Addendum

Cross characteristic representations of odd characteristic symplectic groups and unitary groups ✪

Robert M. Guralnick a, Kay Magaard b, Jan Saxl c,*, Pham Huu Tiep d

a Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, USA
b Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
c Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, England
d Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

Received 4 February 2005
Available online 22 April 2005
Communicated by Michel Broué

Theorem 3.2 of [3], formulated below, classifies cross characteristic representations \(\Phi \) of finite symplectic and unitary groups \(G \) in which certain elements \(g \) of \(G \) satisfy the inequality \(d_\Phi(g) < o(g) \), where \(d_\Phi(g) \) is the degree of the minimal polynomial of \(\Phi(g) \) and \(o(g) \) is the order of \(g \) modulo \(Z(G) \).

Theorem 1. Let \(G = \text{Sp}_{2n}(q) \) with \(n > 1 \) and \((n, q) \neq (2, 3) \), or \(G = \text{GU}_n(q) \) with \(n > 2 \). Let \(p \) be a prime not dividing \(q \) and let \(g \in G \) be a non-central element such that \(g \) belongs to a proper parabolic subgroup of \(G \) and \(o(g) \) is a power of \(p \). Let \(\Phi \) be an absolutely irreducible \(G \)-representation in characteristic coprime to \(q \) of degree \(> 1 \) such that \(d_\Phi(g) < o(g) \). Then \(\Phi \) is a Weil representation.

DOI of original article: 10.1016/S0021-8693(02)00527-6.

* The first author acknowledges the support of the NSF, and the second and the fourth authors acknowledge the support of the NSA.
* Corresponding author.

E-mail addresses: guralnic@math.usc.edu (R.M. Guralnick), kaym@math.wayne.edu (K. Magaard), saxl@dpmms.cam.ac.uk (J. Saxl), tiep@math.ufl.edu (P.H. Tiep).

0021-8693/$ – see front matter © 2002 Elsevier Inc. All rights reserved.
The proof of this theorem relied on the main result of [1], which unfortunately overlooks one extra case. However, our Theorem 1 remains valid in this case.

For the reader’s convenience, we reproduce the correct version of the main result of [1] as follows. In this formulation, a finite classical group means any group lying between the isometry group $I(V)$ and its commutator subgroup $I(V)'$, where V is endowed with either the zero or a nondegenerate orthogonal, symplectic, or Hermitian form; furthermore, $I(V)'$ is assumed to be quasisimple.

Theorem 2. [2] Let G be a finite classical group in characteristic r. Let $p \neq r$ be a prime and $g \in G$ be a non-central element such that g belongs to a proper parabolic subgroup of G and $o(g)$ is a power of p. Let Φ be any absolutely irreducible representation of G of degree > 1 over a field \mathbb{F} of characteristic $\ell \neq r$. Then either $d_\Phi(g) = o(g)$, or $k := o(g)/(q + 1)$ is an integer and $d_\Phi(g) \geq o(g) - k$. Moreover, if $d_\Phi(g) < o(g)$, then for some $z \in Z(I(V))$, one of the following holds.

(i) $G = Sp_{2n}(r), r > 2, n \geq 2, o(g) = r + 1$, and $\text{rank}(g - z) = 2$.

(ii) $SU_n(r) \leq G \leq GU_n(r), r > 2, n > 2, o(g) = r + 1$, and $\text{rank}(g - z) = 1$.

(iii) $SU_n(q) \leq G \leq GU_n(q), r = 2, n > 2, o(g) = p = q + 1$, and $\text{rank}(g - z) = 1$.

(iv) $SU_n(8) \leq G \leq GU_n(8), n > 2, o(g) = 9$, and $\text{rank}(g - z) = 1$.

(v) $SU_n(2) \leq G \leq GU_n(2), n > 4, o(g) = 9$, and $\text{rank}(g - z) = 3$.

(vi) $SU_n(q) \leq G \leq GU_n(q), o(g) = k(q + 1), k > 1, n \equiv 1 \pmod{k}, \text{rank}(g^k - z) = 1$. Moreover, $n > k + 1$ if p is odd.

The case (vi) of Theorem 2 is the extra case that has been overlooked in [1]. The aim of this note is to show that the conclusion of Theorem 1 holds in the extra case (vi) of Theorem 2. In fact, we will prove more.

Theorem 3. Under the notation and assumptions of Theorem 2, assume we are in the case (vi). Then Φ is a Weil representation of G, and $d_\Phi(g) = o(g) - k$.

The rest of the note is devoted to prove Theorem 3.

