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SUMMARY

Prion and prion-like domains (PLDs) are found in
many proteins throughout the animal kingdom. We
found that thePLD in theS.cerevisiaeexomer-depen-
dent cargo protein Pin2 is involved in the regulation of
protein transport and localization. The domain serves
as a Pin2 retention signal in the trans-Golgi network
(TGN). Pin2 is localized in a polarized fashion at the
plasma membrane of the bud early in the cell cycle
and the bud neck at cytokinesis. This polarized local-
ization is dependent on both exo- and endocytosis.
Upon environmental stress, Pin2 is rapidly endocy-
tosed, and the PLD aggregates and causes seques-
tration of Pin2. The aggregation of Pin2 is reversible
upon stress removal and Pin2 is rapidly re-exported
to the plasma membrane. Altogether, these data un-
cover a role for PLDs as protein localization elements.
INTRODUCTION

Prion proteins can exist in a normally folded state or an aggre-

gated state. The aggregated state is able to drive normally folded

proteins into aggregation. Induction of the yeast Sup35 prion

[PSI+] can occur spontaneously, but is greatly facilitated if the

cell has previously achieved a [PIN+] state (Derkatch et al.,

1997). This [PIN+] state can be reached by the overexpression

of a number of different factors that contain a prion domain or

prion-like domain (PLD) (Derkatch et al., 2001). Thus, efficient in-

duction of prions may require the presence of other prions.

Genome-wide analyses indicate that 0.3% (in humans) to 24%

(in plasmodium) of cellular proteins contain a prion domain or

PLD (Michelitsch and Weissman, 2000; Osherovich and Weiss-

man, 2002; Singh et al., 2004). RNA-binding proteins are over-

represented among the PLD-containing proteins (Michelitsch

andWeissman, 2000). Obviously, not all prion or PLDs cause dis-

ease, and they may instead act as scaffold or interaction do-

mains. Yet, in most instances, their precise role remains elusive.

Transport to the plasma membrane and secretion are essen-

tial processes in eukaryotic cells. Cargoes destined for the

plasma membrane will be sorted into transport carriers for either

direct delivery or delivery via endosomes. Evidence for the direct

route exists in yeast and in mammalian cells. TGN46-containing

transport containers, which are dependent on protein kinase D
and are devoid of vesicular stomatitis virus glycoprotein

(VSVG) or collagen, have been identified in HeLa cells, indicating

a specific sorting mechanism at the trans-Golgi network (TGN)

(Wakana et al., 2012). In Saccharomyces cerevisiae, the chitin

synthase Chs3 and the mating-response protein Fus1 require

Chs5 and Chs5p-Arf1p-binding proteins (ChAPs) collectively

termed exomer for their export from the TGN to the plasma

membrane (Trautwein et al., 2006; Wang et al., 2006). Chs3

and Fus1 necessitate a combination of regulated endocytosis

and exocytosis to achieve their precise localization at the bud

neck for Chs3 and to the bud tip for Fus1 in a cell-cycle-depen-

dent manner (Barfield et al., 2009; Valdivia et al., 2002).

The ChAP family consists of Bch1, Bch2, Bud7, and Chs6,

which can associate with Chs5 to form oligomers of heterotetra-

meric complexes. These complexes consist of two Chs5 mole-

cules and two ChAPs, and either two identical or two different

ChAPs can be bound to Chs5 (Paczkowski et al., 2012; Traut-

wein et al., 2006). The ChAPs may act as adaptor molecules to

interact and recruit cargo to specific sites at the TGN from which

they reach the plasma membrane. Although previous studies

identified Chs3 and Fus1 motifs that were necessary for export

from the TGN, none of these motifs were sufficient (Barfield

et al., 2009; Rockenbauch et al., 2012; Starr et al., 2012). In addi-

tion, the interaction motifs were not conserved between the two

cargo proteins. Thus, the interaction between the cargoes and

exomer appears to be rather complex.

Given the lack of conserved motifs between Chs3 and Fus1,

other interaction sites must be important for controlling the

export of these proteins in a temporally and spatially controlled

manner. These interaction sites potentially could adopt an

appropriate conformation upon interaction with the ChAPs,

and then the linear transport signal might be recognized. In

support of this notion, it was shown that all ChAPs are able to

interact with Chs3, although only Chs6 is essential for its plasma

membrane localization (Trautwein et al., 2006). Examples of such

interactions include Src homology domains that recognize phos-

phorylated Tyr in proteins (Groffen et al., 1983; Moran et al.,

1990), the interaction of the ArfGAP Glo3 with SNAREs and

cargo (Rein et al., 2002; Schindler et al., 2009), and PLD-contain-

ing proteins that are important for processing body and stress

granule assembly (Alberti et al., 2009; Decker et al., 2007; Gilks

et al., 2004; Michelitsch and Weissman, 2000; Vessey et al.,

2006) or are often found in cytoskeletal elements (Alberti et al.,

2009; Michelitsch and Weissman, 2000).

Chs3 is a multispanning transmembrane protein, and Fus1

only becomes exomer dependent upon mating. To better
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Figure 1. Pin2 Is an Exomer-Dependent

Cargo

(A) Flowchart of biochemical screen for exomer

cargo.

(B) Plasma membrane localization of Pin2, but not

Skg6, is dependent on exomer. Fluorescence

microscopy of WT, Dchs5, or D4ChAPs cells

expressing chromosomally tagged Pin2-GFP and

Skg6-GFP. Scale bar represents 5 mm.

(C) The C terminus of Pin2 and Skg6 is cytosolic.

Spheroplasts expressing either Pin2-GFP or

Skg6-GFP were treated with trypsin ± TX-100 and

analyzed by immunoblot.

