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Abstract

Two Bessel sequences are orthogonal if the composition of the synthesis operator of one sequence w
the analysis operator of the other sequence is the 0 operator. We characterize when two Bessel sequenc
orthogonal when the Bessel sequences have the form of translates of a finite number of functions inL2(Rd).
The characterizations are applied to Bessel sequences which have an affine structure, and a quasi-affine struct
These also lead to characterizations of superframes. Moreover, we characterize perfect reconstruction, i.e., dua
of subspace frames for translation invariant (bandlimited) subspaces ofL2(Rd ).
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Frames for (separable) Hilbert spaces were introduced by Duffin and Schaeffer [15] in thei
on nonharmonic Fourier series. Later, Daubechies, Grossmann, and Meyer revived the study o
in [13], and since then, frames have become the focus of active research, both in theory
applications, such as signal processing. Every frame (or Bessel sequence) determines an
operator, the range of which is important for a number of applications. Information about this
is partially revealed by considering the composition of analysis and synthesis operators for d
frames. We view this composition as a sum of rank one tensors. The present paper considers fra
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Bessel sequences inL2(Rd) which arise from translations of generating functions, such as in wavele
Gabor frame theory. The goal is to determine when the infinite sum of rank one tensors involving
translations is actually the 0 operator; see Section 1.2.

1.1. Definitions

Let H be a separable Hilbert space andJ a countable index set. A sequenceX := {xj }j∈J is aframeif
there exist positive real numbersC1, C2 such that for allv ∈ H ,

C1‖v‖2 �
∑
j∈J

∣∣〈v, xj 〉
∣∣2 � C2‖v‖2. (1)

If X satisfies the second inequality, thenX is called aBessel sequence, or simplyBessel. GivenX, which
is Bessel, define the analysis operator

ΘX :H → l2(J): v �→ (〈v, xj 〉
)
j
;

and the synthesis operator

Θ∗
X : l2(J) → H : (cj )j �→

∑
j∈J

cjxj .

The analysis operator is well defined and bounded by the frame inequality (1). Additionally, th∑
j cj xj converges (see [15]), and so the synthesis operator is also well defined and bounded

simple computation shows that it is in fact the adjoint operator of the analysis operator.
Given two Bessel sequencesX andY := {yj }j∈J, define the operator

Θ∗
YΘX :H → H : v �→

∑
j∈J

〈v, xj 〉yj ;

this operator is sometimes called a “mixed dual Gramian.” Note that it is a (convergent) sum of ra
tensors, as described above. Typically in frame theory, one wants the above operator to be the id
this is the case, then the Bessel sequencesX andY are actually frames and are calleddual frames. Our
motivation here is for the operator to be the 0 operator.

Definition 1.1. SupposeX andY are Bessel sequences inH . If

Θ∗
Y
ΘX :=

∑
j∈J

〈·, xj 〉yj = 0,

the Bessel sequences are said to beorthogonal.

This idea has been studied by Han and Larson [17], where the Bessel sequences were assum
frames and were called strongly disjoint, and also by Balan in [5] and Balan and Landau in [8]
Gabor (Weyl–Heisenberg) frame case.

Orthogonality also arises in the case ofM-subspace frames (called outer frames in [3]). Here,
consider frames for subspaces in a Hilbert space where the elements of the frame are not ne
elements of the subspace.
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Definition 1.2. SupposeM ⊂ H is a closed subspace and let{xj } ⊂ H . If there exist constants 0< C1,
C2 < ∞ such that for allv ∈ M ,

C1‖v‖2 �
∑
j∈J

∣∣〈v, xj 〉
∣∣2 � C2‖v‖2,

then{xj } is anM-subspace frame. If {xj } and{yj } are Bessel sequences and for everyv ∈ M ,

v =
∑
j∈J

〈v, xj 〉yj ,

then{yj } is anM-subspace dualto {xj }.
Remark 1.3. It is possible for{yj } to beM-subspace dual frame for{xj } while {xj } is NOT anM-
subspace dual for{yj }. See Example 4.5 in Section 4.

Definition 1.4. A Bessel sequenceX ⊂ H is a Plancherel framefor M if for all v ∈ M , v =∑
j∈J

〈v, xj 〉xj .

See also [20] for alternative duals.

Notation. For the purposes of this paper, we will define the Fourier transform forf ∈ L1(Rd) ∩ L2(Rd)

to be

f̂ (ξ ) =
∫

f (x)e−2πix·ξ dx.

Define the dense subspaceD ⊂ L2(Rd) to be

D := {
f ∈ L2(Rd

)
: f̂ ∈ L∞(

Rd
); supp(f̂ ) is compact and bounded away from 0

}
.

If P ∈ B(H) is an orthogonal projection, letP ⊥ be the orthogonal projection such thatP + P ⊥ = I , the
identity. If A⊂ B(H), A′ denotes the commutant ofA, that is

A′ = {
B ∈ B(H): AB = BA ∀A ∈A

}
.

Note that ifA is a self-adjoint collection of operators, thenA′ is a von Neumann algebra. IfC is an
invertible real matrix, letC ′ = C∗−1, whereC∗ is the transpose. Finally, forα ∈ Rd , let Tα denote the
unitary translation operator

Tα :L2
(
Rd

) → L2
(
Rd

)
: f (·) �→ f (· − α).

1.2. Motivation

In both theory and applications it is desirable to know the range of the analysis operator for a
frame. Consequently, it is desirable to know the orthogonal complement of the range. This
determined by considering which frames (and Bessel sequences) have orthogonal ranges. We
a few examples:

(1) Duality. In some applications, one wishes to know many duals to the fixed frame. Let{xj } be a
frame. Suppose{yj } is a dual frame for{xj }; henceΘ∗

Y ΘX = I . If Z := {zj } is Bessel and orthogonal t
{xj }, then{yj + zj } =: Y + Z is also a dual to{xj }:

Θ∗
Y+ZΘX = Θ∗

Y ΘX + Θ∗
ZΘX = I.
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Conversely, if{wj } is dual to{xj }, thenwj = yj + zj for some orthogonal Bessel sequence{zj }. Hence,
the orthogonal sequences parametrize all duals to a fixed frame.

Each frame{xj } has a canonical dual frame given by(Θ∗
X
ΘX)−1xj . However, as illustrated in [14

sometimes the canonical dual is not the best dual. Moreover, for expansive integer matrices, tw
systems are dual if and only if their quasi-affine systems are dual [22]. This is not the case for non
matrices [18]. This is also not true for integer matrices in the case of superwavelets (see Exampl

(2) Multiple access communications. Suppose{xj } ⊂ H and{yj } ⊂ K are both Parseval frames a
are orthogonal to each other. Then for anyv ∈ H andw ∈ K , we have

v =
∑(〈v, xj 〉 + 〈w,yj 〉

)
xj and w =

∑(〈v, xj 〉 + 〈w,yj 〉
)
yj .

In other words, the frames can be used to encode two signalsv andw, which can then be sent over
single communications channel; see [6,7].

(3) Superframes. Superframes are frames of the form{xj ⊕yj } ⊂ H ⊕K . These are related to multip
access communications [6].

(4) Perfect reconstruction in subspaces. In some applications, notably sampling theory, frames
subspaces are used in which the frame elements are not actually in the subspace. For examp
oversampling the bandlimited functions in the Paley–Wiener space, instead of reconstructing the f
with the sinc function, which decays poorly, one can use a functionφ such thatφ̂ is smooth and is
identically 1 on[−1/2,1/2] and decays sufficiently fast outside that band

f (x) =
∑

n

f (an)φ(x − an).

