, we determined pre- and post-training
performances for a variety of outer line distances to cover
a wide range. We tested distances between 60000 and 140000

in steps of 20000 for three subjects and between 60000 and
360000 in steps of 60000 for another three subjects. Two
observers were tested over the whole set of distances.

For all observers, we determined pre- and post-training
performance for a dot, a dot-line-dot, and a line bisection
stimulus with a line length of 60000, i.e., half the length of
the trained stimulus (see Figs. 1B–D). The distance
between the outer elements in these conditions was 120000

as in the trained condition.
In the second part of the experiment, five additional

observers joined. These observers were trained as in the
first part. In order to avoid possible training effects
throughout the large number of baseline conditions in the
first part of the experiment, baseline performance was
determined only with dot bisection with an outer dot dis-
tance of 120000 and line bisection with an outer line distance
of 160000.

3.2.2. Results and discussion

In the first part of the experiment, line bisection
improved significantly with a mean slope of linear
regression lines of �0.62 during training (one sample t test,
p value: 0.017; Fig. 4A). For seven observers, regression
lines had negative slopes ranging from �0.38 to �1.66;
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performance remained constant for one observer (slope:
0.01). Moreover, the ratio of post- to pre-training perfor-
mance was significantly below one (Fig. 4D; LLL, mean
ratio: 0.73; one sample t test, p value: 0.008).

Mean ratios of post- to pre-training performance for
line bisection stimuli with various outer line distances are
plotted in Fig. 4B and C. Performance seems to remain
constant or to improve slightly. For outer line distances
of 80000 and 300000, the ratio of post- to pre-training perfor-
mance was significantly below one (post hoc analysis:
Fig. 4B, 80000; mean ratio: 0.75; one sample t-test, p value:
0.024; Fig. 4C, 300000; mean ratio: 0.76; one sample t test, p

value: 0.041). In summary, we do not find any indication
for negative transfer.

Baseline threshold ratios for dot, dot-line-dot, and small
line bisection stimuli are plotted in Fig. 4D. No change in
performance occurs. These results show that the tentative
improvement of performance cannot be attributed to learn-
ing of unspecific factors such as accommodation of the
eyes, attentional allocation, or coping with the task in
general.

Extensive testing of pre- and post-training conditions in
the first part of this experiment may have yielded some
improvement of performance and, thus, prevented observ-
ers from producing negative transfer. For this reason, five
additional observers joined the second part of the experi-
ment in which we tested only two baseline conditions
(Fig. 5). Performance seems to improve with a mean slope
of linear regression lines of �0.87 during training but the
improvement fails to be significant because of one outlier
(one sample t test, p value: 0.088). For four observers,
regression lines had negative slopes ranging from �0.55
to �1.73 whereas performance deteriorated slightly for
one observer (slope: 0.47). The mean threshold ratio was
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below one (mean ratio: 0.78), however, improvement failed
to be significant due to the outlier as well (one sample t test,
p value: 0.069).

Also in this experiment, there seems to be no evidence
for negative transfer of performance since for line bisection
with an outer line distance of 160000 performance slightly
improves but at least seems not to deteriorate (mean ratio:
0.96). Hence, we do not find evidence for the prediction of
negative transfer neither in the first nor the second part of
the experiment.

3.3. Experiment 3: Training with variable stimulus

dimensions

In the last experiment, observers trained with one line
bisection stimulus. Prediction three states that learning is
strongly diminished when bisection stimuli with two differ-
ent outer line distances are presented randomly interleaved.
This prediction is tested here.

3.3.1. Methods

In the first part of the experiment, nine subjects were
trained with vertical line bisection stimuli (Fig. 1A) with
outer line distances of 120000 and 180000 (pseudo)-randomly
interleaved between trials. Subjects were informed that
either one of these two different line bisection stimuli was
presented. Before and after training, we determined perfor-
mance for each outer line distance separately with the
adaptive method (PEST) in two blocks.

For five observers, thresholds for both bisection stimuli
were determined by two independent staircase procedures
during the training blocks. To achieve reliable thresholds,
60 line bisection stimuli of each outer line distance were
presented per block. Observers were trained in 16 blocks,
i.e., 1920 trials (plus 320 trials in baseline conditions).
For four additional observers, we determined the per-
centage of correct responses during the training session.
This is to avoid confusion of observers with rapidly
changing positions of the central line during two inter-
leaved staircase procedures. Moreover, learning is often
faster with constant stimuli since this method avoids pre-
sentation of supra-threshold offset values that are often
useless for the learning since performance is already per-
fect for those stimuli (Ahissar & Hochstein, 1997; Herzog
& Fahle, 1998). For each observer, offset sizes were cho-
sen individually aiming to achieve a performance level
around 65-70% for each of the two bisection stimuli at
the beginning of the training session. Offset sizes ranged
from 2000 to 4000 at 120000 and from 3000 to 5000 at 180000

outer line distance. Observers were trained in 24 blocks
each consisting of 40 trials of each outer line distance,
i.e., 1920 trials.

