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Abstract

Newton potential for DGP brane-world scenario is examined when the extra dimension is semi-infinite. The final form of the
potential involves a self-adjoint extension parametewrhich plays a role of an additional mass (or distance) scale. The striking
feature of Newton potential in this setup is that the potential behaves as seven-dimensional in long rangéswioenzero.

For smalle there is an intermediate range where the potential is five-dimensional. Five-dimensional Newton constant decreases
with increase ofx from zero. In the short range the four-dimensional behavior is recovered. The physical implication of this
result is discussed in the context of the accelerating behavior of universe.

0 2003 Elsevier B.VOpen access under CC BY license.

Although the extra-dimensional theories have their arising due to the confined gravity on the brane when
own long history [1-3], the recent activities on this bulk space is a single copy 8dSs from an aspect of
field seem to be motivated from string theories [4]. the singular quantum mechanics (SQM). In this case
Much cosmological implications are investigated and the gravitational fluctuation equation is treated as an
established from the recent brane-world scenario. Es- usual Schrédinger equation with a singular potential
pecially Randall-Sundrum (RS) scenario [5,6], one of and it should be solved with incorporation of the self-
the recent brane-world scenario developed by making adjoint extension technique [12]. The real parameter,
use of the warped extra dimensions, provides an clue say &, introduced in the course of the self-adjoint
for the nature of 1/+#type Newton potential in our uni-  extension parametrizes the boundary condition (BC)
verse. the gravitational fluctuation obeys on the brane.

The original RS computation of Newton potential is The SQM approach is, more recently, applied to
extended and developed from various aspects [7—11].the RS scenario whenddinduced gravity is involved
Especially, Refs. [10,11] derived Newton potential [13,14]. The physical origin of thedinduced gravity

is one-loop quantum effect [15-17]. Whén= 1/2
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the other singular branes corresponding to diffegent
may trap a massive graviton, leading to Yukawa-like
gravitational behavior.

Recently, the brane-world scenario with Minkowski
bulk has attracted attention, which is often referred as
DGP model [18,19]. The model also involves d 4
induced term and recently applied to the cosmolog-
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wherex = M2/M?3. One can easily show that when
A =0 (oroo), Eg. (2) reduces to the usual %or 4d)
Einstein field equation without the energy—momentum
tensor. This fact makes us expect to derive the usual
5d 1/r2-type and 4 1/r-type gravitational potential
wheni =0 andi = oo, respectively. The expectation

is correct when the extra dimension is infinite. For the

ical constant hierarchy and the accelerating universe case of the semi-infinite extra dimension, however, the

[20-24]. In this Letter we will examine Newton law

solution of the fluctuation equation is dependent on the

assigning on the general 3-brane in DGP scenario BCs, which introduces two different distance scales.

when the extra dimension is infinite briefly and semi-
infinite in detail.

For the case of the infinite extra dimension it is
well known that Newton potential is five-dimensional
at long range and four-dimensional at short range [18].
We will reproduce this result by applying SQM to the
fluctuation equation. For the case of the semi-infinite
extra dimension the final form of Newton potential
involves a self-adjoint extension parametgrwhich
makes an additional distance scale whea 0. When
a = 0, Newton potential is similar to that for the
case of the infinite extra dimension. However, the
5d Newton constanGg becomesG; = 2Gs where
Gs is 5d Newton constant derived when the extra
dimension is infinite. The most striking result occurs
in the long-range behavior of the potential when
a > 0. In this range Newton potential becomes seven-
dimensional. In the intermediate range the potential
is five-dimensional with smaller Newton constant
than &55. The four-dimensional potential is recovered
at short range.