This is only possible when the samples are faster than the Nyquist rate. Moreover, the functionsφ(x−an)

are not in the Paley–Wiener space. This perfect reconstruction is because of orthogonality of
Bessel sequences (see Section 4). For similar results in sampling theory see [1,23].

1.3. Main results

Here we will state a few representatives of the main results in the paper. The main results
around the orthogonality of wavelet frames, the duality of wavelet frames, the characterization of P
superwavelets, and perfect reconstruction in subspaces.

Theorem 1.5. SupposeA is an expansive integral matrix and the affine systems generated byΨ =
{ψ1, . . . ,ψr} and Φ = {φ1, . . . , φr} with respect to the dilation matrixA are both Bessel sequence
Then they are orthogonal if and only if for allq ∈ Zd \ A∗Zd ,

r∑
i=1

∑
j�0

ψ̂i

(
A∗j ξ

)
φ̂i

(
A∗j (ξ + q)

) = 0 a.e.ξ,

and
r∑

i=1

∑
j∈Z

ψ̂i

(
A∗j ξ

)
φ̂i

(
A∗j ξ

) = 0 a.e.ξ.

Moreover, the corresponding quasi-affine sequences are orthogonal if and only if the same two eq
hold.



E. Weber / Appl. Comput. Harmon. Anal. 17 (2004) 69–90 73

by

ariant
ioned in
g Bessel
ace. The
here the
Theorem 1.6. If A andB are any dilation matrices and the affine systems generated byΨ = {ψ1, . . . ,ψr}
andΦ = {φ1, . . . , φr} with respect to the dilation matricesA andB, respectively, are dual, thenA = B.

Theorem 1.7. SupposeA is an expansive integral matrix and the affine systems generated byψi with
respect to the dilation matrixA are Bessel sequences fori = 1, . . . , r . The superwavelet generated
ψ1 ⊕ · · · ⊕ ψr is a Parseval frame if and only if

(1)
∑

n∈Z
ψ̂i(A

∗nξ)ψ̂j (A∗nξ) = δi,j a.e.ξ for i, j = 1, . . . , r , and

(2)
∑∞

n=0 ψ̂i(A
∗nξ)ψ̂j (A

∗n(ξ + k)) = 0 a.e.ξ for k ∈ Zd \ A∗Zd and i, j = 1, . . . , r .

In Section 4 we derive characterization formulas for perfect reconstruction for translation inv
subspaces. These subspaces arise in the setting of sampling bandlimited functions. As ment
the previous subsection, there are reasons to reconstruct functions in a certain subspace usin
sequences in which the elements of the Bessel sequence are not elements of the subsp
characterization results determine when reconstruction in such a situation is possible. We omit
actual statements since the notation is technical.

1.4. Preliminary results

For the purposes of this subsection, letX = {xj }j∈J andY = {yj }j∈J be sequences inH .

Lemma 1.8. Let X andY be Bessel sequences, and letΘ = ∑
j∈J

〈·, xj 〉yj . ThenΘ∗ = ∑
j∈J

〈·, yj 〉xj .

Proof. Let v,w ∈ H ; since
∑

j∈J
〈v, xj 〉yj converges inH , we have

〈Θv,w〉 =
〈∑

j∈J

〈v, xj 〉yj ,w

〉
=

∑
j∈J

〈v, xj 〉〈yj ,w〉 =
∑
j∈J

〈w,yj 〉〈v, xj 〉 =
〈
v,

∑
j∈J

〈w,yj 〉xj

〉
. �

Lemma 1.9. If X andY are Bessel andP is an orthogonal projection, thenΘ∗
YΘX ∈ {P }′ if and only if∑

j∈J
〈·,P xj 〉P ⊥yj = 0 and

∑
j∈J

〈·,P ⊥xj 〉Pyj = 0.

Proof. Write∑
j∈J

〈·, xj 〉yj =
∑
j∈J

〈·,P xj 〉Pyj +
∑
j∈J

〈·,P xj 〉P ⊥yj +
∑
j∈J

〈·,P ⊥xj 〉Pyj +
∑
j∈J

〈·,P ⊥xj 〉P ⊥yj

:= A + B + C + D.

Clearly, we have the following:

PA = AP = A, PD = 0 = DP, BP = B, PB = 0, PC = C, CP = 0.

Therefore, since the range ofB is in P ⊥H and the range ofC is in PH ,

PA + PB + PC + PD = A + C and AP + BP + CP + DP = A + B

are equal if and only ifB = C = 0. �
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Lemma 1.10. SupposeX := {xj : j ∈ J} is a Bessel sequence inH and letP ∈ B(H) be the orthogona
projection onto the closed subspaceM ⊂ H . The collections{Pxj : j ∈ J} and {P ⊥xj : j ∈ J} are
orthogonal, i.e.,

∑
j∈J

〈·,P xj 〉P ⊥xj = 0 if and only ifΘ∗
X
ΘX ∈ {P }′.

Proof. Apply Lemma 1.9 to{xj } and {yj } = {xj }. Note that by Lemma 1.8 the adjoint operator∑
j∈J

〈·,P xj 〉P ⊥xj is
∑

j∈J
〈·,P ⊥xj 〉Pxj . �

Lemma 1.11. Let M andP be as in the previous lemma. Suppose{xj } and {yj } are Bessel sequence;
{yj } is anM-subspace dual frame for{xj } if and only if for everyv ∈ M ,

(1) v = ∑
j∈J

〈v,Pxj 〉Pyj , and
(2) 0= ∑

j∈J
〈v,Pxj 〉P ⊥yj .

Proof. Let v ∈ M and consider∑
j∈J

〈v, xj 〉yj =
∑
j∈J

〈v,Pxj 〉Pyj +
∑
j∈J

〈v,Pxj 〉P ⊥yj = v

if items (1) and (2) hold.
Conversely, suppose{yj } is anM-subspace dual frame for{xj }. Then for allv ∈ M ,

Pv = P
∑
j∈J

〈v, xj 〉yj =
∑
j∈J

〈v,Pxj 〉Pyj

and

0= P ⊥v = P ⊥ ∑
j∈J

〈v, xj 〉yj =
∑
j∈J

〈v,Pxj 〉P ⊥yj . �

Remark 1.12. We remark again that it is possible for{yj } to beM-subspace dual frame for{xj } and
{xj } is NOT anM subspace dual for{yj }. See Example 4.5 in Section 4. Note also that item (2) abo
equivalent to 0= ∑

j∈J
〈v,Pxj 〉P ⊥yj for all v ∈ H .

Lemma 1.13. Let M ⊂ H be a closed subspace, letPM be the orthogonal projection ontoM , and let
X ⊂ H be a Bessel sequence. The following are equivalent:

(1) X is a Plancherel frame forM ;
(2) for all v ∈ M ,

(a) ‖v‖2 = ∑
j∈J

|〈v, xj 〉|2;
(b)

∑
j∈J

〈v, xj 〉P ⊥
Mxj = 0.

The following implies both(1) and (2):

(3) for all v ∈ M ,
(a) ‖v‖2 = ∑

j∈J
|〈v, xj 〉|2;

(b) Θ∗
X
ΘX ∈ {P }′.
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Proof. Suppose{xj } is a Plancherel frame forM . Then clearly, the sequence{PMxj } is a Parseval fram
for M ; whence it follows that∑

j∈J

∣∣〈v, xj 〉
∣∣2 =

∑
j∈J

∣∣〈v,PMxj 〉
∣∣2 = ‖v‖2.