Write $q + 1 = p^c, k = p^b$, so that $o(g) = p^{b+c}$. By assumption, there is some orthonormal basis (e_1, \ldots, e_n) of $V = \mathbb{F}_{q^2}$ such that $h := g^k = \text{diag}(\alpha, \alpha, \ldots, \alpha, \alpha\beta)$ for some $0 \neq \alpha, \beta \in \mathbb{F}_{q^2}$ and $\beta \neq 1$. Since $[g, h] = 1$, g preserves $U := \langle e_1, \ldots, e_{n-1} \rangle \mathbb{F}_{q^2}$ and $\langle e_n \rangle \mathbb{F}_{q^2}$. In particular, $g = \text{diag}(g_2, \gamma)$ in the given basis, with $\gamma \in \mathbb{F}_{q^2}$ and $\gamma^k \neq 1$. Furthermore, $C_{GU_n(q)}(g)G = GU_n(q)$, so without loss we may assume $G = GU_n(q)$.

I. Observe that $|\alpha| = |\beta| = q + 1$. For, $(\alpha\beta)^{(q+1)/p} = \gamma^{p^{b+c-1}} = (\gamma^{q+1})^{p^{b-1}} = 1$. Since $o(h) = q + 1$, we must have $|\alpha| = q + 1$. Now if $|\beta| < q + 1$ then $\beta^{(q+1)/p} = 1$ and so $\omega^{(q+1)/p} = 1$, a contradiction. Thus g^k is a scalar multiple of the pseudoreflection $\alpha^{-1}h$ of order $q + 1$. Notice if Ψ is a Weil representation of G then $d_\Psi(\alpha^{-1}h) = q$ and so $d_\Psi(g) \leq qk = o(g) - k$, whence the equality holds by Theorem 2. Thus we are done if Φ is a Weil representation. From now one we will assume that Φ is not a Weil representation. Replacing g by $\gamma^{-1}g$, we may assume that $g = \text{diag}(g_2, 1)$ fixes e_n, and so $o(g) = |g|$.
2. Here we assume \(p > 2 \). Then we claim that one can choose an orthonormal basis of \(U \) such that \(g_2 = \text{diag}(g_1, \ldots, g_1) \) and \(g_1 \) is an irreducible \(p \)-element of \(GU_k(q) \). Indeed, consider any eigenvalue \(\lambda \) of \(g_2 \). Then \(\lambda p^b = \alpha \) and so \(|\lambda| = p^{b+c} \). Since \(p > 2 \), it follows that \(\lambda \) is a primitive element of \(\mathbb{F}_{q^{2k}} \) over \(\mathbb{F}_{q^2} \) and so it has the minimal polynomial \(f(t) := t^k - \alpha \) over \(\mathbb{F}_{q^2} \). Hence \(g_2 \) has the minimal polynomial \(f(t) \) and the characteristic polynomial \(f(t)^{(n-1)/k} \). One can choose an irreducible \(p \)-element in \(GU_k(q) \) with the characteristic polynomial \(f(t) \). Up to conjugacy in \(GU_{n-1}(q) \), we may now assume that \(g_2 = \text{diag}(g_1, \ldots, g_1) \).

Next we claim that we may assume \(n = 2k + 1 \). Indeed, \(n \geq 2k + 1 \) by assumption. Assume \(n > 2k + 1 \). We can embed \(g \) in a standard subgroup \(H = H_1 \times H_2 \) of \(G \), with \(H_1 \simeq GU_{n-2k-1}(q) \) and \(H_2 \simeq GU_{2k+1}(q) \). Consider any irreducible constituent \(\Phi_1 \otimes \Phi_2 \) of \(\Phi|_H \) with \(\Phi_1 \in \text{IBr}(H_1) \) and \(\dim(\Phi_2) > 1 \). Such a constituent exists, as otherwise \(\Phi \) is trivial on the perfect group \(SU_{2k+1}(q) \) and so \(\dim(\Phi) = 1 \), a contradiction. Notice that \(g \) projects onto the element \(g' = \text{diag}(g_1, g_1, 1) \) and \(o(g') = o(g) \). Clearly, \(o(g) > d_\Phi(g) \geq d_\Phi(g') \). Assuming the theorem holds in the case \(n = 2k + 1 \), we conclude that \(\Phi_2 \) is a Weil representation. Thus any irreducible constituent of \(\Phi|_{H_2} \) is either of degree 1 or a Weil representation. By [3, Theorem 2.5], \(\Phi \) is also a Weil representation, contrary to our assumption.

In the case \(n = 2k + 1 \), it is not difficult to show that \(g \) stabilizes a \(k \)-dimensional totally singular subspace \(W \) of \(V \).

3. Consider the case \(p = 2 \). Let \(g_3 := g_2^{q^{b-1}} \) and let \(\mu \) be any eigenvalue of \(g_3 \). Then \(\mu^2 = \alpha \) and \(\mu^{q+1} = \alpha^{(q+1)/2} = -1 \). In particular, \(\mu^{-q} = -\mu \). It follows that \(g_3 \) has two eigenvalues \(\pm \mu \) on \(U \) and, moreover, the corresponding eigenspaces are totally singular. Hence \(n = 2m + 1 \), and \(g \) stabilizes the \(m \)-dimensional totally singular subspace \(W \), where \(W \) is the \(\mu \)-eigenspace for \(g_3 \).