(D) Scheme of Pin2 and Skg6 topology.

(E) Pin2 and Skg6 bind all four ChAPs. Pull-downs

of yeast lysates with purified GST-tagged cyto-

solic domains of Pin2, Skg6, or Sec22. Pull-downs

were performed with 4ChAPs-TAG, D4ChAPs,

or Chs6-9myc lysates. Samples were immuno-

blotted for Chs5, epitope tags present on the

ChAPs, or Pgk1. Asterisks indicate the nonspecific

interaction of GST-Skg6 with the anti-Chs5

antibody. Coomassie staining shows the levels of

GST-tagged constructs in the pull-downs.

See also Figure S1 and Tables S1 and S2.
understand the exomer-dependent transport pathway, we iden-

tified cargo proteins, including Pin2, a single transmembrane

domain (TMD) protein with a large cytoplasmic region that

contains a PLD. This PLD regulates the traffic of Pin2 under

normal growth conditions and is essential for Pin2 retention in

internal structures upon stress. We identified a transport mech-

anism in which a PLD is essential for the temporal and spatial

control of intracellular protein localization.

RESULTS

The PLD Protein Pin2 Is an Exomer-Dependent Cargo
In order to better understand exomer-dependent transport to the

plasma membrane, we aimed to identify novel cargoes. We

appended Chs5 or each of the four members of the ChAP family
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with a histidine-biotin-histidine (HBH) tag.

The HBH tag consists of a biotinylation

sequence flanked by two His6 tags (Tag-

werker et al., 2006). This tag allows the

purification of proteins or (after crosslink-

ing) protein complexes under denaturing

conditions. This tag should allow for

easy extraction of membrane proteins,

which would represent potential cargo

proteins, when bound to the exomer

complex. Cells were crosslinked and

lysed under denaturing conditions. The

crosslinked complexes were affinity

purified and analyzed bymass spectrom-

etry (Figure 1A). We identified TMD-

containing proteins (potential cargoes)

and soluble proteins (potential regula-

tors). We focused on potential cargoes
and tested them for their ability to be transported to the plasma

membrane in a Chs5-dependent manner. One of the hits that

required Chs5 for localization to the bud in small- and medium-

sized cells and to the bud neck in large-budded cells was

the previously uncharacterized PLD-containing protein Pin2

(Figure 1B). In the absence of Chs5, Pin2 remained in internal

structures, similar to what was observed with the other

exomer-dependent cargoes (Barfield et al., 2009; Santos and

Snyder, 1997; Trautwein et al., 2006). If Pin2 is an exomer-

dependent cargo, a deletion of all four ChAPs should phenocopy

a Dchs5 strain. In a D4ChAPs strain, Pin2 was also found in

internal structures (Figure 1B). Therefore, Pin2 represents a

exomer-dependent cargo.

It has been reported that all exomer-dependent cargoes

localize to the bud or bud neck (Barfield et al., 2009; Chuang



and Schekman, 1996; Santos and Snyder, 1997), suggesting

that perhaps all bud-localized proteins are potential exomer

clients. However, another candidate from our biochemical

screen, Skg6, which localized to the bud and the bud neck in a

cell-cycle-dependent manner similar to that observed for Pin2,

reached the plasmamembrane through an exomer-independent

pathway, because deletion of CHS5 or the four ChAPs had no

effect on Skg6 localization (Figure 1B). Thus, the cell-cycle-

dependent spatial distribution of the proteins alone cannot be

used to discriminate between exomer-dependent and -indepen-

dent cargoes.

Pin2 and Skg6 Are TMD Proteins with C-Terminal
Domains Facing the Cytoplasm
Pin2 and Skg6 are single TMD proteins with unclear topology. To

determine the topology of both proteins, we performed trypsin

digests of cells expressing chromosomal C-terminal GFP

fusions of Pin2 and Skg6 in the presence or absence of 1%

TX-100. Pin2-GFP was resistant to trypsin treatment for up to

90 min in the absence of detergent. Solubilizing the plasma

membrane rendered Pin2-GFP protease sensitive (Figure 1C).

Similar results were obtained for Skg6-GFP. Consistent with

these results, phosphoproteome studies reported phosphoryla-

tion sites for both Skg6 and Pin2 in the C-terminal part of the

proteins (Bodenmiller et al., 2007; Li et al., 2007; Sadowski

et al., 2013; Soulard et al., 2010). Therefore, the C terminus of

Pin2 and Skg6 face the cytoplasm, and the N terminus of either

protein is exposed to the environment. In both proteins, the TMD

is relatively close to the N terminus, resulting in small extracel-

lular domains (Figure 1D).

Pin2 and Skg6 Interact with Exomer Components
In Vitro
The determination of the topology allowed us to create GST-

fusion proteins of the cytoplasmic exposed tails of Pin2 and

Skg6, and to revisit their interaction with exomer. We

wanted to confirm the interaction because crosslinking only

measures proximity. We performed a GST pull-down experi-

ment from yeast lysates in which three of the four ChAPs

(Bch1, Bch2, and Bud7) were chromosomally appended with

different tags, or Chs6 was myc tagged. The functionality

of the tagged proteins was established previously (Trautwein

et al., 2006). Pin2 and Skg6, but not the endoplasmic reticulum

(ER)-Golgi v-SNARE Sec22, pulled down exomer components

(Figure 1E). Interestingly, proximity to and even interaction

with exomer appears to be insufficient to describe an

exomer-dependent cargo, as Skg6 travels to the plasma

membrane in the absence of exomer. It is conceivable, how-

ever, that Skg6 can use either pathway to reach the plasma

membrane.