Moreover, we have

v =
∑
j∈J

〈v, xj 〉xj =
∑
j∈J

〈v, xj 〉PMxj +
∑
j∈J

〈v, xj 〉P ⊥
Mxj .

Since
∑

j∈J
〈v, xj 〉P ⊥

Mxj ∈ M⊥, it must be 0.
Conversely, if‖v‖2 = ∑

j∈J
|〈v, xj 〉|2, then for allv ∈ M ,

v =
∑
j∈J

〈v,PMxj 〉PMxj =
∑
j∈J

〈v, xj 〉PMxj +
∑
j∈J

〈v, xj 〉P ⊥
Mxj =

∑
j∈J

〈v, xj 〉xj .

Finally, by Lemma 1.9, condition (3b) implies condition (2b), whence condition (3) implies co
tion (2). �

Note that condition (2b) is equivalent to
∑

j∈J
〈·,PMxj 〉P ⊥

Mxj = 0.

2. General translation systems

We begin by considering general translation systems. These systems consist of a (possibly
collection of single functions each of which is translated by a (possibly different) lattice:

{TCpkgp} := {
TCpkgp: gp ∈ L2

(
Rd

)
, p ∈P, k ∈ Zd}.

Such systems model Gabor frames and quasi-affine frames [19], affine frames [18], and regular s
of bandlimited functions [4,23]. The results here will be applied to all of the above except Gabor fr
(For results on Gabor frames see [5,8].)

2.1. Identical translation lattices

As in [18], let P be a countable index set, letCp be ad × d invertible matrix for eachp ∈ P , and
define the following:

Λ =
⋃
p∈P

C ′
pZd

and forα ∈ Λ,

Pα = {
p ∈P: C∗

pα ∈ Zd
}
.

Note that ifα = C ′
p0

z for somez ∈ Zd \ {0}, thenp0 ∈ Pα ; if α = 0, thenPα = P . Let {gp: p ∈ P} ⊂
L2(Rd). The collection{TCpkgp: p ∈ P , k ∈ Zd} satisfies the Bessel condition if there exists a cons
M < ∞ such that for allf ∈ L2(Rd),∑ ∑

d

∣∣〈f,TCpkgp〉∣∣2 � M‖f ‖2.
p∈P k∈Z
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The collection{TCpkgp: p ∈P, k ∈ Zd} satisfies the local integrability condition [18] if for everyf ∈D,

L(f ) :=
∑
p∈P

∑
k∈Zd

∫
suppf̂

∣∣f̂ (ξ + C ′
pk)

∣∣2|detCp|−1
∣∣ĝp(ξ)

∣∣2
dξ < ∞.

Theorem 2.1. Suppose{TCpkgp} and {TCpkhp} satisfy the Bessel condition and the local integrabi
condition. The operator

Θ := θ∗
g θh =

∑
p∈P

∑
k∈Zd

〈·, TCpkhp〉TCpkgp

is in the von Neumann algebra{Tβ : β ∈ Rd}′ if and only if for allα ∈ Λ \ {0},∑
p∈Pα

|detCp|−1ĥp(ξ)ĝp(ξ + α) = 0 a.e.ξ. (2)

In this case,Θ is a Fourier multiplier whose symbol is

s(ξ) =
∑
p∈P

|detCp|−1ĥp(ξ)ĝp(ξ).

Proof. Forf ∈D, define the continuous function

wf (x) = 〈ΘTxf,Txf 〉.
If Θ commutes with allTβ for β ∈ Rd , then clearlywf (x) is constant for allf ∈ D. Conversely, if
wf (x) is constant for allf ∈ D, then 〈T−xΘTxf,f 〉 = 〈Θf,f 〉, whence by the polarization identit
T−xΘTx = Θ , and thusΘTx = TxΘ .

By [18, Proposition 2.4],wf (x) coincides pointwise with the almost periodic function∑
α∈Λ

ŵf (α)e2πiα·x,

where

ŵf (α) =
∫
Rd

f̂ (ξ )f̂ (ξ + α)
∑
p∈Pα

|detCp|−1ĥp(ξ)ĝp(ξ + α)dξ.

By [18, Lemma 2.5] and the proof of Theorem 2.1 in [18],wf (x) is constant for allf ∈ D if and only if
for all α ∈ Λ \ {0},∑

p∈Pα

|detCp|−1ĥp(ξ)ĝp(ξ + α) = 0 a.e.ξ.

It is well known that ifΘ commutes withTβ for all β ∈ Rd , then it is a Fourier multiplier. Evaluatin
wf (x) atx = 0 yields

wf (0) =
∫
Rd

f̂ (ξ )f̂ (ξ)
∑
p∈P

|detCp|−1ĥp(ξ)ĝp(ξ)dξ = 〈Θf,f 〉.

Therefore, since this is valid for allf ∈D, the symbol ofΘ is s(ξ) as above. �
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Corollary 2.2. Let {TCpkgp}, {TCpkhp} and Θ be as in Theorem2.1. We haveΘ = 0 if and only if
Θ ∈ {Tβ : β ∈ Rd}′ and

s(ξ) =
∑
p∈P

|detCp|−1ĥp(ξ)ĝp(ξ) = 0 a.e.ξ.

Equivalently,Θ = 0 if and only if for eachα ∈ Λ \ {0}, Eq.(2) is satisfied ands(ξ) = 0 a.e.ξ .

Proof. Clearly, if Θ = 0, thenΘ ∈ {Tβ : β ∈ Rd}′, whence for allα ∈ Λ \ {0}, Eq. (2) is satisfied
Moreover,s(ξ) = 0. Conversely, if for allα ∈ Λ \ {0}, Eq. (2) is satisfied, thenΘ ∈ {Tβ : β ∈ Rd}′, and if
s(ξ) = 0 as well, thenΘ = 0. �
2.2. Different translation lattices

In the previous subsection, the systems{TCpkgp} and{TCpkhp} consisted of lattices which varied wit
p ∈P . In this subsection, we will consider two systems{TCkgp} and{TDkhp}, where the lattice does no
change withp ∈ P , butC andD may be different invertible matrices.

Lemma 2.3. Let G := {TCkgp} andH := {TDkhp} be Bessel, and define

ΘH,G :=
∑
p∈P

∑
k∈Zd

〈·, TCkgp〉TDkhp.

For all z ∈ Zd , ΘH,GTCz = TDzΘH,G.

Proof. The proof is a simple computation:

ΘH,GTCz =
∑
p∈P

∑
k∈Zd

〈TCz·, TCkgp〉TDkhp =
∑
p∈P

∑
k∈Zd

〈·, TC(k−z)gp〉TDkhp

=
∑
p∈P

∑
k∈Zd

〈·, TCkgp〉TD(k+z)hp = TDzΘH,G.

Since the sequence{TDkgp} is Bessel, the sum converges in norm, whence theTDz factors out of the
sum. �
Proposition 2.4. Let G, H, andΘH,G be as in Lemma2.3. If C �= D and ΘH,G ∈ {TCz: z ∈ Zd}′, then
ΘH,G = 0.

Proof. If ΘH,G ∈ {TCz: z ∈ Zd}′, then we have by Lemma 2.3 thatTCzΘH,G = ΘH,GTCz = TDzΘH,G.
Hence, if ΘH,G �= 0, there exists a nonzero functionf ∈ L2(Rd) such thatTCzf = TDzf , hence
TCz−Dzf = f . However, it is well known that ifCz − Dz �= 0, TCz−Dz has purely continuous spectru
and hence no nonzero eigenvectors. Therefore,TCz = TDz for all z ∈ Zd , whenceC = D. �
Corollary 2.5. If C �= D, thenG andH cannot be dual frames.

