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Abstract

Newton potential for DGP brane-world scenario is examined when the extra dimension is semi-infinite. The final form
potential involves a self-adjoint extension parameterα, which plays a role of an additional mass (or distance) scale. The str
feature of Newton potential in this setup is that the potential behaves as seven-dimensional in long range whenα is non-zero.
For smallα there is an intermediate range where the potential is five-dimensional. Five-dimensional Newton constant d
with increase ofα from zero. In the short range the four-dimensional behavior is recovered. The physical implication
result is discussed in the context of the accelerating behavior of universe.
 2003 Elsevier B.V.Open access under CC BY license.
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Although the extra-dimensional theories have th
own long history [1–3], the recent activities on th
field seem to be motivated from string theories [
Much cosmological implications are investigated a
established from the recent brane-world scenario.
pecially Randall–Sundrum (RS) scenario [5,6], one
the recent brane-world scenario developed by mak
use of the warped extra dimensions, provides an
for the nature of 1/r-type Newton potential in our uni
verse.

The original RS computation of Newton potential
extended and developed from various aspects [7–
Especially, Refs. [10,11] derived Newton potent
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arising due to the confined gravity on the brane wh
bulk space is a single copy ofAdS5 from an aspect o
the singular quantum mechanics (SQM). In this c
the gravitational fluctuation equation is treated as
usual Schrödinger equation with a singular poten
and it should be solved with incorporation of the se
adjoint extension technique [12]. The real parame
say ξ , introduced in the course of the self-adjo
extension parametrizes the boundary condition (B
the gravitational fluctuation obeys on the brane.

The SQM approach is, more recently, applied
the RS scenario when 4d induced gravity is involved
[13,14]. The physical origin of the 4d induced gravity
is one-loop quantum effect [15–17]. Whenξ = 1/2
which makes a singular brane to be usual RS bra
the 4d induced term generates an intermediate ra
in which the 5d potential 1/r2 emerges. Furthermore
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the other singular branes corresponding to differenξ

may trap a massive graviton, leading to Yukawa-l
gravitational behavior.

Recently, the brane-world scenario with Minkows
bulk has attracted attention, which is often referred
DGP model [18,19]. The model also involves ad
induced term and recently applied to the cosmol
ical constant hierarchy and the accelerating unive
[20–24]. In this Letter we will examine Newton la
assigning on the general 3-brane in DGP scen
when the extra dimension is infinite briefly and sem
infinite in detail.

For the case of the infinite extra dimension it
well known that Newton potential is five-dimension
at long range and four-dimensional at short range [
We will reproduce this result by applying SQM to th
fluctuation equation. For the case of the semi-infin
extra dimension the final form of Newton potent
involves a self-adjoint extension parameterα, which
makes an additional distance scale whenα �= 0. When
α = 0, Newton potential is similar to that for th
case of the infinite extra dimension. However,
5d Newton constantG′

5 becomesG′
5 = 2G5 where

G5 is 5d Newton constant derived when the ex
dimension is infinite. The most striking result occu
in the long-range behavior of the potential wh
α > 0. In this range Newton potential becomes sev
dimensional. In the intermediate range the poten
is five-dimensional with smaller Newton consta
than 2G5. The four-dimensional potential is recover
at short range.

Let us start with the Einstein–Hilbert action

(1)S = M3
∫

d4x dy
√−GR̃ +M2

p

∫
d4x

√−gR,

whereM andMp are 5d and 4d Planck scale, respec
tively. The curvature scalars̃R andR are, respectively
five-dimensional one and four-dimensional one c
structed by 5d metric tensorGMN(x, y) and 4d metric
tensorgµν(x) ≡ Gµν (x, y = 0). Of course, the sec
ond term in Eq. (1) represents the induced term g
erated by one-loop quantum effect [15–17]. The eq
tion derived from action (1) is(
R̃MN − 1

2
GMNR̃

)

(2)+ λ

(
Rµν − 1

2
gµνR

)
δ
µ
MδνNδ(y) = 0,
whereλ = M2
p/M

3. One can easily show that whe
λ = 0 (or ∞), Eq. (2) reduces to the usual 5d (or 4d)
Einstein field equation without the energy–moment
tensor. This fact makes us expect to derive the u
5d 1/r2-type and 4d 1/r-type gravitational potentia
whenλ = 0 andλ = ∞, respectively. The expectatio
is correct when the extra dimension is infinite. For
case of the semi-infinite extra dimension, however,
solution of the fluctuation equation is dependent on
BCs, which introduces two different distance sca
Thus our expectation is not valid in the latter case.