As a final proof, we probed the interaction of Pin2 with

Chs5. Chs3 and Fus1 depend on the ChAPs for efficient inter-

action with Chs5 (Rockenbauch et al., 2012; Sanchatjate

and Schekman, 2006). Although we could detect a robust

interaction between Chs5 and Pin2 in the presence of the

ChAPs, this interaction was abolished when the ChAPs were

deleted (Figure 1E). Therefore, we conclude that Pin2 is a

exomer-dependent cargo.
Either Bch1 or Bch2 Is Sufficient to Support Pin2 Plasma
Membrane Localization
Exomer-dependent cargoes require one or two members of

the ChAP family for timely exit from the TGN (Barfield et al.,

2009; Sanchatjate and Schekman, 2006; Trautwein et al.,

2006; Ziman et al., 1998). We tested single and double ChAP

deletions for their failure to export Pin2-GFP from the TGN.

Only the double deletion Dbch1 Dbch2 altered Pin2-GFP locali-

zation (Figures S1A–S1C). However, this mutant was less potent

than Dchs5, indicating that the other ChAPs also can contribute

to proper Pin2 localization (Figure S1C).

Next, we asked whether either Bch1 or Bch2 would also be

sufficient for Pin2 TGN export. Pin2 still reached the plasma

membrane even when only one ChAP was present, albeit some-

what less efficiently than in the wild-type (WT; Figures S1D and

S1E). At least in the case of Bch2, this small reduction in export

efficiency was not due to less binding to Pin2 (Figure S1F). Our

data indicate that Bch1 and Bch2 can independently promote

export of Pin2 from the TGN to the plasma membrane.

Exomer Binds the Pin2 C Terminus In Vitro
Thus far, we have shown that Pin2 is an exomer-dependent

cargo that binds directly to exomer. The interaction of exomer

with its cargoes Chs3 and Fus1 is complex and requires more

than just a linear sequence motif (Barfield et al., 2009; Rocken-

bauch et al., 2012). To identify potential interacting regions, we

generated three truncations in the cytoplasmic domain contain-

ing a GST-Pin2 construct. As shown above, the cytoplasmic

domain of Pin2 bound all ChAP proteins (Figures 1E and 2A).

In addition, the construct expressing the C-terminal�120 amino

acids of Pin2 precipitated the ChAPs, albeit more weakly. Since

GST-Pin2(72-210) was unable to interact with exomer, we

conclude that the exomer-binding site resides in the C-terminal

72 amino acids. Thus, exomer recognizes sequences in the

Pin2 C terminus, but other sequences in the molecule might still

contribute to the binding efficacy.

Next we wanted to test whether the C-terminal part of

Pin2 is necessary and sufficient to cause exomer-dependent

export (Figure 2B). First, we generated a construct in which the

exomer interaction site identified in vitro was eliminated

(Pin2(1-210)-GFP). This construct still reached the plasma

membrane in the WT and to a lesser extent in Dchs5; however,

the polarized localization was lost (Figures 2B and 2C). This

phenotype is reminiscent of Chs3 localization in Dchs5 Dapm1

cells, in which recycling from endosomes to the TGN is blocked

(Valdivia et al., 2002). A construct that contained only the first 245

of the 282 amino acids of Pin2 still accumulated at the plasma

membrane in an exomer-dependent manner. Therefore, the

exomer interaction site might reside in residues 210–245 of

Pin2. Trimming the protein further down to 152 residues shifted

Pin2 localization entirely to the plasma membrane and the

internal pool was depleted, consistent with a defect in endocy-

tosis (Figure 2B). A similar phenotype was previusly reported

for Chs3 localization in a Dend3 strain, in which endocytosis

was blocked (Chuang and Schekman, 1996; Ziman et al.,

1996). Despite a notable plasma membrane localization of

Pin2(D79-152)-GFP, most of the protein accumulated in the

vacuole in WT cells, indicating that the membrane proximal
Cell Reports 7, 249–260, April 10, 2014 ª2014 The Authors 251



Figure 2. The Pin2 Cytosolic Domain Contains Motifs for Exomer Binding and Endocytosis

(A) Amino acids 211–282 contain an exomer-binding motif. Pull-downs from 4ChAPs-TAG lysates with Pin2-GST variants. GST-Sec22 was used as a negative

control. Pull-downs were analyzed by immunoblot. Pgk1 served as control. Coomassie staining showed the levels of GST-tagged constructs in the pull-downs.

(B) D 211–245 abolishes exomer dependency. Fluorescence microscopy images of Dpin2 and Dpin2Dchs5 cells expressing Pin2-GFP variants. Scale bars

represent 5 mm.

(C) Quantification of phenotypes in (B); 100 small and medium budded cells, and 100 large budded cells were quantified.

See also Figure S2 and Tables S1 and S2.
region of Pin2 also may contribute to proper Pin2 localization.

Most importantly, the pool that reached the plasma membrane

arrived there in an exomer-independent manner, because

localization of Pin2(D79-152)-GFP in Dchs5 was indistinguish-

able from that in WT cells. Therefore, the C-terminal domain

is not sufficient to direct Pin2 into the exomer pathway. The

effects we observed were not due to large overexpression of
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the constructs over the endogenous protein (Figure S2A).

Taken together, these data indicate that the interaction between

Pin2 and exomer might be rather complex, and it is rather

unlikely that a short linear sequence within Pin2 would be

necessary and sufficient to promote temporal and spatial

controlled plasma membrane localization. These data are in

agreement with what has been observed for the other exomer



Figure 3. Pin2 Is Retrieved from Endo-

somes to the TGN by AP-1

(A) Amino acids 211–245 of Pin2 contain a motif

required for exomer dependency. Underlined is a

Y-rich sequence, a potential AP-1 binding motif.

