
Journal of Computational and Applied Mathematics 234 (2010) 505–511

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A neural network for solving a convex quadratic bilevel programming
problemI

Yibing Lv a,∗, Zhong Chen a, Zhongping Wan b
a School of Information and Mathematics, Yangtze University, Jingzhou 434023, PR China
b School of Mathematics and Statistics, Wuhan University, Wuhan 430072, PR China

a r t i c l e i n f o

Article history:
Received 30 December 2008
Received in revised form 1 August 2009

Keywords:
Convex quadratic bilevel programming
Asymptotic stability
Neural network
Optimal solution

a b s t r a c t

A neural network is proposed for solving a convex quadratic bilevel programming problem.
Based on Lyapunov and LaSalle theories, we prove strictly an important theoretical result
that, for an arbitrary initial point, the trajectory of the proposed network does converge
to the equilibrium, which corresponds to the optimal solution of a convex quadratic
bilevel programmingproblem.Numerical simulation results show that the proposedneural
network is feasible and efficient for a convex quadratic bilevel programming problem.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Bilevel programming (BLP) has increasingly been addressed in the literature, both from the theoretical and computational
points of view [1,2]. It is characterized by the existence of two optimization problems in which the constraint region of the
first-level problem is implicitly determined by another optimization problem. The BLP problem is hard to solve. In fact, the
problem has been proved to be NP-hard [3].
However, the BLP problem is used so extensively in resource allocation, finance budget, price control, transaction

network, etc. [4] that many researchers have devoted attention to this field, which leads to a rapid development in theories
and algorithms. For detailed expositions, the reader may consult [1,2,5,6].
It is well known that neural network has become an important computing implement, which can provide real-time

optimal solutions for some practical optimization problems. In fact, there have been various types of neural networks
proposed for solving linear programming, nonlinear programming, variational inequalities, etc., we cite for example [7–13].
Although there have been various types of analogue neural networks proposed for computation, there are only several

reports on solving BLP problemusing neural network approach. Sheng [14] firstly proposed a neural network approach based
on Frank–Wolfe method for solving a class of BLP problems. However, the neural network proposed in [14] is only used to
solve some linear and nonlinear programs appearing in the algorithm. Shin [15] and Lan [16] proposed neural network for
solving linear BLP problem respectively. Recently, Lv [17] designed a neural network for nonlinear BLP problem. Note that
the performance of the neural network proposed in [17] depending on the choice of the initial point. If the initial point
chosen is not appropriate, the neural network may not get the optimal solution of the nonlinear BLP problem.
Here, for the convex quadratic BLP problem we will propose a neural network that is globally and asymptotically stable.

That means, for an arbitrary initial point, the trajectory of the neural network will converge to the optimal solution of
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the convex quadratic BLP problem. The rest of the paper is organized as follows. In Section 2, following the method of
replacing the lower level problem by its Kuhn–Tucker optimality conditions, we reduce the nonlinear BLP problem to a
regular nonlinear programmingwith complementary constraints. Thenwe smooth the regular nonlinear programmingwith
complementary constraints. In Section 3, a novel neural network is proposed and asymptotic stability of the equilibrium is
analyzed. The numerical experiments are given in Section 4 to substantiate the theory. Finally we summarize the paper with
some comments.

2. Convex quadratic BLP problem and smoothing method

Let x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, F : Rn×m → R1, f : Rn×m → R1, quadratic BLP problem can be written as [1]:

(UP) min
x≥0
F(x, y) =

1
2

(
xT yT

) (C1 C3
CT3 C2

)(
x
y

)
+ c1x+ d1y

(LP) s.t. min
y≥0
f (x, y) =

1
2
yTQy+ yTDx+ dT2y (1)

s.t. Ax+ By ≤ b

where c1 ∈ Rn, d1, d2 ∈ Rm, C1 ∈ Rn×n, Q , C2 ∈ Rm×m, CT3 ∈ R
m×n, A ∈ Rq×n, B ∈ Rq×m, b ∈ Rq. The term (UP) is called upper

level problem and (LP) is called lower level problem, and correspondingly the terms x, y are the upper level variable and
the lower level variable respectively.
Throughout the rest of the paper, we make the following assumptions:

(H1) C =
(
C1 C3
CT3 C2

)
and Q are respectively positive semi-definite and positive definite matrices.

(H2) The constraint region of the above BLP problem S = {(x, y) : x ≥ 0, y ≥ 0, Ax+ By ≤ b} is nonempty and compact.