Since there is no contribution from matter, the fl
metricGMN = ηMN is a trivial solution of Eq. (2). In
order to examine the behavior of the fluctuation arou
the trivial solution, we define

(3)GMN = ηMN +HMN

with assumption|HMN | � 1. Inserting Eq. (3) into
Eq. (2) one can derive the fluctuation equation

(4)H ′′
µν + ✷(4)Hµν + λ✷(4)Hµνδ(y)= 0,

where the prime denotes a differentiation with resp
to y and✷(4) ≡ ∂µ∂

µ. When deriving Eq. (4) we hav
used the traceless and transverse gauge

(5)H55 = Hµ5 = Hµ
µ = ∂µHµν = 0

to ignore the tensor structure ofHMN for simplicity.
Defining ψ(y) as ψ(y) ≡ Hµν(x, y)e

−ipx changes
the fluctuation equation (4) as a Schrödinger-t
equation

(6)Ĥψ(y) = Eψ(y),

where

(7)Ĥ = −1

2
∂2
y − λEδ(y)

andE = m2/2 ≡ −p2/2.
The remarkable feature of̂H from the aspect o

SQM is the fact that the coupling constant of t
singular potentialδ(y) is dependent on the energ
eigenvalue. Similar potential in the fluctuation lev
arises when the bulk isAdS5 [13,14]. In this case the
fixed-energy amplitude can be constructed explic
by applying Schulman procedure.1 If, for example, the

1 Schulman procedure is in detail explained in Ref. [11].
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Hamiltonian isH = HV ( 
p, 
r) + v̂(E)δ(
r), the fixed-
energy amplitudeĜ[
r1, 
r2;E] for total Hamiltonian
can be constructed from the fixed-energy amplitu
ĜV [
r1, 
r2;E] for HV ( 
p, 
r) as following;

Ĝ[
r1, 
r2;E]
(8)= ĜV [
r1, 
r2;E] − ĜV [
r1, 
0;E]ĜV [
0, 
r2;E]

1
v̂(E)

+ ĜV [
0, 
0;E] .

Once the fixed-energy amplitude for total Hamiltoni
system is constructed, Newton potential on the br
is directly computed as following [14];

(9)V (r)= 1

2π2M3r

∞∫
0

dmmsinmrĜ

[
0,0; m

2

2

]

if the brane is located aty = 0. Thus the main problem
is converted to the construction of the fixed-ene
amplitude.

If HV is simply 1d free case as Eq. (7), th
construction is considerably easy if extra dimensioy
is infinitely flat. If, however, the extra dimension
semi-infinite (y � 0) and the 3-brane is located at t
end point of it, the construction of̂GV for HV is not
relatively simple. In this casêGV should be derived by
incorporating the self-adjoint extension. In this Let
we will examine Newton potential on the brane f
both cases.

Firstly, let us discuss the case of the infinite fl
extra dimension for brevity. In this case the fixe
energy amplitudeĜV [
r1, 
r2;E] in Eq. (8) is simply
replaced by an amplitude for usual 1d free-particle:

(10)ĜV [
r1, 
r2;E] → ĜF [a, b;E] = e−√
2E |a−b|

√
2E

.

Inserting Eq. (10) into Eq. (8) with lettinĝv(E) =
−λE enables us to compute the fixed-energy am
tude in this set-up:

(11)

Ĝ[a, b;E] = e−√
2E |a−b|

√
2E

− 1√
2E − 2

λ

e−√
2E (|a|+|b|).

To compute Newton potential in this case, let us ins

(12)Ĝ

[
0,0; m

2

2

]
= − 2

λ

m(m+ 2
λ
)

into Eq. (9). Then, the potential on the brane redu
to

(13)V (r) = − 1

π2M2
pr

∞∫
0

dm
sinmr

m+ 2
λ

.

When deriving Eq. (12) we identifiedm as
√

2E = −m

to derive a correct sign in Newton potential, whi
seems to correspond to a choice of the retar
Green’s function.

Before computing Newton potentialV (r), let us
consider two special cases. IfM = 0, λ becomes
infinity andV (r) simply reduces to four-dimensiona

(14)Vd=4(r) = −G4

r
,

where

(15)G4 = 1

2πM2
p

.

If Mp = 0,V (r) in Eq. (13) is changed into

(16)V (r) = − 1

2π2M3r

∞∫
0

dmsinmr.