In the second part, we tested further pairs of outer line
distances to better cover the parameter space. For five
observers, we used 120000 and 240000 and for another five
subjects 80000 and 140000 as outer line distances. Again, we
used the percentage of correct responses to determine per-
formance during the training session. For outer line dis-
tances of 120000 and 240000, the central line offset sizes
ranged from 1500 to 3500 and 3100 to 7500, respectively. For
outer line distances of 80000 and 140000, the central line offset
sizes ranged from 1000 to 2000 and 1300 to 2500, respectively. In
the case of outer line distances of 120000 and 240000, we used
diagonal line bisection stimuli (the whole horizontal stimu-
lus array (Fig. 1A) is rotated 45 deg counterclockwise) for
three observers and vertical lines for two observers. In the
case of 80000 and 140000 outer line distances, we used hori-
zontal lines. Subjects trained the interleaved tasks in 12
blocks consisting of 40 trials of each outer line distance
(960 trials).
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Fifteen observers participated in this experiment, and
three joined in more than one training condition. For these
observers orientation of bisection stimuli was changed.
Moreover, there were several weeks between testing differ-
ent conditions. Results of these observers seem not to differ
from those observers participating in one condition only.

3.3.2. Results and discussion

In the first part of the experiment, performance seems
not or only weakly to improve during training in the mean
of nine observers (Fig. 6A and B). Please note that the
amount of training was more than doubled in comparison
with Experiments 1 and 2 (1920 versus 800 trials between
baselines). In case of an outer line distance of 120000, two
observers showed an initial performance level above the
predefined range from 65% to 70%.

Whereas there seems to be no obvious improvement
during training, post-training is better than pre-training
performance for the 120000 condition (Fig. 6C, mean ratio:
0.83). However, improvement fails to be significant (one
sample t test, p value: 0.094). For the outer line distance
of 180000, performance remains almost unchanged (mean
ratio: 0.97).

Thresholds in the baseline conditions were determined
for each outer line distance separately whereas presentation
was interleaved during training. Still, baseline and training
thresholds are in the same range. Therefore, an interleaved
presentation seems to disturb learning whereas not per-
forming the task itself.

When outer line distances of 120000 and 240000 are inter-
leaved (Fig. 7A and B), performance seems to improve
slightly during training (mean slopes: 0.49/0.37). However,
baseline performance remains almost unchanged (120000,
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Interleaved training with two different outer line distanc-
es seems to make learning with either distance rather diffi-
cult compared to Experiments 1 and 2. It is surprising to
find strong learning if the position of the entire stimulus
is randomly chosen (Fig. 3) but no or only weak learning
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line distances. It seems that stronger improvement occurs
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of random overall position than for stimuli with varying
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The model suggests that different, even conflicting,
recurrent networks are needed if bisection stimuli with
more than one outer line distance have to be trained. Since
perceptual learning involves learning the optimal recurrent
network for each condition, one might expect that inter-
leaving the conditions during learning makes it impossible
to learn either network and, thus, no or diminished
improvement of performance should result in either condi-
tion. This is what we found.

4. Discussion

4.1. Learning under uncertainty in spatial positions

In Experiment 1, we presented the line bisection stimu-
lus with a substantial spatial jitter during the training
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session. Strong learning (Fig. 3A) and positive transfer to a
centrally presented line stimulus with a constant spatial
position occurs (Fig. 3B). Moreover, varying the stimulus
position seems not to make learning less effective since
the ratio of post- to pre baseline performance is compara-
ble regardless of whether subjects were trained in condi-
tions with randomized or fixed stimulus position (Figs.
3B, 4D, and 5B). These results are in good accordance with
the model prediction. Since our model does not specify the
learning algorithm for the recurrent weights, it does not
predict whether learning should be faster with or without
varying the stimulus positions, other than that they should
both be effective.

Line bisection learning does not transfer to dot bisection
or to an orthogonal line stimulus. Hence, learning is specif-
ic for the stimulus orientation and type but not for its exact
position during learning. Westheimer, Crist, Gorski, and
Gilbert (2001) found a pronounced transfer from line to
dot bisection stimuli. The difference in transfer between
their and our study might be explained by the fact that
we trained our observers foveally while Westheimer et al.
(2001) trained their subjects at 3.5 deg peripherally.

In Crist et al. (1997), bisection was trained at one
peripheral position and pre- and post-training conditions
were determined at other peripheral positions for the same
line bisection stimulus. Results show some position speci-
ficity as well as a strong component of transfer across posi-
tional changes up to 8 deg (these results are in contrast to
findings with vernier acuity in which no transfer between
peripheral positions was found when observers had previ-
ously been trained to attend to the periphery; Fahle
et al., 1995).