(B) Mutation of the YGENYYY motif rescues Pin2

export in a Dchs5 strain. Fluorescence micro-

scopy of Dpin2 and Dpin2Dchs5 strain cells

expressing GFP-tagged Pin2 or the AGEAAAA

mutant. Arrowheads indicate Pin2(AGEAAAA)-

GFP at the plasma membrane of the daughter and

mother cells.

(C) Quantification of (B) as described in Figure 2C

in each of three independent experiments.

(D) Dapm1 rescues Pin2 export to the plasma

membrane in a Dchs5 strain. Fluorescence

microscopy of WT, Dchs5, and Dchs5Dapm1 cells

expressing Pin2-GFP and Skg6-GFP. Arrows indi-

cate Pin2-GFP exclusively at the plasma mem-

brane of the daughter cell in Dchs5Dapm1 cells.

(E) WT, Dchs5, and Dchs5Dapm1 cells were

scored as in (C).

Error bars represent SD. Scale bars in (B) and (D),

5 mm. See also Figures S3 and S4 and Tables S1

and S2.
cargoes, Chs3 and Fus1 (Barfield et al., 2009; Rockenbauch

et al., 2012).

Pin2 Recycles between Endosomes and TGN
Chs3 and Fus1 have been shown to reach endosomes and to be

retrieved from there through an AP-1-dependent pathway

(Barfield et al., 2009; Valdivia et al., 2002). In the absence of

Chs5 and AP-1, Chs3 and Fus1 arrived at the plasmamembrane

through an alternative route. We tested whether this recycling is

a general feature of exomer-dependent cargoes. As shown

above, Pin2(1-210), but not Pin2(1-245), was localized to the

plasma membrane independently of Chs5, indicating that the

region aa 210–245 may contain an AP-1-binding site (Figure 2B).

The m subunits of AP complexes can bind to the Y-based sorting

motif YXXø (where X is any amino acid, and ø is a bulky hydro-

phobic amino acid) (Ohno et al., 1995). We identified a cryptic

Y-based motif, YGENYYY, in the 210–245 peptide (Figure 3A).

Although the spacing for the motif was not perfect, we replaced

the Ys and N by As. Transport to the plasma membrane of the A

mutant was independent of Chs5 (Figures 3B and 3C), indicating

that YGENYYY could be a functional adaptor-complex-binding

site. To prove that Pin2 indeed undergoes AP-1-dependent

recycling, we deleted the m subunit of the AP-1 complex,
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APM1. In a Dchs5 Dapm1 mutant, Pin2

was localized mostly at the plasma

membrane, whereas Skg6 localization

was not affected (Figures 3D and 3E).

Moreover, the Pin2(AGEAAAA) mutant

protein did not change its localization

in a Dchs5 2Dapm1 mutant, confirming

that YGENYYY is required for AP-1-

dependent recycling to the TGN (Fig-

ure S3). To test whether YGENYYY
is essential for AP-1 binding in vitro, we performed a pull-

down of Pin2(AGEAAAA)-GST and probed for the AP-1

subunit Apl2. The binding of Apl2 was not significantly

reduced in the mutant compared with Pin2 (Figure S4A),

indicating that there must be an additional binding site for

AP-1. Consistent with Apl2 binding, replacing YGENYYY by

AGEAAAA did not grossly alter the conformation of Pin2 as

determined by circular dichroism spectroscopy (Figure S4B).

Our data are in agreement with the notion that Pin2 cycles be-

tween the TGN and endosomes in a manner similar to that

observed for Chs3 and Fus1. In addition, the Y-based signal

might also be recognized by the AP-2 complex, which promotes

endocytosis at the plasma membrane. In contrast to Dchs5

Dapm1 cells, in which the mother cell was devoid of Pin2, Pin2

(AGEAAAA)-GFP localized to the plasma membrane of mother

and daughter cells in both WT and Dchs5 (Figures 3B and 3D),

indicating that endocytosis may be required for proper Pin2

localization.

Endocytosis of Pin2 Is Required for Its Proper Plasma
Membrane Localization
Another feature of Chs3 trafficking is that Chs3 localization at the

bud neck is dependent on endocytosis (Reyes et al., 2007;
60, April 10, 2014 ª2014 The Authors 253



Figure 4. The Polarized Localization of Pin2

Is Dependent on Ubiquitin-Mediated Endo-

cytosis

(A) Endocytosis is required to maintain polar-

ized localization of exomer-dependent cargoes.

Fluorescence microscopy of WT and Dend3

cells expressing Chs3-2GFP, Pin2-GFP, and

Skg6-GFP.

(B) WT and Dend3 cells were scored for the

expression of Chs3-2GFP, Pin2-GFP, or Skg6-

GFP at the plasmamembrane and for the extent of

the polarity of cargo localization.

(C) Amino acids 153–179 of Pin2 are required for

maintenance of polarized localization at the

plasma membrane. Ks are depicted in bold.

(D) Mutation of three out of seven Ks within aa

153–179 causes a partial loss of Pin2 polarity.

Fluorescence microscopy of Dpin2 expressing

Pin2-GFP or Pin2(K157,159,161R)-GFP mutant.

(E) Analysis of cells in (D).

(F) Ks within aa 153–179 are ubiquitylated.

Immunoprecipitation of GFP-tagged Pin2 or the

K7R variant from an HA-ubiquitin-overexpressing

strain. HA-ubiquitin was detected with anti-HA

antibodies.