Since the integral in Eq. (16) is not well-defined, w
should adopt an appropriate regularization. For
regularization we introduce a damping factore−εm as
following:

(17)

∞∫
0

dmsinmr →
∞∫

0

dmsinmre−εm.

Then, the final form of Newton potential is purely fiv
dimensional as expected

(18)V
(Reg)
d=5 (r) = −G5

r2 ,

where

(19)G5 = 1

2π2M3
.

Thus our previous expectation is exactly recovere
the level of Newton potential with a correct sign.

The general Newton potential is obtained by car
ing out the integral of Eq. (13):

V (r) = − 1

π2M2
pr

[
ci

(
2r

λ

)
sin

(
2r

λ

)

(20)− cos

(
2r

λ

)
si

(
2r

λ

)]
,
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where ci(z) and si(z) are usual sine and cosine integ
functions. Using the asymptotic behaviors and
short-range expansions of these special functions,
straightforward to show that the long-range behav
(r � λ/2) of Newton potential is five-dimensional

(21)V (r)= −G5

r2

(
1− 2r2

0

r2

)

and the short-range behavior (r � λ/2) is four-dimen-
sional

(22)V (r)= −G4

r

[
1+ 2r

πr0

(
γ − 1+ ln

r

r0

)]
,

where r0 ≡ λ/2 and γ is an Euler’s constant. If
of course,λ = 0 (or ∞), Eq. (21) (or (22)) exactly
coincides with 5d (or 4d) Newton potential given in
Eqs. (14) and (18).

Now, let us discuss Newton potential when the
tra dimension is semi-infinite. With this set-up t
fixed-energy amplitude should be computed by inc
porating an half-line constraint. From the viewpo
of quantum mechanics the constraint should be c
sen to maintain the unitarity for physical reason. T
implies that the BC we should adopt must yield t
vanishing probability current aty = 0, i.e.,(ψ∗∂yψ −
∂yψ

∗ψ)|0 = 0. This requirement can be ensured if
states in the domain of the definition of the Ham
tonian obey

(23)
∂

∂y
ψ

∣∣∣∣
0
= αψ

∣∣
0,

whereα is an arbitrary real number called as a ‘se
adjoint extension parameter’.

The fixed-energy amplitude for free particle livin
in half-line compatible with BC (23) is computed lon
ago in Refs. [25,26], whose explicit form is

ĜV [
r1, 
r2;E]
→ Ĝα[a, b;E]

(24)

= 1√
2E

(
e−√

2E |a−b| +
√

2E − α√
2E + α

e−√
2E (a+b)

)
.

Particular attention is paid toα = 0 and α= ∞ cases:

Ĝα=0[a, b;E] ≡ ĜN [a, b;E]
= 1√

2E

(
e−√

2E |a−b| + e−√
2E (a+b)

)
,

Ĝα=∞[a, b;E] ≡ ĜD[a, b;E]

(25)

= 1√
2E

(
e−√

2E |a−b| − e−√
2E (a+b)

)
.

One can show easily that̂GD andĜN obey the usua
Dirichlet and Neumann BCs aty = 0.

Inserting Eq. (24) into (8) witĥv(E) = −λE, it is
easy to compute the fixed-energy amplitude for to
Hamiltonian system. Then, the fixed-energy amplitu
on the brane simply reduces to

(26)Ĝ

[
0,0; m

2

2

]
= − 2

λm2 +m− α
.

Thus, combining Eq. (9) and Eq. (26) one can expr
the gravitational potentialVα(r) as following:

Vα(r) = − 1

π2M2
p(m+ −m−)r

(27)

×
∞∫

0

dm

(
m+

m+m+
− m−

m+m−

)
sinmr,

where

(28)m± = 1

2λ

[
1± √

1+ 4λα
]
.

At this stage it is worthwhile noting that our potent
Vα(r) involves two mass (or distance) scales
arbitrary non-zeroα. This means Newton potenti
for the case of semi-infinite extra dimension can
completely different from that for the case of t
infinite extra dimension. Shortly, we will show that th
extremely long-range behavior of the potential in t
case is seven-dimensional whenα > 0.

For simplicity let us considerα = 0 case first where
only one distance scale emerges. Sincem+ = 1/λ and
m− = 0, Newton potentialVα=0(r) can be obtained
straightforwardly from Eq. (27):

Vα=0(r) = − 1

π2M2
pr

[
ci

(
r

λ

)
sin

(
r

λ

)

(29)− cos

(
r

λ

)
si

(
r

λ

)]
.

