JOURNAL OF NUMBER THEORY 19, 131-139 (1984)

View-Obstruction Problems, III

T. w. CUSICK*

Department of Mathematics, State University of New York, Buffalo, New York 14214

AND

CARL POMERANCE*

Department of Mathematics, University of Georgia, Athens, Georgia 30602

Communicated by P. T. Bateman

Received January 4, 1982: revised March 22, 1983

Suppose C is a closed convex body in $Eⁿ$ which contains the origin as an interior point. Define aC for each real number $\alpha \geq 0$ to be the magnification of C by the factor a and define $C + (m_1, ..., m_n)$ for each point $(m_1, ..., m_n)$ in E^n to be the translation of C by the vector $(m_1,..., m_n)$. Define the point set $\Delta(C, \alpha)$ by $\Delta(C, \alpha) =$ $\{\alpha C + (m_1 + \frac{1}{2}, ..., m_n + \frac{1}{2}); m_1, ..., m_n\}$ nonnegative integers). The view-obstruction problem for C is the problem of finding the constant $K(C)$ defined to be the lower bound of those α such that any half-line L given by $x_i = a_i t$ ($i = 1, 2,..., n$), where the a_i ($1 \leq i \leq n$) are positive real numbers and the parameter t runs through $(0, \infty)$, intersects $\Delta(C, \alpha)$. The paper considers the case where C is the ndimensional cube with side 1, and in this case the constant $K(C)$ is evaluated for $n = 4$. The proof in dimension 4 depends on a theorem (proved via exponential sums) concerning the existence of solutions for a certain system of simultaneous congruences. The proofs in dimensions 2 and 3 are much simpler, and for these dimensions several other proofs have previously been given. For real x, let $\|x\|$ denote the distance from x to the nearest integer. A non-geometric description of our principal result is that we prove the case $n = 4$ of the following conjecture: For any *n* positive integers $w_1, ..., w_n$ there is a real number x such that each $||w_i x|| \geqslant (n + 1)^{-1}$. © 1984 Academic Press, Inc.

1, INTRODUCTION

The view-obstruction problems defined in the abstract were first introduced in [2]. In this paper we only consider the case where the closed convex body C in $Eⁿ$ is the *n*-dimensional cube with side 1. We use the notation $\lambda(n)$ for the constant $K(C)$ in this case.

^{*} Research supported in part by an NSF grant.

For any real number x, let $||x||$ denote the distance from x to the nearest integer. The evaluation of $\lambda(n)$ can be thought of as a problem in Diophantine approximation, since we have

$$
\frac{1}{2}\lambda(n) = \sup \min_{0 \le x \le 1} \max_{1 \le i \le n} \|w_i x - \frac{1}{2}\|,\tag{1}
$$

where the supremum is taken over all *n*-tuples $w_1, ..., w_n$ of positive integers. Formula (1) follows from the definition of $\lambda(n)$ given in the abstract; we note that the positive real numbers a_i mentioned in the abstract can be assumed to be positive integers. If we define

$$
\kappa(n) = \inf_{0 \le x \le 1} \max_{1 \le i \le n} \|w_i x\|,\tag{2}
$$

where the infimum is taken over all *n*-tuples $w_1, ..., w_n$ of positive integers, then since $||w_i x|| = \frac{1}{2} - ||w_i x - \frac{1}{2}||$, we have $\lambda(n) = 1 - 2\kappa(n)$ for each $n \ge 2$. It will be convenient in the rest of the paper to concentrate on the problem of evaluating $\kappa(n)$.

The problem of evaluating $\lambda(n)$ is equivalent to the following: Suppose the unit cube in $Eⁿ$ has faces which reflect a certain particle, and consider any motion of the particle, *starting in a corner* of the cube and not entirely contained in a hyperplane of dimension $n - 1$. What is the side length of the largest subcube, centered in the unit cube, with the property that there exists such a motion of the particle which does not intersect the subcube? Plainly the largest such side length is $\lambda(n)$.

The corresponding problem, if the condition that the particle start in a corner is omitted, can be treated by methods entirely different from those in this paper. This has been done by Schoenberg [5], who solved this problem in every dimension; he showed that the largest subcube in dimension n has side $1 - n^{-1}$.