If the assumption (H1) is satisfied, then the corresponding bilevel programming (1) is called convex quadratic bilevel
programming (CQBP). In addition, if the assumption (H2) is satisfied, then problem (1) has optimal solutions [18].
Following the above assumptions, we can reduce the BLP problem to the one-level programming problem [1]:

min F(x, y)
s.t. Ax+ By ≤ b

Qy+ Dx+ d2 + BTu− v = 0 (2)
uT (b− Ax− By) = 0
vTy = 0
x, y, u, v ≥ 0

where u ∈ Rq, v ∈ Rm.
Problem (2) is non-convex and non-differentiable, moreover the regularity assumptions which are needed for

successfully handling smooth optimization problems are never satisfied and it is not good for using the neural network
approach to solve problem (2). But fortunately, Dempe [2] presents smoothing method for the BLP problem and the similar
method is also presented in [19] for programs with complementary constraints. Following this smoothing method we can
propose a neural network approach for problem (1).
Let ε ∈ R+ be a parameter. Define the functionΦε : R2 → R by

Φε(a, b) =
√
a2 + b2 + ε − a− b.

The important property of this function can be stated in the following result.

Proposition 1. For every ε > 0, we have

Φε(a, b) = 0⇔ a > 0, b > 0, ab =
ε

2
.

The above proposition is obvious, and the proof is omitted. It is noted that Φε(a, b) is smooth with respect to a, b for ε > 0.

Remark. The definition of the functionΦε(a, b) is inspired from the definition of perturbed Fischer–Burmeister function [2],
which is used to smooth the programming problem with complementary constraints. In fact, if we add minus sign to
perturbed Fischer–Burmeister function, then we can get the expression of the function Φε(a, b). The reason why we adopt
the function Φε(a, b) to smooth problem (2) is that the smoothed problem can have convexity, and this can be shown in
Proposition 3.
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Before presenting the smoothed problem, we firstly give the following proposition.

Proposition 2. For x ∈ Rn, we have

x ≥ 0⇔
1
2
xT (x− |x|) = 0.

Moreover, 12x
T (x− |x|) is continuous and convex.

Proof. Following the definition of continuity and convexity. Proposition 2 can be obtained immediately. �

Remark. The function of Proposition 2 is that we need not introduce slackness variables for the inequality constraints.
Then, compared with the neural network proposed in [17], the structure of the neural network proposed in this paper can
be simplified.

Using the functionΦε(a, b) and following Proposition 2, problem (2) can be approximated by

min F(x, y)
s.t. Qy+ Dx+ d2 + BTu− v = 0√

u2i + (b− Ax− By)
2
i + ε − ui − (b− Ax− By)i = 0, i = 1, . . . , q (3)√

v2j + y
2
j + ε − vj − yj = 0, j = 1, . . . ,m

1
2
xT (x− |x|) = 0.

Proposition 3. If the assumption (H1) is satisfied, then problem (3) is convex programming.

Proof. Following the definition of convex programming [20] and through simple verifying calculation, Proposition 3 can be
obtained immediately. �

Following problem (3), we overcome the difficulty that problem (2) dose not satisfy any regularity assumptions, which
are needed for successfully handling smooth optimization problems, and pave the way for using neural network approach
to solve problem (2). To simply our discussion, we introduce the following notations.

F ′(x, y, u, v) = F(x, y), H(x, y, u, v) =


Qy+ Dx+ d2 + BTu− v

Φε(ui, (b− Ax− By)i), i = 1, . . . , q
Φε(yj, vj), j = 1, . . . ,m

1
2
xT (x− |x|)

 .
Let zT = (xT , yT , uT , vT ), then problem (3) can be written as:

min F ′(z)
s.t. H(z) = 0. (4)

Definition 1. Let z be a feasible point of problem (4). We say that z is a regular point if the gradients ∇H1(z), . . . ,
∇H2m+q+1(z) are linearly independent.

Similar to the main result in [2] (Theorem 6.11), we can have the following result.

Theorem 1. Let {zε} be a sequence of solutions of problem (4). Suppose that the sequence {zε} converges to some z̄ for ε→ 0+.
If z̄ is a regular point, then z̄ is a Bouligand stationary solution for the CQBP problem (1).

3. Neural network for CQBP problem

3.1. Definition of the neural network

We can definite the following Lagrange function of problem (4).

