
Discrete Applied Mathematics 157 (2009) 2207–2216
www.elsevier.com/locate/dam

Relaxation procedures on graphs

Elias Wegerta,∗, Christian Reiherb

a Institute of Applied Analysis, TechUniv Freiberg, Germany
b Keble College, University of Oxford, UK,

Received 2 February 2007; received in revised form 22 November 2007; accepted 22 November 2007
Available online 4 March 2008

Abstract

The procedures studied in this paper originate from a problem posed at the International Mathematical Olympiad in 1986.
We present several approaches to the IMO problem and its generalizations. In this context we introduce a “signed mean value
procedure” and study “relaxation procedures on graphs”. We prove that these processes are always finite, thus confirming
a conjecture of Akiyama, Hosono and Urabe [J. Akiyama, K. Hosono, M. Urabe, Some combinatorial problems. Discrete
Mathematics 116 (1993) 291–298]. Moreover, we indicate relations to sorting and to an iterative method used in circle packing.
c© 2008 Elsevier B.V. All rights reserved.
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1. The pentagon game

Our starting point is Problem 3 of the International Mathematical Olympiad (IMO) in 1986 which arguably belongs
to the hardest challenges this contest has ever seen [7,14,15]. The problem was proposed by the first author of the
present paper and originally emerged as a side product of investigations of an old geometric question concerning
partial reflections of non-convex polygons (see [13] pp. 30–34). After the competition it turned out that the problem
can be generalized in various directions and has interrelations with several other topics. In this paper we collect some
known facts and present new perspectives of the problem.

The pentagon game: Five integers with positive sum are assigned to the vertices of a pentagon. If there is at least
one negative number, the player may pick one of them, say y, add it to its two neighbors x and z, and then reverse the
sign of y. The game terminates when all the numbers are nonnegative. Prove that this game must always terminate.

1.1. Decreasing quadratic functions

A standard approach for proving finiteness of a procedure is to construct a positive integer-valued function which
decreases in every step.
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First solution. We denote the five numbers in consecutive order by x1, x2, x3, x4, x5 and remark that the sum
s := x1+x2+x3+x4+x5 remains invariant. A simple calculation shows that the function f of x = (x1, x2, x3, x4, x5),
given by

f (x) := (x1 − x3)
2
+ (x2 − x4)

2
+ (x3 − x5)

2
+ (x4 − x1)

2
+ (x5 − x2)

2, (1)

is strictly decreasing in each step of the game. In fact the value of f changes from f (xold) to

f (xnew) = f (xold)+ 2ys < f (xold).

Since all values of f are nonnegative integers, the game must stop after at most f (x)− 1 steps. �
This argument was found by all but one of the eleven students who succeeded in solving the problem during contest,

and it coincides with the solution suggested by the proposer, but there are other quadratic functions which work as
well. One example proposed by Géza Kóz (see [18], p. 321) is the function

2(x1x2 + x2x3 + x3x4 + x4x5 + x5x1)+ 3(x1x3 + x2x4 + x3x5 + x4x1 + x5x2),

which is strictly increasing and bounded from above by s2.
Although the function f provides the simplest solution, it does not immediately generalize to the analogous game

played on an arbitrary polygon. For a square, for instance, the required decreasing quadratic function is not the naively
expected expression

(x1 − x3)
2
+ (x2 − x4)

2,

as the counterexample xold = (−1, 3,−5, 4) with xnew = (−1,−2, 5,−1) shows. A substitute which works is

3{(x1 − x3)
2
+ (x2 − x4)

2
} + {(x1 − x2)

2
+ (x2 − x3)

2
+ (x3 − x4)

2
+ (x4 − x1)

2
}.

To handle the hexagon in a similar way one may use something like

6∑
k=1

{(xk − xk+3)
2
+ 2(xk − xk+2)

2
+ 2(xk + xk+1 − 2xk+3)

2
+ 6(xk + 2xk+1 − 3xk+3)

2
}.

In the next subsection we describe a construction given by Alon, Krasikov, and Peres [2] which solves the problem
for all n.

1.2. Sums of consecutive elements

During the IMO contest all but one participant who solved the problem used the function f defined in (1) (see [14],
p. 20). The only alternative solution was found by Joseph G. Keane from the US team, whose idea had the rare
distinction to be honored by a special prize. Instead of a sum of squares he considered a function involving absolute
values.
Second solution. Let the function g be defined by

g(x) :=
5∑

j=1

(|x j | + |x j + x j+1| + |x j + x j+1 + x j+2| + |x j + x j+1 + x j+2 + x j+3|),

where all indices are reduced modulo 5. In each step of the algorithm all but one of the summands remain invariant or
switch places. Only the term |s − y| is changed to |s + y|, where y denotes the negative number chosen by the player.
Consequently g decreases by the positive integer d := |s − y| − |s + y|. �

The function g can easily be adapted to the corresponding game played on polygons with real numbers x1, . . . , xn .
In order to simplify notations we extend the sequence (x j ) periodically to all integers j and define

si j := xi + xi+1 + · · · + xi+ j−1, i, j ≥ 1. (2)

Then the generalized function g is a sum of absolute values of the si j ,

g(x) :=
n∑

i=1

n−1∑
j=1

|si j |. (3)



E. Wegert, C. Reiher / Discrete Applied Mathematics 157 (2009) 2207–2216 2209

Again g decreases in each step by d := |s − y| − |s + y|, which shows that the algorithm stops if the x j are integers.
In order to prove that it also terminates if the x j are real numbers, we denote by S the multiset of all numbers |si j |

with 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1. As stated above, if the value of an element a in S is changed, then a = |s − y|, so
y < 0 is equivalent to a > s. If s < a ≤ 2s then a is replaced with the new number |s + y| = 2s − a ≤ s, which then
must remain constant forever. If a ≥ 2s, then |s + y| = a − 2s, i.e. a is reduced by 2s. Since this can happen only a
finite number of times, any element of S is eventually trapped in the interval [0, s], and then the algorithm must stop.