The natural conjecture for the value of $\lambda(n)$ is $(n - 1)/(n + 1)$ (as stated in $[2, p. 166]$. This is because Dirichlet's box principle gives

$$
\max_{0 \le x \le 1} \min_{1 \le i \le n} ||ix|| = \frac{1}{n+1},
$$

so $\kappa(n) \leq 1/(n+1)$, and it is reasonable to conjecture that equality holds. That is, we conjecture that for any *n* positive integers $w_1, ..., w_n$, there is a real number x such that each $||w_i x|| \geq (n+1)^{-1}$. The case $n = 2$ is very simple. The case $n = 3$ is more complicated, but several proofs have previously been published (Betke and Wills [l], Cusick [2-4]). The case $n = 4$ is solved here by an extension of the method of [4]. The proof in [4] was elementary, but the crucial step in the argument here is the estimation of

certain exponential sums. The estimation succeeds only if a certain parameter is sufficiently large; dealing with the small values of the parameter requires some ad hoc calculations.

2. THE METHOD OF PROOF

By (2), in order to show that $\kappa(n) = 1/(n + 1)$ it is enough to prove that given any *n*-tuple w_1 ,..., w_n of positive integers with the property that for any integers m and q ,

$$
\left\|w_i \frac{q}{m}\right\| \leqslant \frac{1}{n+1} \qquad \text{for some } i, \quad 1 \leqslant i \leqslant n,
$$
 (3)

there exists some pair m, q such that (3) does not hold if \leq is replaced by \lt .

If we assume (as we may with no loss of generality) that $w_1, ..., w_n$ have no common prime factor, then we would expect that there are only finitely many n-tuples $w_1, ..., w_n$ such that (3) holds for any m and q. Further, we might hope that by considering only finitely many values of m , we could identify all of these *n*-tuples, and so reduce the determination of $\kappa(n)$ to a finite calculation. It is easy to carry out this procedure when $n = 2$, and so prove $\kappa(2) = 1/3$. When $n = 3$, the procedure can also be carried out; this was done in an elementary way in [4]. We apply this method for $n = 4$ in the following section, but the proof is no longer elementary. It is not clear whether the same method would be successful for $n \ge 5$, because of the increasing complexity of the various cases to which the problem would be reduced.

3. THE PROOF THAT $\kappa(4) = 1/5$

In this section, we take $n = 4$ and suppose w_1, w_2, w_3, w_4 are integers, having no common prime factor, such that (3) holds for any integers m and q. Our goal is to show that we can always find a pair of integers m and q such that

$$
\min_{1 \le i \le 4} \left\| w_i \frac{q}{m} \right\| \ge \frac{1}{5}.\tag{4}
$$

If w is not divisible by 5, then $||w/5|| \ge 1/5$, so we can assume that at least one of the w_i , is divisible by 5. Thus there are several cases to consider, and it turns that the only difficult one is the case where exactly one of the w_i is divisible by 5. We dispose of the other cases first.

First suppose that $w_1 = 5^{i+k}a$, $w_2 = 5^{j+k}b$, $w_3 = 5^kc$, $w_4 = d$, where a, b, c, d are not divisible by 5 and $i \ge j \ge 0, k \ge 1$. We take $m = 5^{i+k+1}$ and will choose a q not divisible by 5, so $||w_1 q/m|| \ge 1/5$. In order to specify q, we first choose a $q_0 \neq 0$ mod 5 such that

$$
bx \equiv t_1 \bmod 5^{i-j+1}, \qquad ||t_1/5^{i-j+1}|| \geqslant 1/5 \tag{5}
$$

and

$$
cx \equiv t_2 \bmod 5^{i+1}, \qquad \|t_2/5^{i+1}\| \geqslant 1/5 \tag{6}
$$

both hold with $x = q_0$ for some choice of t_1, t_2 . Such a q_0 exists because there are $3 \cdot 5^i + 5^j$ integers x mod 5^{i+1} for which (5) holds for some t_1 and $3 \cdot 5^{i} + 1$ integers x mod 5^{i+1} for which (6) holds for some t_2 . Hence there are at least $5^{i} + 5^{j} + 1$ integers x mod 5^{i+1} for which both (5) and (6) hold, and of these at least $5^{j} + 1$ are not divisible by 5. We define q to be $q_0 + 5^{i+1}r$, where r is chosen so that $||w_4 q/m|| \ge 1/5$ (such a choice of r is possible since changing r by 1 changes $w_4 q/m$ by $d/5^k$). Clearly we have $||w_1 q/m||$ and $||w_1 q/m|| \ge 1/5$ whatever choice of r is made, so (4) holds with the chosen q.