4. We have shown in Parts 2, 3 that we may assume \(n = 2m + 1 \) and \(g \) belongs to the parabolic subgroup \(P := \text{Stab}_G(W) \), where \(W \) is an \(m \)-dimensional totally singular subspace in \(U \). Recall that for \(Q := O_r(P) \), \(Z(Q) \) is an elementary abelian \(r \)-subgroup of order \(q^{m^2} \).

Here we consider the case \(n \geq 5 \). As shown in the proof of [3, Lemma 12.5], \(P \) has \(m \) orbits on \(\text{IBr}(Z(Q)) \) \(\setminus \{1 \cdot Z(Q)\} \), labeled as \(O_j \) with \(1 \leq j \leq m \). Moreover, one can identify \(O_j \) with the set of Hermitian \(m \times m \)-matrices of rank \(j \) over \(\mathbb{F}_{q^2} \) (and the multiplication of characters corresponds to the matrix addition). By [3, Theorem 2.6], \(\Phi|_{Z(Q)} \) has to afford some \(P \)-orbit \(O_j \) with \(j > 1 \), since \(\Phi \) is not a Weil representation.

We claim that \(g \) has some orbit of length \(p^b \) (notice that \(g^{p^b} = h \) acts trivially on \(Z(Q) \)). Assume the contrary. Then \(t := g^{p^{b-1}} \) fixes every element of \(O_j \). It is easy to see that \(O_j \cap O_l \supseteq O_1 \). (Indeed, let \(E_{ij} \) be the \(m \times m \)-matrix with the entry 1 at the \((i,j)\)-position and 0, elsewhere. Then \(X_1 = \sum_{1 \leq i \leq j} E_{i,j+1-i} \) and \(X_1 = E_{11} \) are Hermitian of rank \(j \).) Hence \(t \) fixes every element of \(O_1 \). Arguing as in the proof of [3, Lemma 12.5], we see that \(t \) is represented by \(\text{diag}(D, 1, D^{-1}q, 1) \) with \(D \in GL_m(q^2) \) and \(D(q)XD = X \) for any Hermitian \(m \times m \)-matrix \(X \) of rank 1. One can choose \(X = E_{ii} \), or \(X = b^{q+1}E_{ii} + bE_{i1} + \)
b^iE_{ii} + E_{ll}$ with $i \neq l$ and $b \in \mathbb{F}_{q^2}$. Then the equality $t^D(q)XD = X$ implies D is the scalar matrix δI_m with $\delta^{q+1} = 1$. Thus $g^{p^{b+c-1}} = 1$, contrary to $o(g) = p^{b+c}$.

Now we can fix a character λ such that the g-orbit of λ has length p^b; in particular, $\lambda^h = \lambda$. Then $Q/\text{Ker}(\lambda) = R \times A$, where R is an extraspecial r-group of order rq^{2j} and A is abelian of order $q^{2(m-j)}$. Furthermore, $h = g^{p^b}$ centralizes $Z(R)$ and normalizes both R and A. Clearly, the restriction of the λ-isotypic component Ψ of Φ to $\langle R, h \rangle$ contains an irreducible constituent Ψ_0 of degree q^j that lies above λ. It is easy to see that Ψ_0 is faithful. Also, $h^{p^{b-1}}$ acts regularly on $R/Z(R)$, as h acts on $R/Z(R) = \mathbb{F}_{q^2}$ via multiplication by α.

Since $|h| = q + 1$ and $j > 1$, h cannot act irreducibly on $R/Z(R)$. Hence, by a theorem of Hall-Higman and Shult, cf. [1, Theorem 2.6], $d_{\Psi_0}(h) = |h| = p^c$, and so $d_{\Phi}(h) = p^c$ as well. By [1, Proposition 2.15], $d_{\Phi}(g) \geq p^bd_{\Psi}(g^{p^b})$, whence $d_{\Phi}(g) = o(g) = p^{b+c}$.

5. Finally, consider the case $n = 3$. Since $n \geq 2k + 1 \geq 5$ for odd p, we have $p = 2$ and q a Mersenne prime in this case. As shown in Part 3, one can find a hyperbolic basis (u, v) of U such that $g = \text{diag}(\lambda, \lambda^{-q}, 1)$ in the basis (u, v, e_3) of V. Recall that $g \in P$ and Φ is not a Weil representation. By [3, Proposition 11.3], $\Phi|_Q$ contains a nontrivial linear character of Q. One can identify the set of linear characters of Q with F_{q^2}, so that g acts on it via multiplication by λ. Hence g acts regularly on the set of nontrivial linear characters of Q. Consequently, $d_{\Phi}(g) = |g|$.

The proof of Theorem 3 is complete.

References