Proof. If G andH are dual frames, thenΘH,G = I , but by Proposition 2.4, this is not possible.�
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Proposition 2.6. Let G and H be as in Lemma2.3 and satisfy the local integrability condition, and l
ΘH,G be as in Lemma2.3. We haveΘH,G = 0 if and only if∑

p∈P
ĝp(C ′ξ)ĥp

(
D′(ξ + k)

) = 0 a.e.ξ

for all k ∈ Zd .

Proof. Let DC andDD be the (unitary) dilation operators associated to the matricesC andD, respec-
tively. By the polarization identity,ΘH,G = 0 if and only if for everyf ∈ D, 〈D−1

C ΘH,GDDf,f 〉 = 0.
Recall the commutation relationDCTCz = TzDC .〈

DDΘH,GD−1
C f,f

〉 = 〈
ΘH,GD−1

C f,D−1
D f

〉 = ∑
p∈P

∑
k∈Zd

〈
D−1

C f,TCkgp

〉〈
TDkhp,D−1

D f
〉

=
∑
p∈P

∑
k∈Zd

〈f,DCTCkgp〉〈DDTDkhp, f 〉 =
∑
p∈P

∑
k∈Zd

〈f,TkDCgp〉〈TkDDhp,f 〉.

We apply Corollary 2.2 to the systems{TkDCgp} and {TkDDhp} (note that these collections satis
the local integrability condition with respect to the integer lattice). Here,Λ = Zd and for eachα ∈ Λ,
Pα = P . Therefore,ΘH,G = 0 if and only if for eachk ∈ Zd ,∑

p∈P
D̂Cgp(ξ)D̂Dhp(ξ + k) = 0 a.e.ξ.

SinceD̂C = DC ′ , it now follows thatΘH,G = 0 if and only if∑
p∈P

ĝp(C ′ξ)ĥp

(
D′(ξ + k)

) = 0 a.e.ξ

for everyk ∈ Zd . �
For singly generated systems, we recover the characterization developed in [4].

Corollary 2.7. Suppose{TCkg: k ∈ Zd} and{TDkh: k ∈ Zd} are Bessel. Then∑
k∈Zd

〈·, TCkg〉TDkh = 0

if and only if∑
k∈Zd

∣∣ĝ(
C ′(ξ + k)

)∣∣2 ·
∑
k∈Zd

∣∣ĥ(
D′(ξ + k)

)∣∣2 = 0 a.e.ξ.

Proof. For singly generated systems, the Bessel condition is equivalent to the local integr
condition [4]. If the Bessel sequences are orthogonal, then for eachk ∈ Zd ,

ĝ(C ′ξ)ĥ
(
D′(ξ + k)

) = 0 a.e.ξ,

hence for eachm ∈ Zd∣∣ĝ(
C ′(ξ + m)

)∣∣2 · ∣∣ĥ(
D′(ξ + m + k)

)∣∣2 = 0 a.e.ξ.
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Summing overm andk yields

0=
∑
m∈Zd

∑
k∈Zd

∣∣ĝ(
C ′(ξ + m)

)∣∣2∣∣ĥ(
D′(ξ + m + k)

)∣∣2
=

∑
m∈Zd

∣∣ĝ(
C ′(ξ + m)

)∣∣2 ∑
k∈Zd

∣∣ĥ(
D′(ξ + m + k)

)∣∣2
=

∑
m∈Zd

∣∣ĝ(
C ′(ξ + m)

)∣∣2 ∑
k∈Zd

∣∣ĥ(
D′(ξ + k)

)∣∣2

for almost everyξ . The converse follows by reversing the steps above.�

3. Affine and quasi-affine systems

The fundamental work of Ron and Shen [21,22] shows an intimate connection between affi
quasi-affine reproducing systems for integer dilations. Recent work by Labate, Hernandez and We
shows that for noninteger dilations, the analogous results do not necessarily hold (see also [1
results that follow also show how the two systems are related in some cases, and not related in
terms of orthogonal systems (see Example 3.14).

For ad × d invertible matrixA, let DA denote the unitary operator

DA :L2
(
Rd

) → L2
(
Rd

)
: f (·) �→ √|detA|f (A·)

and letD̃A denote the renormalized operator

D̃A :L2
(
Rd

) → L2
(
Rd

)
: f (·) �→ |detA|f (A·).

The affine and quasi-affine systems, respectively, are as follows:

UA,X(Ψ ) := {
Dn

ATXzψi : n ∈ Z; z ∈ Zd; ψi ∈ Ψ
}
,

Uq

A,X(Ψ ) := {
Dn

ATXzψi : n � 0; z ∈ Zd; ψi ∈ Ψ
} ∪ {

TXzD̃
n
Aψi : n < 0; z ∈ Zd; ψi ∈ Ψ

}
.

In caseX = I , we shall writeUA(Ψ ) and Uq

A(Ψ ). We will always assume thatΨ and Φ are finite
collections inL2(Rd). We say thatA is expanding if all eigenvalues ofA have modulus strictly greate
than 1. We say thatA is integer valued if all entries ofA are integers.

In order to apply the results of Section 2, we will view

UA,X(Ψ ) = {
TA−nXzD

n
Aψi

}
and

Uq

A,X(Ψ ) = {
TA−nXzD

n
Aψi: n � 0; z ∈ Zd; ψi ∈ Ψ

} ∪ {
TXzD̃

n
Aψi: n < 0; z ∈ Zd; ψi ∈ Ψ

}
.

In both cases,P = Z × {1, . . . , n}. For A an expanding matrix, if the affine systemUA,X(Ψ ) is Bessel,
then it also satisfies the local integrability condition, and likewise for the quasi-affine system [18].
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3.1. Affine systems

Note the following commutation relations: ifA is ad × d invertible matrix andα ∈ Rd , then

DATα = TA−1αDA and TαDA = DATAα. (3)

If B is also ad × d invertible matrix, then

DADB = DB̃DA, (4)

whereB̃ = A−1BA. Note also thatUA,X(Ψ ) is dilation invariant, i.e.,DAUA,X(Ψ ) ⊂ UA,X(Ψ ). Moreover,
if the latticeXZd is invariant under the matrixA, then by the commutation relation (3),Uq

A,X(Ψ ) is shift
invariant, i.e.,TXmUq

A,X(Ψ ) ⊂ Uq

A,X(Ψ ).

Lemma 3.1. SupposeΨ ⊂ L2(Rd); DXUA,X(Ψ ) = UÃ(DXΨ ) and DXUq

A,X(Ψ ) = Uq

Ã
(DXΨ ), where

Ã = X−1AX.

Proof. The result relies on the commutation relations (3) and (4); see [10].�
Lemma 3.2. If A is an expansive matrix, then{DA}′ ∩ {Tz: z ∈ Zd}′ is the von Neumann algebra
Fourier multipliers whose symbols(ξ) satisfiess(A∗ξ) = s(ξ) a.e. ξ . In other words,S ∈ {DA}′∩{Tz: z ∈
Zd}′ if and only if Ŝf (ξ) = s(ξ)f̂ (ξ) for s(·) ∈ L∞(Rd) ands(A∗ξ) = s(ξ) a.e.ξ .

