JOURNAL OF NUMBER THEORY 19, 131-139 (1984)

View-Obstruction Problems, III

T. W. CUSICK*

Department of Mathematics, State University of New York, Buffalo, New York 14214

AND

CARL POMERANCE*

Department of Mathematics, University of Georgia, Athens, Georgia 30602

Communicated by P. T. Bateman

Received January 4, 1982; revised March 22, 1983

Suppose C is a closed convex body in E^n which contains the origin as an interior point. Define αC for each real number $\alpha \ge 0$ to be the magnification of C by the factor α and define $C + (m_1, ..., m_n)$ for each point $(m_1, ..., m_n)$ in E^n to be the translation of C by the vector $(m_1, ..., m_n)$. Define the point set $\Delta(C, \alpha)$ by $\Delta(C, \alpha) =$ $\{\alpha C + (m_1 + \frac{1}{2}, ..., m_n + \frac{1}{2}): m_1, ..., m_n \text{ nonnegative integers}\}$. The view-obstruction problem for C is the problem of finding the constant K(C) defined to be the lower bound of those α such that any half-line L given by $x_i = a_i t$ (i = 1, 2, ..., n), where the a_i $(1 \le i \le n)$ are positive real numbers and the parameter t runs through $[0,\infty)$, intersects $\Delta(C,\alpha)$. The paper considers the case where C is the ndimensional cube with side 1, and in this case the constant K(C) is evaluated for n = 4. The proof in dimension 4 depends on a theorem (proved via exponential sums) concerning the existence of solutions for a certain system of simultaneous congruences. The proofs in dimensions 2 and 3 are much simpler, and for these dimensions several other proofs have previously been given. For real x, let ||x||denote the distance from x to the nearest integer. A non-geometric description of our principal result is that we prove the case n = 4 of the following conjecture: For any *n* positive integers $w_1, ..., w_n$ there is a real number x such that each $||w_i x|| \ge (n+1)^{-1}$. © 1984 Academic Press, Inc.

1. INTRODUCTION

The view-obstruction problems defined in the abstract were first introduced in [2]. In this paper we only consider the case where the closed convex body C in E^n is the *n*-dimensional cube with side 1. We use the notation $\lambda(n)$ for the constant K(C) in this case.

^{*} Research supported in part by an NSF grant.

For any real number x, let ||x|| denote the distance from x to the nearest integer. The evaluation of $\lambda(n)$ can be thought of as a problem in Diophantine approximation, since we have

$$\frac{1}{2}\lambda(n) = \sup \min_{0 \le x \le 1} \max_{1 \le i \le n} \|w_i x - \frac{1}{2}\|,$$
(1)

where the supremum is taken over all *n*-tuples $w_1,...,w_n$ of positive integers. Formula (1) follows from the definition of $\lambda(n)$ given in the abstract; we note that the positive real numbers a_i mentioned in the abstract can be assumed to be positive integers. If we define

$$\kappa(n) = \inf \max_{0 \le x \le 1} \min_{1 \le i \le n} \|w_i x\|, \tag{2}$$

where the infimum is taken over all *n*-tuples $w_1, ..., w_n$ of positive integers, then since $||w_i x|| = \frac{1}{2} - ||w_i x - \frac{1}{2}||$, we have $\lambda(n) = 1 - 2\kappa(n)$ for each $n \ge 2$. It will be convenient in the rest of the paper to concentrate on the problem of evaluating $\kappa(n)$.

The problem of evaluating $\lambda(n)$ is equivalent to the following: Suppose the unit cube in E^n has faces which reflect a certain particle, and consider any motion of the particle, *starting in a corner* of the cube and not entirely contained in a hyperplane of dimension n-1. What is the side length of the largest subcube, centered in the unit cube, with the property that there exists such a motion of the particle which does not intersect the subcube? Plainly the largest such side length is $\lambda(n)$.

The corresponding problem, if the condition that the particle start in a corner is omitted, can be treated by methods entirely different from those in this paper. This has been done by Schoenberg [5], who solved this problem in every dimension; he showed that the largest subcube in dimension n has side $1 - n^{-1}$.