Quantifications in (B) and (E) were performed as in

Figure 3C. Error bars represent SD. Scale bars in

(A) and (D), 5 mm. See also Tables S1 and S2.
Ziman et al., 1996). Therefore, we tested whether Pin2 locali-

zation depends on endocytosis. Deletion of END3 locked Chs3

and Pin2 at the plasma membrane, whereas Skg6 was only

mildly affected (Figures 4A and 4B). These results indicate

that Pin2 and Chs3 are equally dependent on endocytosis for

their proper localization. Moreover, Pin2(AGEAAAA)-GFP was

mislocalized over the entire plasma membrane (Figure 3B).

Similarly, Pin2(1-152) accumulated at the plasma membrane,

whereas internal stores were depleted (Figure 2B). Although

Pin2(1-179) also was mostly present at the plasma membrane,

internal structures were still observed (Figure 2B). Therefore,

information for efficient endocytosis may be located in aa 153–

179 of Pin2. The peptide 153–179 of Pin2 contains seven lysines,

each of which could potentially be ubiquitylated (Figure 4C).

Replacing K157, K159, and K161 by arginines in Pin2

(Pin2(K157,159,161,R)-GFP) caused a strong endocytosis

defect (Figures 4D and 4E). To show that Pin2 can be ubiquity-

lated in this region, we replaced all seven Ks by Rs in a strain

that expressed hemagglutinin (HA)-tagged ubiquitin. Pin2 is a

target for ubiquitylation, as HA-ubiquitin was covalently attached

to Pin2 and addition of this modification was at least partly
254 Cell Reports 7, 249–260, April 10, 2014 ª2014 The Authors
dependent on the seven Ks (Figure 4F).

Given that we had already detected a

strong endocytosis defect when only

three Ks were mutated, we suggest that

aa 153–179 contain sites for ubiquity-

lation and that this modification serves

as a signal for endocytosis. Taken

together, these results indicate that Pin2

shares principles of localization with
Chs3 that control their temporal and spatial discharge at the

plasma membrane.

Pin2 Is a Prion-Inducing Protein
Pin2 was identified in a screen as a protein that when over-

expressed can induce the [PIN+] prion phenotype, which is a

prerequisite for prion formation by Sup35, referred to as the

[PSI+] prion (Derkatch et al., 2001). In addition, Pin2 contains a

Q/N-rich region, referred to as the PLD (Alberti et al., 2009) (Fig-

ure 5A). This domain is located in the C-terminal part of the

protein facing the cytoplasm (Figure 5B). To confirm the ability

of Pin2 to induce [PIN+], we overexpressed Pin2 in a strain that

expresses the N-terminal domain of Sup35 fused to GFP

(SUP35NM::GFP) (Derkatch et al., 2001), which also contains a

prion domain. In the presence of prion-inducing activity,

Sup35NM-GFP will aggregate, and green foci and ring-like

structures can be observed. Overexpression of Pin2 resulted in

Sup35NM-GFP foci, confirming that Pin2 can induce prion for-

mation (Figure 5C). Sup35 is a translational terminator, and

loss of Sup35 causes a readthrough in the ade1-14 nonsense

mutation, allowing strains to grow in the absence of adenine



(ade�). Aggregation of Sup35 equally allows strains to grow on

ade� plates. Growth on ade� plates was induced by overex-

pression of PIN2 only in a construct in which the PLD was pre-

sent (Figure 5C).Moreover, mutating the Y-motif and the Ks (Pin2

(out)) or replacing Q/Ns by charged E/Ds (Pin2QNtoED) (Fig-

ure 5B) strongly reduced prion formation (Figure 5C). In contrast,

deletingCHS5 and hence confining Pin2 to the TGN did not inter-

fere with prion formation.

Next, we tested whether Pin2 itself was able to form SDS-

resistant aggregates after overexpression, which is considered

a hallmark of a prion protein. Pin2 SDS-resistant aggregates

were observed in a PLD-dependent manner (Figure 5D). The

SDS-resistant Pin2 aggregates were abolished when the PLD

was deleted or mutated. Thus, [PSI+] inducibility of Pin2 is

dependent on specific sequences within the PLD.

The PLD of Pin2 comprises the Y-based motif. Deletion of the

PLD or mutation of the retrieval signal caused Pin2 to be delocal-

ized over the plasma membrane. Thus, it was conceivable that

the PLD could be important for retaining the protein inside the

cell. To test this possibility, we assessed the formation of SDS-

resistant Pin2 aggregates in Dchs5 (all TGN) and Dend3 (all

plasma membrane) mutant strains. However, under both condi-

tions, SDS aggregates were formed to a similar extent (Fig-

ure 5D). Thus, the localization of Pin2 per se is not important

for prion formation.

Nevertheless, the PLD of Pin2 may act as a TGN retention

signal under normal expression and growth conditions because

Pin2QNtoED was exported to the plasma membrane in an

exomer-independent and nonpolarized fashion (Figures 5E and

5F). Endogenous expression levels of Pin2 could lead to aggre-

gation, but should not promote the formation of SDS-resistant

structures. The plasma membrane localization of Pin2QNtoED

was not due to interference with exomer or AP-1 binding, or to

partial misfolding (Figure S4). These data indicate that no trans-

port signals are blocked or lost due to the charge changes, but

the retention through the prion domain is perturbed.

Pin2 Forms Aggregates in Internal Structures upon
Environmental Stress
Use of the Dchs5 and Dend3 strains created a nonphysiological

all-or-nothing situation. We aimed to find conditions in which we

could potentially modulate the localization of Pin2 more immedi-

ately and less drastically. Other groups and we have observed

that under mild heat stress, Chs3 is quickly internalized from

the bud neck, just to reappear delocalized all over the plasma

membrane as part of the stress response (Valdivia and Schek-

man, 2003; Zanolari et al., 2011). Therefore, we probed the local-

ization of Pin2 after exposure to stress (Figure S5A). Under a

number of stresses, Pin2 was internalized and accumulated in

internal structures. In contrast, Skg6 remained largely unaffected

by the stressors, indicating that plasma membrane proteins are

not randomly endocytosed upon stress.