Let us start with the Einstein—Hilbert action

S:M3/d4xdy«/—GI§+M§v/d4x«/_—g R, (1)

whereM andM, are % and 4 Planck scale, respec-
tively. The curvature scala® andR are, respectively,
five-dimensional one and four-dimensional one con-
structed by @ metric tensoiG yn (x, y) and 4 metric
tensorg,,(x) = G, (x,y =0). Of course, the sec-
ond term in Eg. (1) represents the induced term gen-
erated by one-loop quantum effect [15-17]. The equa-
tion derived from action (1) is

- 1 -
(RMN - EGMNR)

1
+ )»(R,w - Eg,wR)W,,(S}’V(S(y) =0, (2)

Thus our expectation is not valid in the latter case.

Since there is no contribution from matter, the flat
metric G yy = nyy IS a trivial solution of Eq. (2). In
order to examine the behavior of the fluctuation around
the trivial solution, we define

®)

with assumption Hyy| < 1. Inserting Eq. (3) into
Eq. (2) one can derive the fluctuation equation

Gun =nunN + Hun

H, + 0% Hyy +20WH,ws(») =0, 4

where the prime denotes a differentiation with respect
to y ando™® =9,,8*. When deriving Eq. (4) we have
used the traceless and transverse gauge

H55=HM5=H/LL=3“HHV=O (5)

to ignore the tensor structure &fy, v for simplicity.
Defining ¥ (y) as ¥ (y) = Hyu(x, y)e 'P* changes
the fluctuation equation (4) as a Schrodinger-type
equation

Hy(y) = EY(y), (6)
where

. 1

H= —anz — XES(y) (7)

andE =m?/2=—p?/2.

The remarkable feature off from the aspect of
SQM is the fact that the coupling constant of the
singular potentials(y) is dependent on the energy
eigenvalue. Similar potential in the fluctuation level
arises when the bulk i8dSs [13,14]. In this case the
fixed-energy amplitude can be constructed explicitly
by applying Schulman procedutdf, for example, the

1 schulman procedure is in detail explained in Ref. [11].
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Hamiltonian isH = Hy (p, r) + 0(E)8(r), the fixed-
energy amplitudeG[Fl,Fz; E] for total Hamiltonian
can be constructed from the fixed-energy amplitude
GylF1, 7o; E]for Hy(p,7) as following;

Gli1,72; E]

GylF1,0; E1GyI[0, F2; E]

1 ~ D
BI3) + Gyl[0,0; E]

=Gyl 72; E] —

8)

Once the fixed-energy amplitude for total Hamiltonian

system is constructed, Newton potential on the brane

is directly computed as following [14];

o0
V(r) = m/dmmsiner[O, O,
0

%} ©)

if the brane is located at= 0. Thus the main problem
is converted to the construction of the fixed-energy
amplitude.

If Hy is simply 1d free case as Eq. (7), the
construction is considerably easy if extra dimension
is infinitely flat. If, however, the extra dimension is
semi-infinite (» > 0) and the 3-brane is located at the
end point of it, the construction ay for Hy is not
relatively simple. In this casé v should be derived by
incorporating the self-adjoint extension. In this Letter
we will examine Newton potential on the brane for
both cases.

Firstly, let us discuss the case of the infinite flat
extra dimension for brevity. In this case the fixed-
energy amplitudesy[71, 72; E] in Eq. (8) is simply
replaced by an amplitude for usual free-particle:

¢—V2Ela—b|

Vv2E

Inserting Eq. (10) into Eq. (8) with letting(E) =
—AE enables us to compute the fixed-energy ampli-
tude in this set-up:

Gyl 72; E) = Gpla, b; E] = (10)

—«/2E |a—b
SlabiEl= L VRE G,
V2E V2E -2
(11)
To compute Newton potential in this case, let us insert
A m? _%
G|0,0; —] =2 (12)
|: 2 m(m + %)
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into Eq. (9). Then, the potential on the brane reduces
to
o

1
Vi)=-—— [ d
«) nZMgr/m
0

When deriving Eq. (12) we identified asv/2E = —m
to derive a correct sign in Newton potential, which
seems to correspond to a choice of the retarded
Green'’s function.