The natural conjecture for the value of $\lambda(n)$ is (n-1)/(n+1) (as stated in [2, p. 166]). This is because Dirichlet's box principle gives

$$\max_{0 \le x \le 1} \min_{1 \le i \le n} \|ix\| = \frac{1}{n+1},$$

so $\kappa(n) \leq 1/(n+1)$, and it is reasonable to conjecture that equality holds. That is, we conjecture that for any *n* positive integers $w_1, ..., w_n$, there is a real number *x* such that each $||w_l x|| \geq (n+1)^{-1}$. The case n=2 is very simple. The case n=3 is more complicated, but several proofs have previously been published (Betke and Wills [1], Cusick [2-4]). The case n=4 is solved here by an extension of the method of [4]. The proof in [4] was elementary, but the crucial step in the argument here is the estimation of certain exponential sums. The estimation succeeds only if a certain parameter is sufficiently large; dealing with the small values of the parameter requires some ad hoc calculations.

2. The Method of Proof

By (2), in order to show that $\kappa(n) = 1/(n+1)$ it is enough to prove that given any *n*-tuple $w_1, ..., w_n$ of positive integers with the property that for any integers *m* and *q*,

$$\left\|w_i \frac{q}{m}\right\| \leq \frac{1}{n+1}$$
 for some $i, \quad 1 \leq i \leq n,$ (3)

there exists some pair m, q such that (3) does not hold if \leq is replaced by <.

If we assume (as we may with no loss of generality) that $w_1,..., w_n$ have no common prime factor, then we would expect that there are only finitely many *n*-tuples $w_1,..., w_n$ such that (3) holds for any *m* and *q*. Further, we might hope that by considering only finitely many values of *m*, we could identify all of these *n*-tuples, and so reduce the determination of $\kappa(n)$ to a finite calculation. It is easy to carry out this procedure when n = 2, and so prove $\kappa(2) = 1/3$. When n = 3, the procedure can also be carried out; this was done in an elementary way in [4]. We apply this method for n = 4 in the following section, but the proof is no longer elementary. It is not clear whether the same method would be successful for $n \ge 5$, because of the increasing complexity of the various cases to which the problem would be reduced.

3. The Proof that $\kappa(4) = 1/5$

In this section, we take n = 4 and suppose w_1, w_2, w_3, w_4 are integers, having no common prime factor, such that (3) holds for any integers *m* and *q*. Our goal is to show that we can always find a pair of integers *m* and *q* such that

$$\min_{1 \le i \le 4} \left\| w_i \frac{q}{m} \right\| \ge \frac{1}{5}.$$
(4)

If w is not divisible by 5, then $||w/5|| \ge 1/5$, so we can assume that at least one of the w_i is divisible by 5. Thus there are several cases to consider, and it turns that the only difficult one is the case where exactly one of the w_i is divisible by 5. We dispose of the other cases first. First suppose that $w_1 = 5^{i+k}a$, $w_2 = 5^{j+k}b$, $w_3 = 5^kc$, $w_4 = d$, where a, b, c, d are not divisible by 5 and $i \ge j \ge 0, k \ge 1$. We take $m = 5^{i+k+1}$ and will choose a q not divisible by 5, so $||w_1q/m|| \ge 1/5$. In order to specify q, we first choose a $q_0 \ne 0 \mod 5$ such that

$$bx \equiv t_1 \mod 5^{i-j+1}, \qquad ||t_1/5^{i-j+1}|| \ge 1/5$$
 (5)

and

$$cx \equiv t_2 \mod 5^{i+1}, \qquad ||t_2/5^{i+1}|| \ge 1/5$$
 (6)

both hold with $x = q_0$ for some choice of t_1, t_2 . Such a q_0 exists because there are $3 \cdot 5^i + 5^j$ integers $x \mod 5^{i+1}$ for which (5) holds for some t_1 and $3 \cdot 5^i + 1$ integers $x \mod 5^{i+1}$ for which (6) holds for some t_2 . Hence there are at least $5^i + 5^j + 1$ integers $x \mod 5^{i+1}$ for which both (5) and (6) hold, and of these at least $5^j + 1$ are not divisible by 5. We define q to be $q_0 + 5^{i+1}r$, where r is chosen so that $||w_4 q/m|| \ge 1/5$ (such a choice of r is possible since changing r by 1 changes $w_4 q/m$ by $d/5^k$). Clearly we have $||w_2 q/m||$ and $||w_3 q/m|| \ge 1/5$ whatever choice of r is made, so (4) holds with the chosen q.