L(z, µ) = F ′(z)+
2m+q+1∑
k=1

µkHk(z)

where µ ∈ R2m+q+1 is referred as the Lagrange multiplier.
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Theorem 2. If there exists (z∗, µ∗), such that the following equalities are satisfied

∇zL(z∗, µ∗) = 0, H(z∗) = 0.

Then, z∗ is an optimal solution of problem (4).

Proof. From Proposition 3, we know firstly that problem (4) is convex programming. Following the sufficient optimality
conditions of the convex programming, Theorem 2 can be obtained immediately. �

By Theorem 2, the energy function of problem (4) can be constructed as follows:

E(z, µ) =
1
2
‖∇zL(z, µ)‖2 +

1
2
‖H(z)‖2.

Then we can use the gradient system to construct the following neural network for solving CQBP problem:
dz
dt
= −∇zE(z, µ)

dµ
dt
= −∇µE(z, µ).

(5)

That is
dz
dt
= −∇

2
zzL(z, µ) · ∇zL(z, µ)− H

T (z) · ∇zH(z)

dµ
dt
= −∇

2
zµL(z,mu) · ∇zL(z, µ).

3.2. Stability analysis

Let ηT = (zT , µT ), we can have the following theorem.

Theorem 3. Suppose that the neural network (5) has unique equilibrium point η∗, then η∗ is uniformly and asymptotically stable.

Proof. Let V (η) = E(η) − E(η∗) = E(η) ≥ 0, then ∀η 6= η∗, V (η) > 0. That is to say, V (η) is a positive definite function.
Moreover, given an arbitrary initial point η0, there exists an unique trajectory η = η(t, η0) of the system in (5), along it
there is

d
dt
V (η) =

d
dt
V [η(t, η0)]

= ∇V (η)T ·
dη
dt

= −‖∇E(η)‖2 < 0.

By the Lyapunov Theorem, η∗ is uniformly and asymptotically stable. �

The following theorem shows that under some conditions, the trajectory does converge to the equilibrium of the neural
network (5).

Theorem 4. Suppose that the level set L(η0) = {η : E(η) ≤ E(η0)} is bound, then there exists an equilibrium point η̄ and a
strictly increasing sequence {tn} (tn ≥ 0), such that

lim
n→+∞

η(tn, η0) = η̄, ∇E(η̄) = 0.

Proof. Firstly, we will prove the following two results.
(a) The energy function E(η(t, η0)) is monotone non-increasing along the trajectory η = η(t, η0).
In fact, following Theorem 3 the result (a) is obvious.
(b)Ω = {η(t, η0) : t ≥ 0} is a bound positive semi-trajectory.
In fact, E(η) is bound from below and a continuous function, thus by (a), the level set L(η0) is a bound closed set and

Ω ⊆ L(η0).

Hence, η(t, η0) (t ≥ 0) is a bound positive semi-trajectory.
Now, we will prove limn→+∞ η(tn, η0) = η̄.
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Table 1
The comparison of the optimal solution.

Examples in this paper Optimal solution (x∗, y∗) corresponding to different ε Optimal solution (x∗, y∗) from the references
ε = 0.01 ε = 0.001 ε = 0.0001

Example 1 (4.98, 2.01) (5.0, 2.0) (5.0, 2.0) (5.0, 2.0)
Example 2 (0.62, 0.39, 0, 0, 1.83) (0.61, 0.39, 0, 0, 1.83) (0.61, 0.39, 0, 0, 1.83) (0.609, 0.391, 0, 0, 1.828)
Example 3 (1.01, 0.01, 1.0) (1.0, 0, 1.0) (1.0, 0, 1.0) (1.0, 0, 1.0)

Firstly, Ω is a bound set of points. Take strictly increasing sequence t̄n, 0 ≤ t̄1 < t̄2 < · · · < t̄n → +∞, then η(t̄n, η0)
is a bound sequence composed of infinitely points. Then there exists a limiting point η̄, that is to say, there exists a strictly
increasing subsequence {tn} ⊆ {t̄n}, tn →+∞ such that

lim
n→+∞

η(tn, η0) = η̄.

Finally, we prove that ∇E(η̄) = 0.
By (a), E(η) is a Lyapunov function. E(η̄) = 0 ⇔ ∇E(η̄) = 0. By LaSalle invariance principle [21], η(t, η0) → S ′

(t →+∞) (S ′ is the largest invariant set in the set of equilibrium points), that is, there exists a sequence {tn} (tn ≥ 0) such
that

lim
n→+∞

η(tn, η0) = η̄, ∇E(η̄) = 0.