It is surprising that bisection learning is very unspecific
for the exact position of training but very specific for the
exact stimulus type. Hence, a fine tuning of neurons dedi-
cated to spatial separation analysis at one spatial location
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only is very unlikely the cause for perceptual learning. On
the other hand, high level unspecific learning related to
keeping the eyes fixed, improving accommodation, learning
the motor responses, or adjusting overall decision criteria is
unlikely either for the same reason. The specificity for the
exact type of stimulus, moreover, rules out the possibility
that improvement is based only on unspecific recruitment
of neural resources as it is proposed to occur, for example,
with training in the auditory system (Recanzone, Schreiner,
& Merzenich, 1993). Our experiments indicate the strong
need for incorporating a ‘‘form’’ analyzing component
involved in the learning of spatial separation as proposed
by Westheimer et al. (2001).

Our results are in good agrement with those of other
learning experiments in which the position of stimuli
between trials was permanently varied. For example, Sire-
teanu and Rettenbach (1995, 2000) showed that in visual
search experiments serial processing becomes parallel while
the position of target and distractors varied.

In our experiments, we focus on the positional variation
from trial to trial rather than on a positional jitter occur-
ring during one trial caused by tremor or microsaccades
that may improve performance (e.g., Greschner, Bongard,
Rujan, & Ammermuller, 2002; Hennig, Kerscher, Funke,
& Wörgötter, 2002).

Our results indicate that perceptual learning with bisec-
tion stimuli is accomplished after at least some spatial
invariance is reached, and our model (Zhaoping et al.,
2003) suggests that modifications of lateral connections in
V1 may be partly responsible (Crist et al., 2001; Furman-
ski, Schluppeck, & Engel, 2004; Ghose, Yang, & Maunsell,
2002; Schoups, Vogels, Qian, & Orban, 2001; Schwartz,
Maquet, & Frith, 2003; Skrandies & Fahle, 1994; but see
Mollon & Danilova, 1996).

4.2. Negative transfer between conditions of different

dimensions

The model was not definitive concerning at which outer
line distance negative transfer would occur for line bisec-
tion stimuli. Therefore, we tested a large range of outer
line distances. Bisection learning for a line bisection stim-
ulus with an outer line distance of 120000 seems to transfer
to outer line distances from 60000 up to 300000 (Fig. 4B and
C). Our data, averaged over the subjects, indicate that no
negative transfer occurred. This holds regardless of
whether pre-training is rather extensive or restricted to
two conditions (Fig. 5B). Still, we cannot exclude that
negative transfer may be found in some conditions not
tested. Moreover, negative transfer might occur for differ-
ent observers at different outer line distances and, there-
fore, may be obliterated in the averaged data. Also,
negative transfer might correlate with the strength of
learning. Indeed, a post-hoc analysis of data presented
in Fig. 4C showed that among the four subjects who
improved in the trained outer-distance condition, the
strongest negative transfer was observed for the two sub-
jects who improved most in the trained condition. Howev-
er, more subjects are needed for a more sophisticated
analysis.

Crist et al. (1997) found strong transfer of improvement
when doubling the outer line distance from a trained to an
untrained line distance in an extended nine week training
paradigm with stimuli presented 5 deg peripherally. The
authors determined pre- and post-learning performance
only for this untrained outer line distance and, hence, did
not address negative transfer.

4.3. No learning for variable stimulus dimensions

In Experiment 3, learning is strongly diminished when
line bisection stimuli with two outer line distances are pre-
sented randomly interleaved according to the third model
prediction.

These results are in good agreement with the findings of
Adini, Sagi, and Tsodyks (2002), Adini, Wilkonsky, Has-
pel, Tsodyks, and Sagi (2004), Yu, Klein, and Levi
(2004). In these studies, no learning occurs in a contrast
discrimination task if the reference contrasts are unpredict-
ably interleaved (contrast roving). Yu et al. (2004) explain
their results as evidence for an improvement of templates
whereas our computer simulations favor an explanation
in terms of recurrent connections (Zhaoping et al., 2003).

There seems to be some positive but at least no negative
transfer from one to another outer line distance (Fig. 4)
while learning is strongly diminished when two outer line
distances were trained simultaneously (Figs. 6 and 7). This
might be explained by the different temporal ordering of
stimuli in the experiments. Kuai, Zhang, Klein, Levi, and
Yu (2005) showed that a fixed temporal stimulus pattern-
ing can enable perceptual learning for contrast and motion
direction discrimination, which are ‘‘unlearnable’’ if differ-
ent stimulus alternatives are randomly interleaved (see also
Liu & Vaina, 1998).

4.4. Summary

Perceptual learning requires the ability of the human
brain to cope with positional uncertainties. Indeed, this
was experimentally found (Fig. 3). Mathematically, coping
with spatial uncertainties changes the decision problem
from linear to non-linear (Zhaoping et al., 2003). A non-
linear model suggests that learning two outer line distances
simultaneously would require the creation, on the same
neural population, of two set of recurrent connections,
one for each outer line distance. Since these two sets of con-
nections are likely to conflict with each other, learning
would be difficult or impossible as found in our data (Figs.
6 and 7). However, the prediction of negative transfer,
implied by this model, could not be verified (Figs. 4 and
5). Hence, while non-linear recurrent networks may achieve
positional invariance, the brain is able to prevent negative
transfer by learning mechanisms not considered by our
model.
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