Before computing Newton potentidl (r), let us
consider two special cases. M = 0, » becomes
infinity and V (r) simply reduces to four-dimensional:

sinmr

m+%

(13)

Gy

Va=a(r) = - (14)
where
1

=—. 15
Ga 27TM[2) (15)
If M, =0,V(r)inEq. (13)is changed into

l o

V(V)Z—m/dm sinmr. (16)

0
Since the integral in Eqg. (16) is not well-defined, we
should adopt an appropriate regularization. For the
regularization we introduce a damping facéor™ as

following:

oo o0

fdm sinmr — /dm sinmre™". a7
0 0

Then, the final form of Newton potential is purely five-
dimensional as expected

Gs
ViR =-23, (18)
where
1
Gg= ———. 19
5= 523 (19)

Thus our previous expectation is exactly recovered at
the level of Newton potential with a correct sign.

The general Newton potential is obtained by carry-
ing out the integral of Eqg. (13):

o))
{2)2)

Vr)=

(20)
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where c(z) and s{z) are usual sine and cosine integral
functions. Using the asymptotic behaviors and the

short-range expansions of these special functions, it is

straightforward to show that the long-range behavior
(r > A/2) of Newton potential is five-dimensional

2
1_2&
/2

and the short-range behavier« 1 /2) is four-dimen-
2r

sional
,
|:1+ —(y —1+1n —)],
Tro ro

where rp = A/2 and y is an Euler’s constant. If,
of course,A = 0 (or c0), Eq. (21) (or (22)) exactly
coincides with @ (or 4d) Newton potential given in
Egs. (14) and (18).

Now, let us discuss Newton potential when the ex-
tra dimension is semi-infinite. With this set-up the
fixed-energy amplitude should be computed by incor-
porating an half-line constraint. From the viewpoint
of quantum mechanics the constraint should be cho-
sen to maintain the unitarity for physical reason. This
implies that the BC we should adopt must yield the
vanishing probability current at=0, i.e.,(¥*9,y —
d,¥*¥)|o = 0. This requirement can be ensured if all
states in the domain of the definition of the Hamil-
tonian obey

Gs

V(r) = r2 (21)

V()= —%

r

(22)

o (23)

i 14 v
2 —a
whereq is an arbitrary real number called as a ‘self-
adjoint extension parameter’.

The fixed-energy amplitude for free particle living
in half-line compatible with BC (23) is computed long
ago in Refs. [25,26], whose explicit form is

Gy 1. 72; E]

— Gala, b; E]
_ 1 (eﬁ|ab I 2E _O‘e«/ﬁ(wb))‘
V2E V2E 4+ a

(24)
Particular attention is paid ® = 0 and o= oo cases:
Gu=ola, b; E1=G"a,b; E]

1 J2Ela—bl | —2E (a+b)
e +e ).
V2E (
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Ga—oola, b; E1= GPla, b; E]
1 (efﬁmfb\ _ e*ﬁ(tﬂrb))‘

V2E
(25)
One can show easily that? and G obey the usual
Dirichlet and Neumann BCs at= 0.

Inserting Eq. (24) into (8) with(E) = —AE, it is
easy to compute the fixed-energy amplitude for total
Hamiltonian system. Then, the fixed-energy amplitude
on the brane simply reduces to

A m? 2
G(0,0; — |=—————.
|: 2 i| am2+m— o
Thus, combining Eq. (9) and Eqg. (26) one can express

the gravitational potentidl, () as following:

1

(26)

V. =—
a(r) w2M2(my —m_)r
o
x/dm( My — )sinmr,
m+my m+m_
0
(27)
where
1

mizﬁ[li\/l+4)\.a]. (28)

At this stage it is worthwhile noting that our potential
Vu(r) involves two mass (or distance) scales for
arbitrary non-zerax. This means Newton potential
for the case of semi-infinite extra dimension can be
completely different from that for the case of the
infinite extra dimension. Shortly, we will show that the
extremely long-range behavior of the potential in this
case is seven-dimensional wher- 0.