Now suppose that $w_1 = 5^{j+k}a$, $w_2 = 5^k b$, $w_3 = c$, $w_4 = d$, where a, b, c, d are not divisible by 5 and $j \ge 0$, $k \ge 1$. We take $m = 5^{j+k+1}$ and will choose a q not divisible by 5, so $||w_1 q/m|| \ge 1/5$. In order to specify q, we first choose a $q_0 \neq 0$ mod 5 such that $bq_0 \equiv t \mod 5^{j+1}$, where t is an integer satisfying $||t/5^{j+1}|| \ge 1/5$. There are $3 \cdot 5^{j} + 1$ such integers t, and so at least 2 . $5^{j} + 1$ possible choices for $q_0 \neq 0$ mod 5. We define q to be $q_0 + 5^{j+1}r$ where r is chosen so that both $||cq/m||$ and $||dq/m||$ are $\geq 1/5$. Such a choice of r is possible because both cq/m and dq/m run (in some order) through 5^k evenly spaced points mod 1 as r runs through 1, 2,..., 5^k . Thus we have $||ca/m|| \ge 1/5$ for at least $3 \cdot 5^{k-1}$ values of r and $||dq/m|| \ge 1/5$ for at least $3 \cdot 5^{k-1}$ values of r; hence for at least 5^{k-1} values of r, we have both inequalities. Plainly (4) holds for our choice of q.

Now suppose that $w_1 = 5^{k-1}a$, $w_2 = b$, $w_3 = c$, $w_4 = d$, where a, b, c, d are not divisible by 5 and $k \ge 2$. This is the only remaining case, and is the most difficult one. If we take $m = 5^k$, then (4) holds because of the following:

THEOREM. Given any integer $k \geqslant 1$ and any integers b, c, d not divisible by 5, there exist integers t_1, t_2, t_3 and an integer q not divisible by 5 such that

$$
bq \equiv t_1 \mod 5^k,
$$

\n
$$
cq \equiv t_2 \mod 5^k, \left\| \frac{t_i}{5^k} \right\| \ge \frac{1}{5} \quad (i = 1, 2, 3).
$$
\n
$$
dq \equiv t_3 \mod 5^k,
$$
\n
$$
(7)
$$

Thus the theorem implies our desired result that $\kappa(4) = 1/5$. The work below proves the theorem for each $k \ge 9$. The cases $k \le 8$ can be handled by direct calculation. We are grateful to Mr. E. Abery for computer programming assistance in carrying out this calculation.

Let k be an integer with $k \geq 9$, let

$$
I = \{i: 5^{k-1} \leq i \leq 4 \cdot 5^{k-1}\} \qquad \text{and let} \quad I_1 = \{i \in I : i \equiv 1 \text{ mod } 5\}.
$$

If r is an integer not divisible by 5, let $\mathcal{N}_k(r)$ denote the set of $q \in I_1$ such that $||rq/5^k|| \ge 1/5$ and let $N_k(r)$ denote the cardinality of $\mathcal{N}_k(r)$.

In the theorem we can assume without loss of generality that $b = 1$. Thus the theorem follows from the assertion that if c, d are any integers not divisible by 5, then for each $k \geq 9$, $\mathcal{N}_k(c) \cap \mathcal{N}_k(d) \neq \emptyset$. Let $m = 5^k$. Since I_1 has exactly .12m elements, it will follow that $\mathcal{N}_k(c) \cap \mathcal{N}_k(d)$ is non-empty if $N_k(c) + N_k(d) > 0.12m$. This is exactly what we will show except for a few choices of the pair c, d which we treat differently. Most of what we need is in the following two propositions.

PROPOSITION 1. If r is such that there exist integers x, y with $|x|, |y| \le 312$, $(x, y) = 1$, $(5, xy) = 1$, and $xr \equiv y \mod m$, then $N_k(r) > .061m$, except that $N_k(4) = N_k(-4) = N_k(4^{-1} \mod m) = N_k(-4^{-1} \mod m) = .06m$.

PROPOSITION 2. If r is such that there do not exist integers x, y as described in Proposition 1, then $N_k(r) > .0601m$.

To prove Proposition 1, we first reduce the estimation of an $N_k(r)$ to a finite calculation. Let *J* denote the set of real numbers *z* with $||z|| \ge 1/5$. If *S* is a disjoint union of intervals, let $\mu(S)$ denote the sum of the lengths of these intervals.

LEMMA 1. Suppose there exist positive integers x , y as described in Proposition 1. Then

$$
N_k(r) = \frac{m}{5y} \sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} [i + .2, i + .8] \cap J \right\} + E(x, y)
$$

where $|E(x, y)| < 1.6x + .6y$.