Now suppose that $w_1 = 5^{j+k}a$, $w_2 = 5^kb$, $w_3 = c$, $w_4 = d$, where a, b, c, dare not divisible by 5 and $j \ge 0$, $k \ge 1$. We take $m = 5^{j+k+1}$ and will choose a q not divisible by 5, so $||w_1q/m|| \ge 1/5$. In order to specify q, we first choose a $q_0 \ne 0 \mod 5$ such that $bq_0 \equiv t \mod 5^{j+1}$, where t is an integer satisfying $||t/5^{j+1}|| \ge 1/5$. There are $3 \cdot 5^j + 1$ such integers t, and so at least $2 \cdot 5^j + 1$ possible choices for $q_0 \ne 0 \mod 5$. We define q to be $q_0 + 5^{j+1}r$ where r is chosen so that both ||cq/m|| and ||dq/m|| are $\ge 1/5$. Such a choice of r is possible because both cq/m and dq/m run (in some order) through 5^k evenly spaced points mod 1 as r runs through $1, 2, ..., 5^k$. Thus we have $||cq/m|| \ge 1/5$ for at least $3 \cdot 5^{k-1}$ values of r and $||dq/m|| \ge 1/5$ for at least $3 \cdot 5^{k-1}$ values of r; hence for at least 5^{k-1} values of r, we have both inequalities. Plainly (4) holds for our choice of q.

Now suppose that $w_1 = 5^{k-1}a$, $w_2 = b$, $w_3 = c$, $w_4 = d$, where a, b, c, d are not divisible by 5 and $k \ge 2$. This is the only remaining case, and is the most difficult one. If we take $m = 5^k$, then (4) holds because of the following:

THEOREM. Given any integer $k \ge 1$ and any integers b, c, d not divisible by 5, there exist integers t_1, t_2, t_3 and an integer q not divisible by 5 such that

$$bq \equiv t_1 \mod 5^k,$$

$$cq \equiv t_2 \mod 5^k, \left\| \frac{t_i}{5^k} \right\| \ge \frac{1}{5} \quad (i = 1, 2, 3). \tag{7}$$

$$dq \equiv t_3 \mod 5^k,$$

Thus the theorem implies our desired result that $\kappa(4) = 1/5$. The work below proves the theorem for each $k \ge 9$. The cases $k \le 8$ can be handled by

direct calculation. We are grateful to Mr. E. Abery for computer programming assistance in carrying out this calculation.

Let k be an integer with $k \ge 9$, let

$$I = \{i: 5^{k-1} \leq i \leq 4 \cdot 5^{k-1}\}$$
 and let $I_1 = \{i \in I: i \equiv 1 \mod 5\}.$

If r is an integer not divisible by 5, let $\mathscr{N}_k(r)$ denote the set of $q \in I_1$ such that $||rq/5^k|| \ge 1/5$ and let $N_k(r)$ denote the cardinality of $\mathscr{N}_k(r)$.

In the theorem we can assume without loss of generality that b = 1. Thus the theorem follows from the assertion that if c, d are any integers not divisible by 5, then for each $k \ge 9$, $\mathscr{N}_k(c) \cap \mathscr{N}_k(d) \ne \emptyset$. Let $m = 5^k$. Since I_1 has exactly .12*m* elements, it will follow that $\mathscr{N}_k(c) \cap \mathscr{N}_k(d)$ is non-empty if $N_k(c) + N_k(d) > .12m$. This is exactly what we will show except for a few choices of the pair c, d which we treat differently. Most of what we need is in the following two propositions.

PROPOSITION 1. If r is such that there exist integers x, y with $|x|, |y| \leq 312, (x, y) = 1, (5, xy) = 1, and xr \equiv y \mod m$, then $N_k(r) > .061m$, except that $N_k(4) = N_k(-4) = N_k(4^{-1} \mod m) = N_k(-4^{-1} \mod m) = .06m$.

PROPOSITION 2. If r is such that there do not exist integers x, y as described in Proposition 1, then $N_k(r) > .0601m$.

To prove Proposition 1, we first reduce the estimation of an $N_k(r)$ to a finite calculation. Let J denote the set of real numbers z with $||z|| \ge 1/5$. If S is a disjoint union of intervals, let $\mu(S)$ denote the sum of the lengths of these intervals.

LEMMA 1. Suppose there exist positive integers x, y as described in Proposition 1. Then

$$N_{k}(r) = \frac{m}{5y} \sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} [i+.2, i+.8] \cap J \right\} + E(x, y)$$

where |E(x, y)| < 1.6x + .6y.