The proof is completed. �

The following theorem shows that the neural network (5) is globally and asymptotically stable.

Theorem 5. Suppose that the neural network (5) has unique equilibrium point and the level set L(η0) = {η : E(η) ≤ E(η0)} is
bounded. Then every trajectory of network (5) converges to the optimal solution η∗ of problem (4), i.e. the optimal solution η∗ is
globally and asymptotically stable.

Proof. Following Theorems 3 and 4, this theorem is obvious. �

4. Numerical experiments

Now, we are in the position to give some examples to illustrate the neural network approach for the CQBP problem.

Example 1 ([1]). Consider the following nonlinear BLP problem, where x ∈ R1, y ∈ R1.

min
x≥0
F(x, y) = (x− 5)2 + (2y+ 1)2

s.t. min
y≥0
f (x, y) = (y− 1)2 − 1.5xy

s.t. − 3x+ y+ 3 ≤ 0
x− 0.5y− 4 ≤ 0
x+ y− 7 ≤ 0.

After applying the Kuhn–Tucker transformation and the smoothing method, the above problem reduces to a problem
similar to problem (3). Then similar to problem (5), we can get a set of ordinary differential equations, which describes the
transient behavior of the neural network, and adopt the classical fourth order Runge–Kutta method to solve these ordinary
differential equations.
We make program with Microsoft Visual C++ 6.0 and use a personal computer (CPU: Intel Pentium 2.1 GHz, RAM:

512 MB) to execute the program. Following Theorem 1, we let ε have different small values and Table 1 presents the
different optimal solutions of Example 1 over the different ε. The initial condition is (x, y, u1, u2, u3, v) = (1, 1, 1, 1, 1, 1)
and (µ1, µ2, µ3, µ4, µ5, µ6) = (1, 1, 1, 1, 1, 1). Fig. 1 shows the transient behavior of the variables in Example 1 (ε =
0.001). In addition, we take randomly other three different initial points γ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), γ2 = (1, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0), γ3 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1). The simulation calculations show that every trajectory, which
is corresponding to the different initial point γ1, γ2, γ3, of the neural network does converge to the optimal solution
(x∗, y∗) = (5.0, 2.0). The numerical results accord with the result proven in Theorem 5.
Noted that for the convex quadratic BLP problem, Muu [22] presented a global optimization approach based on branch-

and-bound method. All the test problems in [22], i.e. the following Exams. 2 and 3, are solved using the neural network
approach proposed in this paper, the results are listed in Table 1. Compared with the method in [22], the neural network
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Fig. 1. The transient behavior of the variables in Example 1.

approach has the following features:

(i) The construction and realization of the neural network is simple. In fact, we can get the neural network of the CQBP
problem just using the Lagrange function of the smoothed problem, and the neural network can be realized by the
classical fourth order Runge–Kutta method.

(ii) The neural network approach has rapid convergence capability, and this feature can be verified by the fact that all the
test problems in this paper can be solved in several seconds.

Example 2 ([22]).

min
x
−7x1 + 4x2 + y21 + y

2
3 − y1y3 − 4y2

s.t. x1 + x2 ≤ 1
x1, x2 ≥ 0

min
y
(1− 3x1)y1 + (1+ x2)y2 + y21 +

1
2
y22 +

1
2
y23 + y1y2

s.t. x1 − 2x2 + 2y1 + y2 − y3 + 2 ≤ 0
y1, y2, y3 ≥ 0.

Example 3 ([22]).

min
x
x2 − 4x+ y21 + y

2
2

s.t. 0 ≤ x ≤ 2
min
y
y21 + 0.5y

2
2 + y1y2 + (1− 3x)y1 + (1+ x)y2

s.t. 2y1 + y2 − 2x ≤ 1
y1, y2 ≥ 0.

5. Conclusion

In this paper we present a novel neural network for the CQBP problem, and the numerical results show that the
computed results converge to the optimal solution with the decreasing of the parameter ε, which corresponds to the result
in Theorem 1. In fact, a mass of additional numerical experiments show that we can get a satisfying approximate solution
of the CQBP problem when we take ε = 0.01.
The distinguishing feature of the proposed neural network is that for an arbitrary initial point, the trajectory of the neural

network does converge to the equilibrium point, which is also an optimal solution of the CQBP problem. Then the neural
network proposed in this paper has better calculation perspective.
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