Proof. Suppose thatS ∈ {DA}′ ∩ {Tz: z ∈ Zd}′. Note thatDATzD
−1
A = TA−1z, whenceS commutes with

every operator of the formTAnz. SinceA is expansive, the set
⋃

n∈Z
AnZd is dense inRd ; whence

the operators{TAnz: n ∈ Z; Zd} are dense in{Tβ : β ∈ Rd} in the weak operator topology. Therefor
S ∈ {Tβ : β ∈ Rd}′, and hence is a Fourier multiplier. Moreover, sinceS ∈ {DA}′, the symbol ofS must
satisfys(A∗ξ) = s(ξ) a.e.ξ since for allf ∈ L2(Rd):

s(ξ)
√|detA|−1

f̂ (A′ξ) = ŜDAf (ξ) = D̂ASf (ξ) = √|detA|−1
s(A′ξ)f (A′ξ).

The reverse implication now follows by the above computation.�
Lemma 3.3. Suppose thatA is an expansive integral matrix, and suppose thatUA(Ψ ) andUA(Φ) are
Bessel sequences. The following are equivalent:

(1) θ∗
ΦθΨ ∈ {Tβ : β ∈ Rd}′;

(2) θ
q∗
Φ θ

q

Ψ ∈ {Tβ : β ∈ Rd}′;
(3) q ∈ Zd \ A∗Zd ,

r∑
i=1

∞∑
j=0

φ̂i

(
A∗j ξ

)
ψ̂i

(
A∗j (ξ + q)

) = 0 a.e.ξ.

Moreover, in any of the three cases, the symbol of bothθ∗
ΦθΨ andθ

q∗
Φ θ

q

Ψ is

s(ξ) =
r∑

i=1

∑
j∈Z

φ̂i

(
A∗j ξ

)
ψ̂i

(
A∗j ξ

)
a.e.ξ.
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Proof. We apply Theorem 2.1 to the affine systemsUA(Ψ ) andUA(Φ), and to the quasi-affine system
Uq

A(Ψ ) andUq

A(Φ). For the affine systems,P = Z×{1, . . . , r}; for z ∈ Z, Cz,i = A−z; gz,i = Dz
Aψi , hz,i =

Dz
Aφi ; Λ = ⋃

n∈Z
A∗nZd , and ifα ∈ Λ, thenα = A∗sq for somes ∈ Z and someq ∈ Zd \ A∗Zd . (For the

remainder of the proof, we will suppress the indexi.) We havePα = {n: A∗−nA∗sq ∈ Zd} = {n: s � n}.
Therefore,

∑
p∈Pα

|detCp|−1ĝp(ξ)ĥp(ξ + α) =
r∑

i=1

s∑
n=−∞

∣∣detA−n
∣∣−1

D−n
A ψ̂i(ξ)D−n

A φ̂i

(
ξ + A∗sq

)

=
r∑

i=1

s∑
n=−∞

ψ̂i

(
A∗−nξ

)
φ̂i

(
A∗−n

(
ξ + A∗sq

))

=
r∑

i=1

s∑
n=−∞

ψ̂i

(
A∗−n+sA∗−sξ

)
φ̂i

(
A∗−n+s

(
A∗−sξ + q

))

=
r∑

i=1

∞∑
n=0

ψ̂i

(
A∗nA∗−sξ

)
φ̂i

(
A∗n

(
A∗−sξ + q

))
.

Likewise, for the quasi-affine system,P = Z × {1, . . . , r}. However, forz > 0, Cz,i = A−z and for
z � 0, Cz,i = I . For z > 0, gz,i = Dz

Aψi andhz,i = Dz
Aφi and forz � 0, gz,i = D̃z

Aψi andhz,i = D̃n
Aφi .

HereΛ = Zd , and if α ∈ Λ, thenα = A∗sq for somes ∈ Z and someq ∈ Zd \ A∗Zd . (Again we will
suppress the indexi.) We havePα = {n > 0: A∗−nA∗sq ∈ Zd} ∪ {n: n � 0} = {n: s � n}. Therefore,

∑
p∈Pα

|detCp|−1ĝp(ξ)ĥp(ξ + α) =
r∑

i=1

s∑
n=1

∣∣detA−n
∣∣−1

D−n
A ψ̂i(ξ)D−n

A φ̂i

(
ξ + A∗sq

)

+
r∑

i=1

0∑
n=−∞

|detI |−1D̃−n
A ψ̂i(ξ)D̃−n

A φ̂i

(
ξ + A∗sq

)

=
r∑

i=1

s∑
n=−∞

ψ̂i(A
∗−nξ)φ̂i

(
A∗−n

(
ξ + A∗sq

))

=
r∑

i=1

∞∑
n=0

ψ̂i

(
A∗nA∗−sξ

)
φ̂i

(
A∗n

(
A∗−sξ + q

))
.

The lemma now follows by Theorem 2.1.�
Our first main result announced in Section 1, Theorem 1.5, is an immediate consequence

following, more general theorem.

Theorem 3.4. SupposeUA(Ψ ) andUA(Φ) are Bessel sequences, whereA is an expansive integral matrix
The following are equivalent:

(1) θ∗
ΦθΨ ∈ {Tz: z ∈ Zd}′;

(2) θ
q∗
Φ θ

q

Ψ ∈ {DA}′;
(3) θ∗

ΦθΨ ∈ {Tβ : β ∈ Rd}′;
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(4) θ
q∗
Φ θ

q

Ψ ∈ {Tβ : β ∈ Rd}′;
(5) θ∗

ΦθΨ = θ
q∗
Φ θ

q

Ψ ;
(6) for q ∈ Zd \ A∗Zd ,

r∑
i=1

∞∑
j=0

φ̂i

(
A∗j ξ

)
ψ̂i

(
A∗j (ξ + q)

) = 0 a.e.ξ ;

(7) θ∗
ΦθΨ is a Fourier multiplier, i.e.,θ̂∗

ΦθΨ f (ξ) = s(ξ)f̂ (ξ), whose symbol is

s(ξ) =
r∑

i=1

∑
j∈Z

φ̂i

(
A∗j ξ

)
ψ̂i

(
A∗j ξ

)
a.e.ξ ;

(8) θ
q∗
Φ θ

q

Ψ is a Fourier multiplier, with the same symbols(ξ).

Proof. The implications 1⇒ 3 and 2⇒ 4 follow from Lemma 3.2. The symbols(ξ) above satisfies
s(A∗ξ) = s(ξ) a.e.ξ , hence the implications 7⇒ 1 and 8⇒ 2 also follow from Lemma 3.2. Lemma 3
yields 3⇒ 6, 4⇒ 6, 6⇒ 7, 6⇒ 8, and 5⇔ 6.

Thus we have demonstrated

7⇒ 1⇒ 3⇒ 6 ⇒ 8 ⇒ 2 ⇒ 4⇒ 6⇒ 7 and 5⇔ 6. �
Remark 3.5. If Ψ = Φ in the preceding theorem, the conditions there are equivalent to the conditio
the canonical dual ofUq

A(Ψ ) also has the quasi-affine structure [11].

We now consider the case when the two affine systems have different dilation matrices and/or d
translation lattices. Our second main result announced in Section 1, Theorem 1.6, follows imme
from the next lemma.

Lemma 3.6. SupposeUA(Ψ ) andUB(Φ) are Bessel. Ifθ∗
Ψ θΦ ∈ {Tβ : β ∈ Rd}′, then either:

(1) A = B or
(2) θ∗

ψθφ = 0.