For simplicity let us consider = 0 case first where
only one distance scale emerges. Simge= 1/A and
m_ = 0, Newton potentialV,,—o(r) can be obtained
straightforwardly from Eq. (27):

Vao(r) = ‘Tj@r [C'G) Sm(i)
-oof5)a(5)]

Thus, the long-range behavior $ 1) is five-dimen-

sional
22
1-2—
(1-25)

(29)

2Gs

Va=o(r) = — 7z (30)
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and the short-range behavior « 1) is four-dimen- not exist. In this range the potential behaves as
sional
4Gy
G 2 Ve o) = = T dra
Va:O(r):__4|:1+ n—r<y—1+ln%>} (32) . .
ez e
Thus, the global structure of Newton potential when - r

a =0 is very similar to that in the case of the infinite  The leading term of the potential is five-dimensional,
extra dimension. HowevergNewton constantin the ~ Whose Newton constaudi; is less than &s:
long-range behavior becomes; = 2Gs while 4d

4G

Newton constant in the short-range behavior remains Gg = 75 o 2Gs. (35)
unchanged. This seems to imply that the change of the 1+ V144

fifth dimension does not affect thel4juantity. Thus 54 Newton constant in this region is smaller

Next let us conside® > 0 case. Since:; >0and  than thatine = 0 case. For example, o < 1, Gg
m_ < 0 in this case we define two different distance becomes
scalesrr = +1/m. The explicit computation of the

1
integrals in Eq. (27) makes Newton potentigh o(r) Gs~2Gs(1—ra+---). (36)
to be The subleading term in this region is not uniquely
determined. In the regioryr_ > (r,/r)?, we have

Vaso0(r) G T

o (f)efn) AR @)

Y V7Y N N Iy Iy

mEM G+ L T+ T+ and in the regiom/r_ < (r,/r)2, we have

S I O GO RPN R

_ si(L) cos(L) o cos<L> ” (32) In the extremely short-range region & ry,
r.

r- r- r <« r_) the potential behaves as four-dimensional

Using the asymptotic behaviors of the sine and cosine 4 2r [y —1
integral functions one can show that the long-range Vaso(r) = _T[lJF ;{T
behavior ¢ > ri, r > r_) of V4-o(r) is seven- 2 1 1
dimensional as following +—(In——-—=In— .
Vi+da (& ry o r? r)”
1 1202 +r2) (39)
Vao(r) == —0 353 [1 - T} (33) The invariability of 4 Newton constant shows again

the half-line constraint of the extra dimension does not
Mathematically, this pecular behavior arises due to the change the 44uantities.
appearance of two different distance scales and the ex-  In this Letter we examined Newton potential for the
act cancellation of the five-dimensional term. How- DGP brane-world scenario when the extra dimension
ever, the physical origin of this seven-dimensional is semi-infinite. The final form of Newton potential
Newton potential is unclear to us. It is interesting involves a self-adjoint extension parameterwhich
to note that 7dNewton constant is contributed from generates an additional mass (or distance) scale. The

Gs and the self-adjoint extension parameteiGas= potential for non-zera behaves as seven-dimensional
2Gs/a?. in the extremely long range. In the short range the
Next let us examine the behavior &f,.o(r) in potential recovers four-dimensional behavioralfis
intermediate ranger{ < r <« r_). Sincer_ —ry = very small, there is an intermediate range where the
1/a, this region actually arises only for small. potential is five-dimensional. The/SNewton constant

When, thuse is comparatively large, this region does for non-zerow is smaller than that foor = O case.
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It seems to be interesting to understand the physical
origin of the seven-dimensional behavior in long
range.

In Ref. [21] the accelerated behavior of universe
is approached using the DGP brane-world picture
when the extra dimension is infinite. The origin of
the behavior in this picture comes from weakness
of the gravitational force in the long range, which
is referred as gravity leakage. Since the gravitational
force becomes weaker for the case of the semi-infinite
extra dimension, the accelerating behavior at ultra
large scale may easily occurred. We hope to address
this issue in the future.
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