We chose Li+ treatment for further analysis. To investigate the

kinetics of this internalization, we performed a time-course anal-

ysis of Li+ exposure and analyzed Pin2 localization. Five minutes

after addition of LiCl, clusters of Pin2 were present at the plasma

membrane, and after 15 min most of Pin2 was internalized (Fig-

ures 6A and 6B). Pin2 stayed internalized even after overnight
(O/N) treatment. The internalization event was signal dependent,

because interfering with either the Hog1 or Slt2 mitogen-

activated protein kinase (MAPK) signaling pathways caused a

delay in endocytosis of Pin2 (Figure S5B). Similar clustering of

theGFP signal was observedwith Pin2(out); however, the uptake

of this construct was largely reduced (Figures 6A, 6B, and S6A).

To determine whether this retention for prolonged periods was

dependent on aggregate formation, we used Pin2QNtoED (Fig-

ure 5B). Similar to what was observed for the Pin2(1-210) and

Pin2(out) mutant proteins, the steady-state localization of

Pin2QNtoED was predominantly at the plasmamembrane, inde-

pendently of the presence of Chs5 (Figures 5E and 5F). This

indicates that even under normal growth conditions, the PLD

contributes to the retention of Pin2 in internal structures. The

initial uptake kinetics of the PLD mutant under LiCl were similar

to those of Pin2, implying that we did not interfere with ubiqui-

tin-dependent endocytosis signals. However, Pin2QNtoED was

less efficiently retained in internal structures (Figures 6A and

6B). Therefore, the PLD in Pin2 is necessary for its internal reten-

tion. To demonstrate that Pin2 aggregates in internal structures,

we performed Blue native gel electrophoresis and detected

a strong increase in aggregates in the megadalton range in a

Li+-treated lysate compared with the untreated control (Fig-

ure S6B). These internal structures correspond to the TGN, as

they colocalized with the TGN marker Sec7p (Figure S6C). Our

results are consistent with the Pin2 PLD acting as a TGN reten-

tion signal under both nonstress and stress conditions. Under

stress, the equilibrium of Pin2would be shifted toward the aggre-

gated state.

Pin2 Aggregation Is Reversible
Normally a cell would try to prevent proteins from aggregating.

The PLD of Pin2 comprises an essential part of the exomer

interaction surface aswell as the Y-basedmotif. Thus, aggregate

formation could potentially modulate the functionality of these

transport motifs and provide a very efficient sequestering mech-

anism to prevent degradation of Pin2. Pin2 would be seques-

tered in internal structures for the duration of the stress, and after

stress release, it would readily appear at the plasma membrane

in a polarized fashion. To test this hypothesis, we first treated

cells O/N with Li+ to internalize Pin2 (Figures 6C and 6D) and

thenwashed out the Li+. At 5min after washout, Pin2 reappeared

at the plasma membrane of the bud, and the process was

completed within 30 min (Figures 6C and 6D). As expected,

Pin2(out) and Pin2QNtoED were less efficiently retained intra-

cellularly than Pin2. Thus, the PLD-mediated aggregation of

Pin2 is reversible and may serve as a novel temporary retention

mechanism upon stress and during the cell cycle. Consistent

with this notion, overexpression of molecular chaperones that

could resolve harmful aggregates (Cashikar et al., 2005; Duenn-

wald et al., 2012; Haslbeck et al., 2005) had no effect on Pin2

localization (Figure S7).

PLD Expansion Causes More Efficient TGN Retention
under Stress
So far, we had manipulated the PLD in such a way as to make it

less functional. We reasoned that increasing the Q/N content

should increase the TGN retention, particularly under Li+ stress.
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Figure 5. The PLD of Pin2 Acts as a TGN Retention Signal

(A) Amino acid sequence of the Pin2 PLD. The Y-rich motif is underlined. Asterisks indicate residues mutated to disrupt aggregation of the PLD.

(B) Schematic representation of Pin2 with the indicated PLD: WT, Pin2(1-210), Pin2(out), and Pin2(QNtoED) mutant.

(C) Overexpression of Pin2, but not of prion domain mutants, induces [PSI+]. [PSI+] induction was detected by the appearance of SUP35NM-GFP foci and ring-

like structures, and growth on HC-Ade medium in strains overexpressing Pin2 variants.

(legend continued on next page)
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Figure 6. The PLD Confers Retention of

Pin2 in Internal Compartments in LiCl

(A) Upon exposure to Li+, Pin2 is internalized and

maintains this localization through the PLD. Fluo-

rescence microscopy of Dpin2 cells expressing

Pin2-GFP, Pin2(out)-GFP, and Pin2QNtoED-GFP

treated with LiCl. Arrowheads indicate Pin2 clus-

ters at the plasma membrane.

(B) Cells in (A) were quantified for Pin2-GFP

expression at the plasma membrane.

(C) Pin2 is rapidly reexported to the plasma

membrane upon environmental stress relief.

Strains described in (A) were incubated O/N with

LiCl. After harvesting, cells were resuspended in

medium w/o LiCl and imaged at indicated time

points after washout.

(D) Analysis of the data in (C) as described in (B).

For quantifications in (B) and (D), 30–100 small

and medium budded cells were quantified as in

Figure 3C.