Proof. See Proposition 2.4.�
Lemma 3.7. Let A and B be any expansive matrices and suppose thatUA(Ψ ) andUB(Φ) are Besse
sequences. The following are equivalent:

(1) Θ+
A,B := ∑r

i=1

∑
n>0

∑
z∈Zd 〈·,Dn

ATzψi〉Dn
BTzφi = 0;

(2) Θ−
A,B := ∑r

i=1

∑
n<0

∑
z∈Zd 〈·,Dn

ATzψi〉Dn
BTzφi = 0;

(3) Θ0
A,B := ∑r

i=1

∑
z∈Zd 〈·, Tzψi〉Tzφi = 0;

(4) for all k ∈ Zd ,
∑r

i=1 ψ̂i(ξ )φ̂i(ξ + k) = 0 a.e. ξ .
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Proof. The equivalence of items (3) and (4) follows from Proposition 2.6. Note thatΘ+
A,B =∑

n>0 Dn
BΘ0

A,BD−n
A , and similarly forΘ−

A,B , hence item (3) implies items (1) and (2). Consider
following computation:

D−1
B Θ+

A,BDA = D−1
B

r∑
i=1

∑
n>0

∑
z∈Zd

〈
DA·,Dn

ATzψi

〉
Dn

BTzφi

=
r∑

i=1

∑
n>0

∑
z∈Zd

〈·,Dn−1
A Tzψi

〉
Dn−1

B Tzφi = Θ+
A,B + Θ0

A,B. (5)

Therefore, (1) implies (3). An analogous computation shows (2) implies (3).�
Lemma 3.8. SupposeA andB are expansive matrices, withA integer valued, and suppose thatUA(Ψ )

and UB(Φ) are Bessel sequences. LetΘ+
A,B be as in Lemma3.7. If Θ+

A,B ∈ {Tz: z ∈ Zd}′, then either
A = B or Θ+

A,B = 0.

Proof. By the computation in the proof of Lemma 3.7, we have

D−1
B Θ+

A,BDA = Θ+
A,B + Θ0

A,B.

SinceΘ0
A,B ∈ {Tz: z ∈ Zd}′, if Θ+

A,B ∈ {Tz: z ∈ Zd}′, thenD−1
B Θ+

A,BDA ∈ {Tz: z ∈ Zd}′ as well. Therefore
for all z ∈ Zd , by the commutation relation for translations and dilations,

D−1
B Θ+

A,BDATAz = D−1
B Θ+

A,BTzDA = D−1
B TzΘ

+
A,BDA = TBzD

−1
B Θ+

A,BDA.

Therefore,

TBzD
−1
B Θ+

A,BDA = D−1
B Θ+

A,BDATAz = TAzD
−1
B Θ+

A,BDA.

Hence, ifΘ+
A,B �= 0, then there exists a functionf ∈ L2(Rd) such thatTBzf = TAzf for all z ∈ Zd . It

follows thatBz = Az and henceA = B. �
We end this subsection with the following result, which is not a complete characterization but th

possible result with the present techniques.

Theorem 3.9. A sufficient condition for the Bessel sequencesUA,X(Ψ ) andUB,Y (Φ) to be orthogonal is

r∑
i=1

ψ̂i(X′ξ)φ̂i

(
Y ′(ξ + k)

) = 0 a.e.

for all k ∈ Zd .

Proof. If
∑r

i=1 ψ̂i(X′ξ)φ̂i(Y
′(ξ + k)) = 0 a.e. for allk ∈ Zd , then by Proposition 2.6,{TXzψi} and

{TYzφi} are orthogonal. It follows then by Lemma 3.7 that the affine sets are orthogonal.�
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3.2. Quasi-affine systems

Theorem 3.10. Let A be an expansive integral matrix, and letB be any expansive matrix such th
A �= B. Suppose the quasi-affine systemsUq

A(Ψ ) andUq

B(Φ) are Bessel; they are orthogonal if and onl
if

(1)
∑r

i=1 ψ̂i(ξ )φ̂i(ξ + k) = 0 a.e. ξ for everyk ∈ Zd ;

(2)
∑r

i=1

∑
j>0 ψ̂i(A

∗j ξ )φ̂i(B
∗j (ξ + k)) = 0 a.e. ξ for all k ∈ Zd .

Proof. Write the operatorθq∗
Φ θ

q

Ψ as the sumM + N , where

M :=
r∑

i=1

∑
n<0

∑
z∈Zd

〈·, TzD̃
n
Aψi

〉
TzD̃

n
Bφi and N :=

r∑
i=1

∑
n�0

∑
z∈Zd

〈·,Dn
ATzψi

〉
Dn

BTzφi.

By definition,M ∈ {Tz: z ∈ Zd}′, thus if θq∗
Φ θ

q

Ψ = M + N = 0 andA �= B, then by Lemma 3.8,N = 0.
Therefore,θq∗

Φ θ
q

Ψ = 0 if and only ifM = N = 0.
By Lemma 3.7,N = 0 if and only if item 1. By Theorem 2.1 and Corollary 2.2,M = 0 if and only if

for eachk ∈ Zd ,
r∑

i=1

∑
j<0

̂̃
D

j

Aψi(ξ)
̂̃
D

j

Bφi(ξ + k) =
r∑

i=1

∑
j>0

ψ̂i

(
A∗j ξ

)
φ̂i

(
B∗j (ξ + k)

) = 0

for almost everyξ . �
Corollary 3.11. If the quasi-affine framesUq

A(Ψ ) andUq

B(Φ) are dual, thenA = B.

Proof. Let M , N be as in the proof of Theorem 3.10. Ifθ
q∗
Φ θ

q

Ψ = I , thenN ∈ {Tz: z ∈ Zd}′, whence by
Lemma 3.8,A = B. �

The following corollary is nearly a complete characterization of when quasi-affine system
orthogonal.

Corollary 3.12. Let A and B be any expansive matrices andX and Y be invertible matrices suc
that Ã := X−1AX is an integer matrix andX−1AX �= Y −1BY =: B̃. Suppose the quasi-affine syste
Uq

A,X(Ψ ) andUq

B,Y (Φ) are Bessel; they are orthogonal if and only if

(1)
∑r

i=1 ψ̂i(X′ξ)φ̂i(Y
′(ξ + k)) = 0 a.e. ξ for everyk ∈ Zd ;

(2)
∑r

i=1

∑
j>0 ψ̂i(A

∗jX′ξ)φ̂i(B
∗jY ′(ξ + k)) = 0 a.e. ξ for all k ∈ Zd .

Proof. The quasi-affine systemsUq

A,X(Ψ ) andUq

B,Y (Φ) are orthogonal if and only ifDXUq

A,X(Ψ ) and
DYUq

B,Y (Φ) are orthogonal. By Lemma 3.1,

DXUq
(Ψ ) = Uq

(DXΨ ) and DYUq
(Φ) = Uq

(DY Φ).
A,X Ã B,Y B̃
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By Theorem 3.10,Uq

Ã
(DXΨ ) andUq

B̃
(DYΦ) are orthogonal if and only if for everyk ∈ Zd and almost

everyξ ,

0=
r∑

i=1

D̂Xψi(ξ)D̂Y φi(ξ + k) =
r∑

i=1

√|detXY |−1
ψ̂i(X′ξ)φ̂i

(
Y ′(ξ + k)

)
and

0=
r∑

i=1

∑
j<0

˜̂Dj

Ã
DXψi(ξ) ˜̂Dj

B̃
DY φi(ξ + k) =

r∑
i=1

∑
j>0

√|detXY |−1
ψ̂i

(
X′Ã∗j ξ

)
φ̂i

(
Y ′B̃∗j (ξ + k)

)
.