Proof. In what follows θ denotes a quantity of absolute value $\lt 1$ and $\chi(S)$ denotes the number of connected components in the interior of the set S. We have

$$
N_k(r) = \#\left\{ q \in [.2m, .8m] : q \equiv 1 \text{ mod } 5, \frac{rq}{m} \in J \right\}
$$

= $\sum_{j=0}^{x-1} \#\left\{ q \in [.2m, .8m] : q \equiv 1 \text{ mod } 5, q \equiv j \text{ mod } x, \frac{rq}{m} \in J \right\}$
= $\sum_{i=0}^{x-1} \#\left\{ \frac{q}{m} \in [i+.2, i+.8] : q \equiv 1 \text{ mod } 5, q \equiv 0 \text{ mod } x, \frac{rq}{m} \in J \right\}.$

The last equality holds because there is an evident one-to-one correspondence between the j th summand in the first sum and the i th summand in the second sum if i and j satisfy $im \equiv -j \mod x$. Now note that $q \equiv 0 \mod x$, $(x, m) = 1$ and $xr \equiv y \mod m$ imply $rq \equiv yq/x \mod m$. Thus

$$
N_k(r) = \sum_{i=0}^{x-1} \# \left\{ \frac{q}{m} \in [i+.2, i+.8]; q \equiv 1 \text{ mod } 5, q \equiv 0 \text{ mod } x, \frac{yq}{xm} \in J \right\}
$$

= $\frac{m}{5x} \sum_{i=0}^{x-1} \mu \left\{ [i+.2, i+.8] \cap \frac{x}{y} J \right\}$
+ $\theta \sum_{i=0}^{x-1} \chi \left\{ [i+.2, i+.8] \cap \frac{x}{y} J \right\}$
= $\frac{m}{5y} \sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} [i+.2, i+.8] \cap J \right\}$
+ $\theta \sum_{i=0}^{x-1} \chi \left\{ \frac{y}{x} [i+.2, i+.8] \cap J \right\}.$

Therefore

$$
|E(x, y)| < \sum_{i=0}^{x-1} \left(.6 \frac{y}{x} + 1.6 \right) = 1.6x + .6y.
$$

LEMMA 2. If x , y are positive coprime integers, then

$$
\frac{1}{5y}\sum_{i=0}^{x-1}\mu\left\{\frac{y}{x}[i+.2,i+.8]\cap J\right\}\geq .072-\frac{.096}{x}.
$$

Proof. Let $T = [0.2(y/x), 0.8(y/x)]$. For each $\alpha \in T$, let $I(\alpha) = \{i \in \mathbb{Z} : i \in \mathbb{Z}\}$. $0 \leq i \leq x - 1$, $\alpha + iy/x \in J$. Decompose T into disjoint intervals $T_1, T_2,..., T_t$ such that $I(\alpha) = I_j$ is fixed for $\alpha \in T_j$. We have

$$
\frac{1}{5y} \sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} \left[i+2, i+3 \right] \cap J \right\} = \frac{1}{5y} \sum_{i=0}^{x-1} \mu \left\{ \left(T + \frac{iy}{x} \right) \cap J \right\}
$$

$$
= \frac{1}{5y} \sum_{j=1}^{t} \sum_{i=0}^{x-1} \mu \left\{ \left(T_j + \frac{iy}{x} \right) \cap J \right\}
$$

$$
= \frac{1}{5y} \sum_{j=1}^{t} \sum_{i \in I_j} \mu \left(T_j + \frac{iy}{x} \right)
$$

$$
= \frac{1}{5y} \sum_{j=1}^{t} \mu (T_j) \cdot \# I_j.
$$

Now any $\#I(a)$ is $\geq 0.6x$. To see this, note that (here $\{x\}$ denotes the fractional part of x)

$$
\left\{\left\{\alpha+\frac{iy}{x}\right\}:0\leqslant i\leqslant x-1\right\}=\left\{\left\{\alpha+\frac{i}{x}\right\}:0\leqslant i\leqslant x-1\right\}
$$

since gcd $(x, y) = 1$. Furthermore

$$
\left\{\left|\alpha+\frac{i}{x}\right|:0\leqslant i\leqslant x-1\right\}\cap[0.2,-8]
$$

consists of \geqslant [.6x] equally spaced points of common gap 1/x. Thus

$$
\frac{1}{5y} \sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} [i + .2, i + .8] \cap J \right\} \ge \frac{(.6x)}{5y} \sum_{j=1}^{t} \mu(T_j)
$$

$$
= \frac{(.6x)}{5y} \left(\frac{.6y}{x} \right) \ge \frac{(.6x - .8)(.6)}{5x} = .072 - \frac{.096}{x}.
$$