Error bars represent SD. Scale bars in (A) and (C),

5mm.SeealsoFiguresS5–S7andTablesS1andS2.
We added two repeats of an N-rich region of Pin2 or Q-rich re-

peats from Sup35 that are part of the aggregation domain (Fig-

ure 7A) (Kushnirov et al., 1988; Liu and Lindquist, 1999). These

constructs should not form amyloids under the conditions tested

because the frequency with which [PSI+] elements appear is

roughly 106 times lower than the phenotype we were assaying

with TGN retention (Liu and Lindquist, 1999). Although under

nonstress conditions both of the expanded PLDs trafficked in

the same way as Pin2, in the presence of Li+ they were more effi-

ciently retained in the TGN (Figures 7A, 7B, and S6C). We
(D) Accumulation of Pin2 SDS-resistant aggregates is PLD dependent. Agarose gels of SDS-treated extracts

immunoblot.

(E) Disruption of Pin2 aggregation causes loss of exomer dependency and polarity at the plasmamembrane. F

strain cells expressing Pin2-GFP or Pin2QNtoED-GFP. Scale bar represents 5 mm.

(F) Analysis of data in (E) for plasma membrane localization and polarity of the signal as in Figure 3C.

Error bars represent SD. Scale bars in (C) and (E), 5 mm. See also Figure S4 and Tables S1 and S2.
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conclude that reversible aggregation

through the PLD is a determinant for the

spatial distribution of Pin2.

DISCUSSION

We have identified an exomer-dependent

cargo that is localized in a temporally and

spatially controlled fashion like the other

well-characterized cargo, Chs3. More-

over, Pin2 and Chs3 have very similar

trafficking requirements in that they both

need constant endocytosis and recycling

through the TGN to maintain their proper

localization at the plasma membrane

(Figure S2). Similar trafficking require-

ments were also observed for Fus1, but

only in response to a mating factor (Bar-
field et al., 2009). Thus, from the three exomer-dependent

cargoes a common regulatory pathway emerges: all three

cargoes require constant endocytosis, recycling from endo-

somes to the TGN, and exocytosis in an exomer-dependent

manner for their proper localization at the plasma membrane.

However, not all polar localized proteins are bona fide exomer-

dependent clients. The protein Skg6 is localized in a polarized

fashion at the bud tip and can even interact with exomer, but it

does not rely on exomer for its localization. Since we detected

the interaction by in vivo crosslinking and by pull-downs, Skg6
of overexpressed Pin2 or Pin2 variants. Anti-Pin2

luorescencemicroscopy ofDpin2 andDpin2Dchs5
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Figure 7. Expansion of the Pin2 PLD

Promotes TGN Retention

(A) Sequence of the Pin2(QNexp) and Pin2

(Sup35exp) variants. Two Pin2 Q/N-rich region

repeats or two Sup35 repeats were inserted after

residue 252 of the Pin2 PLD.

(B) Fluorescence microscopy of Dpin2 cells

expressing Pin2-GFP, Pin2(QNexp)-GFP, or Pin2

(Sup35exp)-GFP treated with 0.2 M LiCl O/N.

Scale bar represents 5 mm.

(C) Cells in (B) were scored for the presence of

Pin2 at the plasma membrane as in Figure 3C.

Error bars represent SD.

(D) Equilibrium shift model of Pin2 toward aggre-

gate formation.

See also Figure S6 and Tables S1 and S2.
may still be able to use the exomer-dependent transport route,

but it certainly can also exploit the more classical route via early

endosomes.

Although Pin2, Chs3, and Fus1 are exomer-dependent

cargoes, they all use somewhat different recognition signals for

their interaction with exomer. Our studies confirm that they are

complex and may involve at least two different regions of the

protein. At least one of these cargoes may be unstructured

and may fold only after interaction with exomer.

However, Pin2 appears to have a feature distinct from the

other two known exomer cargoes: it contains a PLD, and our

studies demonstrate that overexpressed Pin2 can form SDS-

resistant aggregates in vivo. Although it is not understood how

Chs3 is kept in internal stores after the bud neck constriction is

finished, we show here that aggregate formation can act as a

retention signal in internal stores, at least in the case of Pin2

expressed at physiological levels. Prion domains do not always

form amyloid aggregates that cannot be resolved by the cellular

machinery. The intrinsically disordered feature of prion domains

can cause aggregation that is easily resolved and alsomay serve

as platform for macromolecular assembly (Malinovska et al.,

2013). For example, a number of processing body (P body) com-

ponents, which are part of the major mRNA decay machinery in

yeast and mammals, contain PLDs, which are thought to be

essential for functional P body formation (Alberti et al., 2009;

Decker et al., 2007; King et al., 2012; Malinovska et al., 2013; Mi-

chelitsch and Weissman, 2000). The PLD of Pin2 is rich in Ns,

which are not enriched in toxic intermediates, whereas Q-rich

domains promote the formation of toxic conformers (Halfmann

et al., 2011).

The PLD is required to regulate Pin2 export to the plasma

membrane under normal and stress conditions (Figure 7F). It is

unlikely that Pin2 is the only protein that uses an aggregation

mechanism to control its localization. In a census for PLDs in

S. cerevisiae, a number of proteins involved in vesicular traffic

were identified (Michelitsch and Weissman, 2000). However, to
258 Cell Reports 7, 249–260, April 10, 2014 ª2014 The Authors
our knowledge, regulated trafficking de-

pending on the prion domain has not

been demonstrated for any of these pro-

teins. In mammalian cells, Pmel17 forms

benign amyloid fibers in melanosomes
to sequester melanin (Berson et al., 2003). Although the aggre-

gate formation in this case is dependent on cleavage by a metal-

loprotease, the transport of Pmel17, such as export from the ER

and endocytosis from the plasma membrane, is critical for sort-

ing and its function (Fowler et al., 2006; Theos et al., 2006). A

pathway analogous to the exomer route from the TGN to the

plasma membrane has also been identified in metazoans

(Wakana et al., 2012). Again, the number of proteins that take

this transport route is rather small to date, and the identification

of more cargoesmay also reveal the function of prion retention in

this pathway. Since 0.3%–2.5% of cellular proteins, depending

on the organism, contain a PLD, regulation similar to that

observed in Pin2 is likely to be found in other proteins.