However,X′Ã∗j = A∗jX′ andY ′B̃∗j = B∗jY ′, so we have

0=
r∑

i=1

∑
j>0

ψ̂i

(
A∗jX′ξ

)
φ̂i

(
B∗jY ′(ξ + k)

)
. �

Corollary 3.13. LetA, B, X, Y be as in Corollary3.12. If the quasi-affine Bessel systemsUq

A,X(Ψ ) and
Uq

B,Y (Φ) are orthogonal, then the affine Bessel systemsUA,X(Ψ ) andUB,Y (Φ) are also orthogonal.

Proof. By item (1) in Corollary 3.12 and Theorem 3.9, the affine systems are orthogonal.�
Example 3.14. The following example demonstrates that when the dilations are different, it is po
for the affine systems to be orthogonal while the quasi-affine systems are not. Letψ be a Frazier–
Jawerth frame wavelet, i.e., such thatψ̂ is symmetric, nonnegative, supported on[−1/32,−1/128] ∪
[1/128,1/32] and such that

∑
j ψ̂(2j ξ ) ≡ 1 (see [16]). Now, letφ be a Frazier–Jawerth frame wave

for dilation by (3) such that̂φ is symmetric, nonnegative, supported on[−1/3,−1/27] ∪ [1/27,1/3] and
such that

∑
j φ̂(3j ξ ) ≡ 1. Therefore,U2(ψ), Uq

2 (ψ), U3(φ), andUq

3 (φ) are all Parseval frames forL2(R).

Clearly for all k ∈ Z we haveψ̂(ξ)φ̂(ξ + k) = 0, whence by Theorem 3.9,U2(ψ) andU3(φ) are
orthogonal. However, since botĥψ andφ̂ are nonnegative,∑

j>0

ψ̂
(
2∗j ξ

)
φ̂
(
3∗j (ξ + k)

) �= 0

on a set of positive measure, whence by Theorem 3.10,Uq

2 (ψ) andUq

3 (φ) are not orthogonal.

3.3. Superwavelets

Superwavelets were introduced in [17]. The idea of superframes was also studied in [5] in the
Weyl–Heisenberg frames. Consider the Hilbert spaceL2(Rd)⊕L2(Rd)⊕· · ·⊕L2(Rd), the direct sum o
L2(Rd) r times. Denote this space byL2(Rd)r . Define the translation and dilation operatorsT z andDA

on L2(Rd)r by T z = Tz ⊕ Tz ⊕ · · · ⊕ Tz andDA = DA ⊕ DA ⊕ · · · ⊕ DA. A (orthonormal) superwavele
is a vectorΨ = ψ1 ⊕ ψ2 ⊕ · · · ⊕ ψr ∈ L2(Rd)r such that

UA(Ψ ) := {
Dk

AT zΨ : k ∈ Z, z ∈ Zd
}

is an orthonormal basis ofL2(Rd)r . A complete characterization of orthonormal superwavelet
obtained in [17].
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Definition 3.15. A Parseval superwavelet is a vector of the formΨ = ψ1 ⊕ψ2 ⊕· · ·⊕ψr ∈ L2(Rd)r such
that

UA(Ψ ) := {
Dk

AT zΨ : k ∈ Z, z ∈ Zd
}

is a Parseval frame ofL2(Rd)r .

We are now in a position to prove our third main result announced in Section 1, Theorem 1.7,
is a characterization of Parseval superwavelets.

Proof of Theorem 1.7. Without loss of generality, assumer = 2. Suppose thatUA(ψ1⊕ψ2) is a Parseva
frame forL2(Rd)2. LetP be the orthogonal projection onto the first coordinate ofL2(Rd)2. By definition
of DA andT z, both are in{P }′. A straightforward computation shows thatUA(ψ1) is a Parseval fram
for L2(Rd), since it is the image ofUA(ψ1 ⊕ ψ2) under the projectionP (see [2]). Note that sinc
UA(ψ1 ⊕ ψ2) is Parseval,

Θ :=
∑
k∈Z

∑
z∈Zd

〈·,DAT zψ1 ⊕ ψ2〉DAT zψ1 ⊕ ψ2 = I.

Therefore, sinceUA(ψ2) is the image ofUA(ψ1 ⊕ ψ2) under the projectionP ⊥ and P commutes
with Θ , by Lemma 1.10,UA(ψ1) andUA(ψ2) are orthogonal. Combining the characterization theo
for Parseval wavelet frames [10] with Theorem 1.5, we see that item (1) implies item (3).

Conversely, ifUA(ψ1) andUA(ψ2) are both Parseval and are orthogonal, thenUA(ψ1 ⊕ ψ2) is also
Parseval [17, Theorem 2.9], thus item (3) implies item (1).

The equivalence of items (2) and (3) is completely analogous.�
Corollary 3.16. SupposeAi are (different) expansive integral matrices, and suppose thatUAi

(ψi) are
Parseval frames. LetDA := DA1 ⊕DA2 ⊕· · ·⊕DAr

andUq

A(ψ1 ⊕· · ·⊕ψr) is as before with this dilation
operator. ThenUq

A(ψ1 ⊕ · · · ⊕ ψr) is a Parseval frame forL2(Rd)r if and only if fori �= j andk ∈ Zd ,

(1) ψ̂i(ξ )ψ̂j (ξ + k) = 0 a.e.ξ ;

(2)
∑

n>0 ψ̂i(A
∗n
i ξ )ψ̂j (A

∗n
j (ξ + k)) = 0 a.e. ξ .

Moreover, ifUq

A(ψ1 ⊕ · · · ⊕ ψr) is a Parseval frame forL2(Rd)r , thenUA(ψ1 ⊕ · · · ⊕ ψr) is a Parseval
frame forL2(Rd)r .

Remark 3.17. Example 3.14 shows that it is possible forUA(ψ1⊕· · ·⊕ψr) to be a Parseval superwave
while Uq

A(ψ1 ⊕ · · · ⊕ ψr) is not.

4. Dual frames for translation invariant subspaces

A subspaceM ⊂ L2(Rd) is translation invariant if for everyβ ∈ Rd , TβM ⊂ M . This is equivalent to
the existence of some measurable setE ⊂ Rd such that

M = {
f ∈ L2

(
Rd

)
: suppf̂ ⊂ E

}
.
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If M is translation invariant, denote it byVE. If P denotes the orthogonal projection ontoVE, then for all
α ∈ Rd , PTα = TαP .

4.1. Translation invariant subspaces

We begin with the following motivational example.

Example 4.1. Let M = V[−1/4,1/4] and let φE ∈ M be such thatφ̂E = χE . It can be shown tha
the collection{TzφE: z ∈ Z} is a Parseval frame forM (see [9]). This corresponds to sampling t
bandlimited functions on the integers. However,{TzφE} consists of functions which decay slowly,
reconstruction is slow. Hence, consider a functionψ such that supp(ψ̂) ⊂ [−1/2,1/2], ψ̂ is smooth, and
ψ̂ is identically 1 on[−1/4,1/4]. Then, as seen below,{Tzψ} is anM-subspace dual to{TzφE}, {Tzψ}
is not a subset ofM , and{Tzψ} consists of functions which decay rapidly.