Proof. In what follows θ denotes a quantity of absolute value <1 and $\chi(S)$ denotes the number of connected components in the interior of the set S. We have

$$N_{k}(r) = \# \left\{ q \in [.2m, .8m] : q \equiv 1 \mod 5, \frac{rq}{m} \in J \right\}$$
$$= \sum_{j=0}^{x-1} \# \left\{ q \in [.2m, .8m] : q \equiv 1 \mod 5, q \equiv j \mod x, \frac{rq}{m} \in J \right\}$$
$$= \sum_{i=0}^{x-1} \# \left\{ \frac{q}{m} \in [i + .2, i + .8] : q \equiv 1 \mod 5, q \equiv 0 \mod x, \frac{rq}{m} \in J \right\}.$$

The last equality holds because there is an evident one-to-one correspondence between the *j*th summand in the first sum and the *i*th summand in the second sum if *i* and *j* satisfy $im \equiv -j \mod x$. Now note that $q \equiv 0 \mod x$, (x, m) = 1 and $xr \equiv y \mod m$ imply $rq \equiv yq/x \mod m$. Thus

$$N_{k}(r) = \sum_{i=0}^{x-1} \# \left\{ \frac{q}{m} \in [i+.2, i+.8] : q \equiv 1 \mod 5, q \equiv 0 \mod x, \frac{yq}{xm} \in J \right\}$$
$$= \frac{m}{5x} \sum_{i=0}^{x-1} \mu \left\{ [i+.2, i+.8] \cap \frac{x}{y} J \right\}$$
$$+ \theta \sum_{i=0}^{x-1} \chi \left\{ [i+.2, i+.8] \cap \frac{x}{y} J \right\}$$
$$= \frac{m}{5y} \sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} [i+.2, i+.8] \cap J \right\}$$
$$+ \theta \sum_{i=0}^{x-1} \chi \left\{ \frac{y}{x} [i+.2, i+.8] \cap J \right\}.$$

Therefore

$$|E(x, y)| < \sum_{i=0}^{x-1} \left(.6 \frac{y}{x} + 1.6 \right) = 1.6x + .6y.$$

LEMMA 2. If x, y are positive coprime integers, then

$$\frac{1}{5y}\sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} \left[i+.2, i+.8 \right] \cap J \right\} \ge .072 - \frac{.096}{x}.$$

Proof. Let T = [.2(y/x), .8(y/x)]. For each $a \in T$, let $I(a) = \{i \in \mathbb{Z}: 0 \le i \le x - 1, a + iy/x \in J\}$. Decompose T into disjoint intervals $T_1, T_2, ..., T_t$ such that $I(a) = I_j$ is fixed for $a \in T_j$. We have

$$\frac{1}{5y} \sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} \left[i + .2, i + .8 \right] \cap J \right\} = \frac{1}{5y} \sum_{i=0}^{x-1} \mu \left\{ \left(T + \frac{iy}{x} \right) \cap J \right\}$$
$$= \frac{1}{5y} \sum_{j=1}^{t} \sum_{i=0}^{x-1} \mu \left\{ \left(T_j + \frac{iy}{x} \right) \cap J \right\}$$
$$= \frac{1}{5y} \sum_{j=1}^{t} \sum_{i \in I_j} \mu \left(T_j + \frac{iy}{x} \right)$$
$$= \frac{1}{5y} \sum_{j=1}^{t} \mu(T_j) \cdot \#I_j.$$

Now any $\#I(\alpha)$ is $\ge [.6x]$. To see this, note that (here $\{x\}$ denotes the fractional part of x)

$$\left| \left| \alpha + \frac{iy}{x} \right| : 0 \leq i \leq x - 1 \right| = \left| \left| \alpha + \frac{i}{x} \right| : 0 \leq i \leq x - 1 \right|$$

since gcd (x, y) = 1. Furthermore

$$\left\{ \left| a + \frac{i}{x} \right| : 0 \le i \le x - 1 \right| \cap [.2, .8] \right\}$$

consists of $\ge [.6x]$ equally spaced points of common gap 1/x. Thus

$$\frac{1}{5y} \sum_{i=0}^{x-1} \mu \left\{ \frac{y}{x} \left[i + .2, i + .8 \right] \cap J \right\} \ge \frac{\left[.6x \right]}{5y} \sum_{j=1}^{t} \mu(T_j)$$
$$= \frac{\left[.6x \right]}{5y} \left(\frac{.6y}{x} \right) \ge \frac{(.6x - .8)(.6)}{5x} = .072 - \frac{.096}{x}$$