Proof of Proposition 1. Since $N_k(r) = N_k(-r) = N_k(r^{-1} \text{ mod } m)$, we may assume x, y are positive integers with $1 \leq x \leq y \leq 312$. With the kind assistance of D. E. Penney we have directly calculated the sum in Lemma 1 for each pair x, y with $x \le 9$. In each case, except for $x = 1$, $y = 4$, we have the sum at least $(1/15)m$. Since $|E(x, y)| < 200$ and $m \ge 5^9$, we have $N_k(r) > 0.061m$ in each case except $r = \pm 4$, $\pm 4^{-1}$ mod m. Working through the proof of Lemma 1 in the case $x = 1$, $y = 4$, we see that $E(1, 4) = 0$ and that $N_{k}(4) = .06m$.

Now assume $x \ge 10$. Then from Lemmas 1 and 2

$$
N_k(r) > \left(.072 - \frac{.096}{10}\right)m - (1.6)(311) - (.6)(312)
$$

> .0624m - 685 > .061m,

since $m \ge 5^9$.

Proof of Proposition 2. Fix an integer r not divisible by 5 for which there does not exist a pair x, y as described in Proposition 1. Let $|t|_m$ denote the absolute value of the residue of $t \mod m$ that is closest to 0. Thus there is no integer t not divisible by 5 such that both $|t|_m$ and $|rt|_m$ are less than 313.

Let $e(x) = e^{2\pi ix}$. We have

$$
N_k(r) = \frac{1}{m} \sum_{t=0}^{m-1} \sum_{q \in I} \sum_{p \in I_1} e\left(\frac{t(q-rp)}{m}\right)
$$

= $\frac{1}{m}(.6m+1)(.12m) + \frac{1}{m} \sum_{t=1}^{m-1} \left(\sum_{q \in I} e\left(\frac{tq}{m}\right)\right) \left(\sum_{p \in I_1} e\left(\frac{-trp}{m}\right)\right).$ (8)

Summing the geometric progressions in the inner sums we have

$$
\left| \sum_{q \in I} e\left(\frac{tq}{m}\right) \right| \leq \frac{1}{2 \|t/m\|}
$$

$$
\left| \sum_{p \in I_1} e\left(\frac{-trp}{m}\right) \right| \leq \frac{1}{2 \|5rt/m\|}.
$$

The main term on the right of (8) is .072m. The error term is bounded in absolute value by

$$
.12 + \frac{1}{m} \sum_{t=1}^{m-1} \frac{1}{2 \left\| t/m \right\|} \cdot \frac{1}{2 \left\| 5rt/m \right\|} = .12 + \frac{m}{4} \sum_{t=1}^{m-1} \frac{1}{|t|_m} \cdot \frac{1}{|5rt|_m}
$$

$$
= .12 + \frac{m}{2} \sum_{t=1}^{(m-1)/2} \frac{1}{t} \cdot \frac{1}{|5rt|_m}
$$

since $|5rt|_m=|5r(m-t)|_m,|t|_m=|m-t|_m.$ We consider 4 cases to estimate the last sum.

Case 1. $t \le 312$, $5/t$. Then $|rt|_m > 312$, so $|5rt|_m \ge 1565$. Thus the portion of the sum in this case is

$$
\leqslant \frac{m}{2} \cdot \frac{1}{1565} \sum_{\substack{t=1 \ s_{\mathcal{H}}}}^{312} \frac{1}{t} < .00172m.
$$

Case 2. $t \le 312, 5 \mid t$. Note that the map $t \in [1, (m-1)/2] \mapsto [5rt]_m$ is 5: 1. It is 1: 1 on the restricted domain $[1, (m/5-1)/2]$. If t is in this restricted domain, then the other values that map to $|5rt|_m$ are $m/5 - t$, $m/5 + t$, $2m/5 - t$, $2m/5 + t$.