What would be the function of the prion-dependent retention

mechanism?During normal growth and under stress, it regulates

the amount of Pin2 that is present at the plasma membrane.

Moreover, this mechanism prevents the degradation of Pin2

because it remains in the TGN (at least under stress conditions)

for at least 16 hr. Under such conditions, retention seems to be

important, because Pin2 was released from internal stores as

soon as 5min after the end of the stress. This releasemechanism

is much faster than resynthesis and transport of Pin2. Here, we

identify a retention mechanism for a prion-like protein.

The retention of Pin2 by the PLD could be brought about

through two nonexclusive mechanisms. Since part of the

exomer-interaction domain is located in the PLD, TGN export

signals could be masked. Alternatively, the prion-dependent

Pin2 aggregate in the TGN could be too large to get into transport

vesicles. The latter possibility would not only restrict Pin2 from

plasma membrane localization but would also protect Pin2

from degradation in the vacuole. We also cannot exclude the

possibility that other proteins are part of Pin2 aggregates in

the TGN.

Similarly to Pin2, Chs3 also reacts to stress. Upon cell-wall

stress, Chs3 is rapidly endocytosed and then released at the

plasma membrane in a nonpolarized fashion (Valdivia and



Schekman, 2003). This release from internal stores is dependent

on the small GTPase Rho1 and the protein kinase Pkc1 (Valdivia

and Schekman, 2003). Regulation of the stress response may

not be a conserved feature among exomer-dependent cargoes,

and may be more related to their function, as a mutant in PKC1

did not interfere with Pin2 trafficking under Li+ stress or the

release from it (data not shown).

At the moment, why Pin2 would have to be retained in internal

stores upon stress is unclear. We speculate that it might sense

stress, and that a fraction might be continuously released to

the plasma membrane to check the environment. Consistent

with this hypothesis, Pin2 was found to interact with various

components of the cell-wall integrity pathway in a high-

throughput analysis (Schlecht et al., 2012; Tarassov et al.,

2008), and deletion of MAPKs of stress-sensing pathways de-

layed endocytosis of Pin2 upon stress.

EXPERIMENTAL PROCEDURES

Strains, Yeast Genetic Methods, and Plasmid Construction

The yeast strains and plasmids used in this study are listed in Tables S1 and

S2. Details are provided in the Supplemental Experimental Procedures.

Microscopy

Cells were grown to OD600 0.2–0.7 in yeast extract peptone dextrose (YPD) or

Hartwell’s complete (HC) medium supplemented with adenine, harvested, and

mounted. Images were acquired with an Axiocam mounted on a Zeiss Axio-

plan 2 fluorescence microscope, using appropriate filters.

GST Pull-Downs

For pull-downs, 5 mg of GST-Pin2 and Sec22-GST, and 0.5 ml of GST-Skg6

E. coli lysate were bound to 10 ml GSH agarose (Sigma Aldrich). 4TAG,

D4ChAPs, or CHS6-9myc cells (10 OD600) were harvested, spheroplasted,

and lysed in 1 ml B150Tw20 (20 mM HEPES pH 6.8, 150 mM KAc, 5 mM

Mg(Ac)2, 1% Tw-20) + protease inhibitors. Lysates (900 ml) were incubated

for 1 hr at 4�C with 10 ml GSH agarose with GST-tagged protein. Pull-downs

were washed 33 in B150Tw20 and 13 20 in mM HEPES pH 6.8, 150 mM

NaCl. Proteins were eluted with 35 ml SDS sample buffer at 68�C.

Denaturing Immunoprecipitations

pin2D cells (20 OD600) carrying YEp112 HA-ubiquitin and pGFP33 PIN2

or pGFP33 pin2K7R were harvested, spheroplasted, and lysed in 200 ml

20 mM HEPES pH 6.8, 200 mM KCl, 1 mM MgCl2, 2% TX-100, 1 mM dithio-

threitol buffer with protease inhibitors (Søgaard et al., 1994). Lysates were

cleared (10 min, 10,000 3 g centrifugation), 1% SDS was added to the

supernatants, and samples were heated for 3 min at 95�C. Extracts were

diluted 103 to 20 mM HEPES pH 6.8, 200 mM KCl, 1 mM MgCl2, 0.5%

TX-100, 0.1% SDS final concentration, and spun for 10 min at 10,000 3 g.

Extracts (1.9 ml) were incubated at 4�C O/N with 5 mg anti-GFP antibody

(Torrey Pines) or 5 mg rabbit immunoglobulin G (Dianova) bound to 10 ml

ProtA-Sepharose. Samples were washed 33 with 20 mM HEPES pH 6.8,

200 mM KCl, 1 mM MgCl2, 0.5% TX-100, and 13 with 20 mM HEPES

pH 6.8, 200 mM NaCl. Proteins were eluted with 35 ml SDS sample buffer

at 68�C.

[PSI+] Induction Assay

[PSI+] induction assaywas carried out as described previously (Derkatch et al.,

2001). Briefly [pin-][psi-] 74-D694 or Dchs5 was transformed with

pSUP35NM::GFP-HIS3 and p426GPDleu2d plasmids. Strains were replica

plated for 35 generations on HC-Leu-Ura-His medium and then on HC-

His +Cu2+ medium to induce SUP35NM::GFP. Cells were analyzed by fluores-

cence microscopy and for growth on HC-Ade medium to confirm [PSI+]

induction.
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