Proof of Proposition 1. Since $N_k(r) = N_k(-r) = N_k(r^{-1} \mod m)$, we may assume x, y are positive integers with $1 \le x \le y \le 312$. With the kind assistance of D. E. Penney we have directly calculated the sum in Lemma 1 for each pair x, y with $x \le 9$. In each case, except for x = 1, y = 4, we have the sum at least (1/15)m. Since |E(x, y)| < 200 and $m \ge 5^9$, we have $N_k(r) > .061m$ in each case except $r \equiv \pm 4, \pm 4^{-1} \mod m$. Working through the proof of Lemma 1 in the case x = 1, y = 4, we see that E(1, 4) = 0 and that $N_k(4) = .06m$.

Now assume $x \ge 10$. Then from Lemmas 1 and 2

$$N_k(r) > \left(.072 - \frac{.096}{10}\right)m - (1.6)(311) - (.6)(312)$$

> .0624m - 685 > .061m,

since $m \ge 5^9$.

Proof of Proposition 2. Fix an integer r not divisible by 5 for which there does not exist a pair x, y as described in Proposition 1. Let $|t|_m$ denote the absolute value of the residue of t mod m that is closest to 0. Thus there is no integer t not divisible by 5 such that both $|t|_m$ and $|rt|_m$ are less than 313.

Let $e(x) = e^{2\pi i x}$. We have

$$N_{k}(r) = \frac{1}{m} \sum_{t=0}^{m-1} \sum_{q \in I} \sum_{p \in I_{1}} e\left(\frac{t(q-rp)}{m}\right)$$

= $\frac{1}{m} (.6m+1)(.12m) + \frac{1}{m} \sum_{t=1}^{m-1} \left(\sum_{q \in I} e\left(\frac{tq}{m}\right)\right) \left(\sum_{p \in I_{1}} e\left(\frac{-trp}{m}\right)\right).$ (8)

Summing the geometric progressions in the inner sums we have

$$\left|\sum_{q \in I} e\left(\frac{tq}{m}\right)\right| \leq \frac{1}{2 \|t/m\|}$$
$$\left|\sum_{p \in I_1} e\left(\frac{-trp}{m}\right)\right| \leq \frac{1}{2 \|5rt/m\|}$$

The main term on the right of (8) is .072*m*. The error term is bounded in absolute value by

$$.12 + \frac{1}{m} \sum_{t=1}^{m-1} \frac{1}{2 \|t/m\|} \cdot \frac{1}{2 \|5rt/m\|} = .12 + \frac{m}{4} \sum_{t=1}^{m-1} \frac{1}{|t|_m} \cdot \frac{1}{|5rt|_m}$$
$$= .12 + \frac{m}{2} \sum_{t=1}^{(m-1)/2} \frac{1}{t} \cdot \frac{1}{|5rt|_m}$$

since $|5rt|_m = |5r(m-t)|_m$, $|t|_m = |m-t|_m$. We consider 4 cases to estimate the last sum.

Case 1. $t \leq 312, 5 \nmid t$. Then $|rt|_m > 312$, so $|5rt|_m \ge 1565$. Thus the portion of the sum in this case is

$$\leq \frac{m}{2} \cdot \frac{1}{1565} \sum_{\substack{t=1\\5th}}^{312} \frac{1}{t} < .00172m.$$

Case 2. $t \leq 312, 5 \mid t$. Note that the map $t \in [1, (m-1)/2] \mapsto |5rt|_m$ is 5:1. It is 1:1 on the restricted domain [1, (m/5 - 1)/2]. If t is in this restricted domain, then the other values that map to $|5rt|_m$ are m/5 - t, m/5 + t, 2m/5 - t, 2m/5 + t.