Proposition 4.2. Let {TCpkgp} and {TCpkhp} be Bessel and satisfy the local integrability condition, a
let E ⊂ L2(Rd) be measurable. If Eq.(2) is satisfied for everyα ∈ Λ \ {0} and

s(ξ) =
∑
p∈P

|detCp|−1ĥp(ξ)ĝp(ξ) = 1 a.e.ξ ∈ E,

then{TCpkgp} and{TCpkhp} areVE-subspace dual frames.

Proof. By Theorem 2.1,

Θ =
∑
p∈P

∑
k∈Zd

〈·, TCpkgp〉TCpkhp

is a Fourier multiplier whose symbol is identically 1 onE. It follows that for allv ∈ VE,

v =
∑
p∈P

∑
k∈Zd

〈v,TCpkgp〉TCpkhp. �

Proposition 4.3. Suppose{TCkgp} and{TDkhp} are Bessel sequences and letE be measurable. IfC �= D,
then{TDkhp} cannot be aVE-subspace dual to{TCkgp}.
Proof. Let P be the orthogonal projection ontoVE. If {TDkhp} is aVE-subspace dual to{TCkgp}, then
by Lemma 1.11,

P =
∑
p∈P

∑
k∈Zd

〈·, TCpkPgp〉TDpkPhp ∈ {
Tβ : β ∈ Rd

}′
,

however, by the computation in Proposition 2.4, this is not possible ifC �= D. �
Theorem 4.4. Let {TCpkgp} and {TCpkhp} be Bessel and satisfy the local integrability condition, and
E ⊂ L2(Rd) be measurable. Then{TCpkhp} is aVE-subspace dual frame to{TCpkgp} if and only if

(1)
∑ |detCp|−1ĥp(ξ)ĝp(ξ) = 1 a.e.ξ ∈ E;
p∈P
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(2) for all α ∈ Λ \ {0},∑
p∈Pα

|detCp|−1ĥp(ξ − α)ĝp(ξ) = 0 a.e.ξ ∈ E.

Proof. We apply Lemma 1.11 to{TCpkgp} and {TCpkhp}. Let P be the projection ontoVE; note that

P̂ = MχE
, i.e., multiplication by the characteristic function ofE.

By Lemma 1.11, we must have for allv ∈ VE ,

v =
∑
p∈P

∑
k∈Zd

〈v,TCpkPgp〉TCpkPhp,

which is equivalent to∑
p∈P

∑
k∈Zd

〈·, TCpkPgp〉TCpkPhp = P,

since for allw ∈ V ⊥
E ,∑

p∈P

∑
k∈Zd

〈w,TCpkPgp〉TCpkPhp = 0.

Thus, by Theorem 2.1, for everyα ∈ Λ, we must have for almost everyξ

δα,0χE(ξ) =
∑
p∈Pα

|detCp|−1P̂ hp(ξ)P̂gp(ξ + α)

=
∑
p∈Pα

|detCp|−1χE(ξ)ĥp(ξ)χE(ξ + α)ĝp(ξ + α)

= χE∩(E−α)(ξ)
∑
p∈Pα

|detCp|−1ĥp(ξ)ĝp(ξ + α), (6)

hence,∑
p∈P

|detCp|−1ĥp(ξ)ĝp(ξ) = 1 a.e.ξ ∈ E.

Moreover, we must have for allv ∈ VE

0=
∑
p∈P

∑
k∈Zd

〈v,TCpkPgp〉TCpkP
⊥hp,

which is equivalent to

0=
∑
p∈P

∑
k∈Zd

〈·, TCpkPgp〉TCpkP
⊥hp.

Therefore, by Corollary 2.2, we must have for everyα ∈ Λ and almost everyξ

0=
∑
p∈Pα

|detCp|−1P̂ ⊥hp(ξ)P̂gp(ξ + α) =
∑
p∈Pα

|detCp|−1χẼ(ξ)ĥp(ξ)χE(ξ + α)ĝp(ξ + α)

= χẼ∩(E−α)(ξ)
∑

|detCp|−1ĥp(ξ)ĝp(ξ + α), (7)

p∈Pα
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whereẼ is the complement ofE. By combining Eqs. (6) and (7), we have∑
p∈Pα

|detCp|−1ĥp(ξ)ĝp(ξ + α) = 0 a.e.ξ ∈ E − α. �

The following example shows that it is possible for{xj } to be anM-subspace dual to{yj }, while {yj }
is not anM-subspace dual to{xj }. It also shows that in the case ofM = VE for someE, it is not necessary
for Θ∗

XΘY to be in the von Neumann algebra{Tβ : β ∈ Rd}′.

Example 4.5. Let M = V[−1/4,1/4] and letψ be such thatψ̂ is supported on[−1/2,1/2], bounded, and
identically 1 on[−1/4,1/4]. Defineφ by φ̂(·) = ψ̂(·) + ψ̂(· − 1). Then{Tkψ : k ∈ Z} is V[−1/4,1/4]-dual
to {Tkφ: k ∈ Z} but {Tkφ: k ∈ Z} is NOT aV[−1/4,1/4]-dual to{Tkψ : k ∈ Z}.

To see why this is the case, notice thatφ̂(ξ )ψ̂(ξ) = 1 on [−1/4,1/4]. For k �= 0, ψ̂(ξ)φ̂(ξ + k) = 0

for ξ ∈ [−1/4,1/4] − k. However, fork = −1, φ̂(ξ )ψ̂(ξ − 1) �= 0 for ξ ∈ [−1/4,1/4] + 1.
Alternatively, notice that for any(ck) ∈ l2(Z),

∑
k∈Z

ckTkφ has Fourier transform which is repeat
twice, once on[−1/2,1/2] and once on[1/2,3/2], whence,{Tkφ} cannot be aV[−1/4,1/4]-dual to{Tkψ}.
Corollary 4.6. Let {TCpkgp} be Bessel and satisfy the local integrability condition, and letE ⊂ L2(Rd)

be measurable. Then{TCpkgp} is aVE-Plancherel frame if and only if

(1)
∑

p∈P |detCp|−1|ĝp(ξ)|2 = 1 a.e.ξ ∈ E;
(2) for all α ∈ Λ \ {0},∑

p∈Pα

|detCp|−1ĝp(ξ − α)ĝp(ξ) = 0 a.e.ξ ∈ E.

Corollary 4.7. SupposeA is an expansive integer matrix andUA(Ψ ) andUA(Φ) are Bessel sequence
and letE be measurable. ThenUA(Φ) is aVE-subspace dual toUA(Ψ ) if and only if

(1)
∑r

i=1

∑∞
j=−∞ φ̂i (A

∗j ξ )ψ̂i(A
∗j ξ ) = 1 a.e.ξ ∈ E;

(2) for everyq ∈ Zd \ A∗Zd ,
r∑

i=1

∞∑
j=0

φ̂i

(
A∗j (ξ − q)

)
ψ̂i

(
A∗j ξ

) = 0 a.e.ξ ∈ E.

Proof. See the computation in Lemma 3.3.�

5. Conclusion

We have demonstrated characterization theorems for orthogonal frames consisting of
translates, in particular, affine and quasi-affine frames. Our techniques here work in fairly g
settings, including the case of Weyl–Heisenberg frames. We have not included those resul
however, since stronger results appear in [5,8]. Moreover, the techniques fall short with regular tra
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systems with different parameters and also do not apply to irregular systems. We end the pape
few open questions:

(1) If the framesUA,X(Ψ ) andUB,Y (Φ) are dual, is it necessary thatX = Y ?
(2) What is a full characterization of the orthogonality ofUA,X(Ψ ) andUB,Y (Φ)?
(3) What about the case of irregular wavelet frames?
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