Thus, the long-range behavior (r � λ) is five-dimen-
sional

(30)Vα=0(r) = −2G5

r2

(
1− 2

λ2

r2

)
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and the short-range behavior (r � λ) is four-dimen-
sional

(31)Vα=0(r) = −G4

r

[
1+ 2r

πλ

(
γ − 1+ ln

r

λ

)]
.

Thus, the global structure of Newton potential wh
α = 0 is very similar to that in the case of the infini
extra dimension. However, 5d Newton constant in the
long-range behavior becomesG′

5 = 2G5 while 4d
Newton constant in the short-range behavior rema
unchanged. This seems to imply that the change o
fifth dimension does not affect the 4d quantity.

Next let us considerα > 0 case. Sincem+ > 0 and
m− < 0 in this case we define two different distan
scalesr± = ±1/m±. The explicit computation of the
integrals in Eq. (27) makes Newton potentialVα>0(r)

to be

Vα>0(r)

= − 1

π2M2
p(

1
r+ + 1

r− )r

[
1

r+

{
ci

(
r

r+

)
sin

(
r

r+

)

− si

(
r

r+

)
cos

(
r

r+

)}
− 1

r−

{
ci

(
r

r−

)
sin

(
r

r−

)

(32)− si

(
r

r−

)
cos

(
r

r−

)
− π cos

(
r

r−

)}]
.

Using the asymptotic behaviors of the sine and cos
integral functions one can show that the long-ran
behavior (r � r+, r � r−) of Vα>0(r) is seven-
dimensional as following

(33)Vα>0(r) = − 1

π2M3α2r4

[
1− 12(r2+ + r2−)

r2

]
.

Mathematically, this pecular behavior arises due to
appearance of two different distance scales and the
act cancellation of the five-dimensional term. Ho
ever, the physical origin of this seven-dimensio
Newton potential is unclear to us. It is interesti
to note that 7dNewton constant is contributed fro
G5 and the self-adjoint extension parameter asG7 =
2G5/α

2.
Next let us examine the behavior ofVα>0(r) in

intermediate range (r+ � r � r−). Sincer− − r+ =
1/α, this region actually arises only for smallα.
When, thus,α is comparatively large, this region do
not exist. In this range the potential behaves as

Vα>0(r) = − 4G5

(1+ √
1+ 4λα )r2

(34)×
[
1+

{
π

2

r

r−
− 2

(
r+
r

)2}]
.

The leading term of the potential is five-dimension
whose Newton constantG′′

5 is less than 2G5:

(35)G′′
5 = 4G5

1+ √
1+ 4λα

< 2G5.

Thus 5d Newton constant in this region is small
than that inα = 0 case. For example, ifλα � 1, G′′

5
becomes

(36)G′′
5 ∼ 2G5(1− λα + · · ·).
The subleading term in this region is not unique

determined. In the regionr/r− � (r+/r)2, we have

(37)Vα>0(r) = −G′′
5

r2

(
1+ π

2

r

r−

)

and in the regionr/r− � (r+/r)2, we have

(38)Vα>0(r) = −G′′
5

r2

[
1− 2

(
r+
r

)2]
.

In the extremely short-range region (r � r+,
r � r−) the potential behaves as four-dimensional

Vα>0(r) = −G4

r

[
1+ 2r

π

{
γ − 1

λ

(39)

+ λ√
1+ 4λα

(
1

r2+
ln

r

r+
− 1

r2−
ln

r

r−

)}]
.

The invariability of 4d Newton constant shows aga
the half-line constraint of the extra dimension does
change the 4dquantities.

In this Letter we examined Newton potential for t
DGP brane-world scenario when the extra dimens
is semi-infinite. The final form of Newton potenti
involves a self-adjoint extension parameterα, which
generates an additional mass (or distance) scale.
potential for non-zeroα behaves as seven-dimensio
in the extremely long range. In the short range
potential recovers four-dimensional behavior. Ifα is
very small, there is an intermediate range where
potential is five-dimensional. The 5d Newton constan
for non-zeroα is smaller than that forα = 0 case.
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02)

03)

0)
It seems to be interesting to understand the phys
origin of the seven-dimensional behavior in lo
range.

In Ref. [21] the accelerated behavior of unive
is approached using the DGP brane-world pict
when the extra dimension is infinite. The origin
the behavior in this picture comes from weakn
of the gravitational force in the long range, whi
is referred as gravity leakage. Since the gravitatio
force becomes weaker for the case of the semi-infi
extra dimension, the accelerating behavior at u
large scale may easily occurred. We hope to add
this issue in the future.
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