For $t \le 312 \le (m/5 - 1)/2$, the values of $|5rt|_m$ are distinct, and since 5 | t, the values $|5rt|_m$ are divisible by 25. Thus the portion of the sum in this case is

$$\leq \frac{m}{2} \sum_{t=1}^{6^2} \frac{1}{5t} \cdot \frac{1}{25t} = \frac{m}{250} \left(\frac{\pi^2}{6} - \sum_{t=63}^{\infty} \frac{1}{t^2} \right)$$
$$< \frac{m}{250} \left(\frac{\pi^2}{6} - \frac{1}{63} \right) < .00652m.$$

Case 3. t > 312, $|rt|_m \leq 312$. Considering the 5 choices of t corresponding to each value of $|5rt|_m$, the portion of the sum in this case is (using $m \ge 5^9$)

$$\leq \frac{m}{2} \left(\frac{1}{313} + \frac{1}{m/5 - 313} + \frac{1}{m/5 + 313} + \frac{1}{2m/5 - 313} + \frac{1}{2m/5 + 313} \right)$$
$$\times \sum_{t=1}^{312} \frac{1}{5t} < .00203m.$$

Case 4. t > 312, $|rt|_m > 312$. Again, for each value of $|5rt|_m$, there are 5 values of t. The value of t which can do the most damage, of course, is the smallest. Thus the portion of the sum in this case is

$$\leq 5 \cdot \frac{m}{2} \sum_{t=313}^{(m/5-1)/2} \frac{1}{t} \cdot \frac{1}{5t} < \frac{m}{2} \sum_{t=313}^{\infty} \frac{1}{t^2} < \frac{m}{624} < .00161m.$$

Finally we note that $.12 \le (.12/5^{\circ}) m < 10^{-7} m$, so that the absolute value of the error term on the right of (8) is < .0119m. Thus $N_k(r) > .0601m$.

Proof of the Theorem. We need to show that if c, d are integers not divisible by 5, then $\mathscr{N}_k(c) \cap \mathscr{N}_k(d) \neq \emptyset$. Except for the case when both c, d are found in the set $\{\pm 4 \mod m, \pm 4^{-1} \mod m\}$, Propositions 1 and 2 show that $N_k(c) + N_k(d) > .12m$, so that as noted above, $\mathscr{N}_k(c) \cap \mathscr{N}_k(d) \neq \emptyset$.

Since $\mathscr{N}_k(r) = \mathscr{N}_k(-r)$, to complete the proof we need only show that $\mathscr{N}_k(4) \cap \mathscr{N}_k(4^{-1} \mod m) \neq \emptyset$. To see this, let q denote the first integer above $\frac{2}{5}m$ with $q \equiv 3 \mod 4$ and $q \equiv 1 \mod 5$. That is, $q = \frac{2}{5}m + 1$. Then $q \in \mathscr{N}_k(4) \cap \mathscr{N}_k(4^{-1} \mod m)$ since $q \in I_1, ||4q/m|| \approx \frac{2}{5}$, and

$$\left\|\frac{(4^{-1} \mod m) q}{m}\right\| = \left\|\frac{(q+m)/4}{m}\right\| \approx \frac{7}{20}.$$

4. CONCLUDING REMARKS

We have not discussed the problem of explicitly determining all the sets $\{w_1, w_2, ..., w_n\}$ for which the max min in (2) is equal to 1/(n + 1). It is known (see [2, pp. 169–170] and [3, p. 11]) that for n = 2 or 3 the only such sets are the obvious ones $\{k, 2k, ..., nk\}$, where k is some positive integer. The situation is certainly not this simple if $n \ge 4$; for example, the max min in (2) is equal to 1/5 if $\{w_1, w_2, w_3, w_4\} = \{1, 3, 4, 7\}$ and is equal to 1/6 if $\{w_1, w_2, ..., w_5\} = \{1, 3, 4, 5, 9\}$. Perhaps this has something to do with the apparent difficulty in finding an elementary approach to the problem if $n \ge 4$.

References

- 1. U. BETKE AND J. M. WILLS, Untere Schranken für zwei diophantische Approximations-Funktionen, Monatsh. Math. 76 (1972), 214–217.
- 2. T. W. CUSICK, View-obstruction problems, Aequationes Math. 9 (1973), 165-170.
- 3. T. W. CUSICK, View-obstruction problems in *n*-dimensional geometry, J. Combin. Theory Ser. A 16 (1974), 1-11.
- 4. T. W. CUSICK, View-obstruction problems, II, Proc. Amer. Math. Soc. 84 (1982), 25-28.
- 5. I. J. SCHOENBERG, Extremum problems for the motions of a billiard ball, II. The L_{∞} norm, Nederl. Akad. Wetensch. Proc. Ser. A 79 Indag. Math. 38 (1976), 263-279.