For $t \leq 312 \leq (m/5 - 1)/2$, the values of $|5rt|_m$ are distinct, and since $5 | t$, the values $|5rt|_m$ are divisible by 25. Thus the portion of the sum in this case is

$$
\leqslant \frac{m}{2} \sum_{t=1}^{62} \frac{1}{5t} \cdot \frac{1}{25t} = \frac{m}{250} \left(\frac{\pi^2}{6} - \sum_{t=63}^{\infty} \frac{1}{t^2} \right)
$$

$$
< \frac{m}{250} \left(\frac{\pi^2}{6} - \frac{1}{63} \right) < .00652m.
$$

Case 3. $t > 312$, $|rt|_m \le 312$. Considering the 5 choices of t corresponding to each value of $|5rt|_m$, the portion of the sum in this case is (using $m \geqslant 5^9$)

$$
\leq \frac{m}{2} \left(\frac{1}{313} + \frac{1}{m/5 - 313} + \frac{1}{m/5 + 313} + \frac{1}{2m/5 - 313} + \frac{1}{2m/5 + 313} \right)
$$

$$
\times \sum_{t=1}^{312} \frac{1}{5t} < .00203m.
$$

Case 4. $t > 312$, $|rt|_m > 312$. Again, for each value of $|5rt|_m$, there are 5 values of t . The value of t which can do the most damage, of course, is the smallest. Thus the portion of the sum in this case is

$$
\leqslant 5 \cdot \frac{m}{2} \sum_{t=313}^{(m/5-1)/2} \frac{1}{t} \cdot \frac{1}{5t} < \frac{m}{2} \sum_{t=313}^{\infty} \frac{1}{t^2} < \frac{m}{624} < .00161m.
$$

Finally we note that $.12 \le (0.12/5^9)$ m $< 10^{-7}$ m, so that the absolute value of the error term on the right of (8) is $\langle .0119m, .7 \rangle$ Thus $N_k(r) > .0601m$.

Proof of the Theorem. We need to show that if c , d are integers not divisible by 5, then $\mathcal{N}_k(c) \cap \mathcal{N}_k(d) \neq \emptyset$. Except for the case when both c, d are found in the set $\{\pm 4 \mod m, \pm 4^{-1} \mod m\}$, Propositions 1 and 2 show that $N_k(c) + N_k(d) > 0.12m$, so that as noted above, $\mathcal{N}_k(c) \cap \mathcal{N}_k(d) \neq \emptyset$.

Since $\mathcal{N}_k(r) = \mathcal{N}_k(-r)$, to complete the proof we need only show that $\mathcal{N}_k(4) \cap \mathcal{N}_k(4^{-1} \text{ mod } m) \neq \emptyset$. To see this, let q denote the first integer above $\frac{2}{5}m$ with $q \equiv 3 \mod 4$ and $q \equiv 1 \mod 5$. That is, $q = \frac{2}{5}m + 1$. Then $q \in \mathcal{N}_k(4) \cap \mathcal{N}_k(4^{-1} \text{ mod } m)$ since $q \in I_1, ||4q/m|| \approx \frac{2}{5}$, and

$$
\left\|\frac{(4^{-1} \bmod m) q}{m}\right\| = \left\|\frac{(q+m)/4}{m}\right\| \approx \frac{7}{20}.
$$

4. CONCLUDING REMARKS

We have not discussed the problem of explicitly determining all the sets $\{w_1, w_2,..., w_n\}$ for which the max min in (2) is equal to $1/(n + 1)$. It is known (see [2, pp. 169–170] and [3, p. 11]) that for $n = 2$ or 3 the only such sets are the obvious ones $\{k, 2k, ..., nk\}$, where k is some positive integer. The situation is certainly not this simple if $n \geq 4$; for example, the max min in (2) is equal to 1/5 if $\{w_1, w_2, w_3, w_4\} = \{1, 3, 4, 7\}$ and is equal to 1/6 if $\{w_1, w_2,..., w_5\} = \{1, 3, 4, 5, 9\}$. Perhaps this has something to do with the apparent difficulty in finding an elementary approach to the problem if $n \geqslant 4$.

REFERENCES

- 1. U. BETKE AND J. M. WILLS, Untere Schranken fiir zwei diophantische Approximations-Funktionen, Monatsh. Math. 76 (1972), 214-2 17.
- 2. T. W. CUSICK, View-obstruction problems, Aequationes Math. 9 (1973), 165-170.
- 3. T. W. CUSICK, View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A 16 (1974), 1-11.
- 4. T. W. Cusick, View-obstruction problems, II, Proc. Amer. Math. Soc. 84 (1982), 25-28.
- 5. I. J. SCHOENBERG, Extremum problems for the motions of a billiard ball, II. The L_{∞} norm, Nederl. Akad. Wetensch. Proc. Ser. A 79 Indag. Math, 38 (1976), 263-279.