This argument also shows that the number of steps needed to turn every number non-negative depends only on the
initial configuration and not on the player’s choice.

Indeed, if we denote by bxc′ that integer satisfying x − 1 ≤ bxc′ < x , then any y ∈ S may be reduced b y+s
2s c
′

many times in the manner described above. Note that in each step of the algorithm exactly one element of S is
diminished and that there must still be a negative number as long as there remain elements of S outside the interval
[0, s]. Consequently, the formula

N =
∑
y∈S

⌊
y + s

2s

⌋′
(4)

gives the total number of operations to be performed.
Alon, Krasikov, and Peres [2] derived a similar formula using the squares s2

i j instead of the absolute values |si j |. In
order to show that (4) coincides with their result we denote by T the multiset of all numbers

si j = xi + xi+1 + · · · + xi+ j−1, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1.

Taking into account that x 7→ s − x maps T bijectively onto itself, we obtain

N =
∑

t∈T,t>0

⌊
s + t

2s

⌋′
+

∑
t∈T,t≤0

⌊
s − t

2s

⌋′
=

∑
t∈T,t>0

⌊
s + t

2s

⌋′
+

∑
t∈T,t≥s

⌊
t

2s

⌋′
.

As b t
2s c
′ and b t+s

2s c
′ give the number of even and odd integers in the interval (0, t

s ), respectively, both sum up to b t
s c
′.

Denoting by dxe the integer with x ≤ dxe < x + 1, we arrive at the formula given in [2],

N =
∑

t∈T,t>s

⌊
t

s

⌋′
=

∑
t∈T,t<0

⌊
s − t

s

⌋′
=

∑
t∈T,t<0

⌈
|t |

s

⌉
. (5)

An unbeatably elegant application of sums of consecutive elements is due to Bernard Chazelle ([5], [7] p. 6).

Third solution. Let S̃ be the infinite multiset of all sums si j defined in (2) with i, j ∈ Z, 1 ≤ i ≤ n and 1 ≤ j . Since
the sum s = x1 + · · · + xn is positive, the number of negative elements in S̃ is finite. In each step of the game all
elements of S̃, except one, remain invariant or switch places with others. Only the negative number y chosen by the
player is changed to −y.

In order to verify this we arrange the elements of S̃ in the following table

x1 x1 + x2 x1 + x2 + x3 . . . x1 + · · · + xn−1 s s + x1 . . .

x2 x2 + x3 x2 + x3 + x4 . . . x2 + · · · + xn s s + x2 . . .

x3 x3 + x4 x3 + x4 + x5 . . . x3 + · · · + x1 s s + x3 . . .
...

...
...

...
...

...

xn xn + x1 xn + x1 + x2 . . . xn + · · · + xn−2 s s + xn . . . .

If, without loss of generality, the player chooses the number y = x1 then the elements in every row, except in the first
and the second, are preserved. Apart from the element −x1, the new first row has the same elements as the old second
row, and the new second row coincides with the old first row without x1.

Hence, in every move exactly one negative element of S̃ is changed to positive. Since the sum s is positive, the
number N of negative elements in S̃ is finite and the algorithm must terminate after at most N steps. In fact it cannot
stop earlier, since then S̃ would still have negative elements, which is impossible if none of the xi is negative. As S̃
may be constructed as the infinite multiset of all t + z · s, where t runs through T and z through the non-negative
integers, we again obtain formula (5). �
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Alon, Krasikov, and Peres as well as Chazelle also proved that the final position is uniquely determined by the
initial configuration.

A similar solution given by John M. Campbell ([6], see [12]) uses only one infinite two-sided sequence (vi ) of
consecutive sums (here shown for n = 5)

. . . ,−x4 − x5,−x5, 0, x1, x1 + x2, x1 + x2 + x3, . . . , x1 + . . .+ x5, 2x1 + x2 + · · · + x5, . . . ,

which is constructed by adding (respectively subtracting) cyclically the numbers xi .

Fourth solution Any move exchanges the elements vi+nj and vi+1+nj for some i ∈ {1, . . . , n} with vi > vi+1 and
all j ∈ Z. The procedure can be performed as long as there exists i ∈ {1, . . . , n} with vi > vi+1. We denote by Ni
the (finite) number of elements v j which stand right of vi and are less than vi . It is clear that every move reduces the
sum N = N1 + · · · + Nn by one, and a little thought then shows that the procedure stops after exactly N steps with a
strictly increasing sequence (vi ). �

Campbell’s solution reveals that the pentagon game can be reformulated as a sorting procedure, which clearly
explains why the final position is uniquely determined. We explore this idea further in the next sections.

1.3. Breaking symmetry – a sorting procedure

The next approach is a finite version of Campbell’s solution. The first author learned it in 1987 from Sergej
Steinberg [19] during a personal communication in Pushchino. The idea is to represent the numbers xi as differences.

Fifth solution. Let y1 = 0 and define y2, . . . , yn by

yi = x1 + x2 + · · · + xi−1.

Then xi = yi+1 − yi for i = 1, . . . , n − 1 and xn = s − yn = y1 − yn + s. Rewriting the rules of the game for the
numbers y1, . . . , yn we get the following two possible operations.

If yi+1 < yi for some i = 1, . . . , n − 1 it is allowed to interchange yi+1 and yi . If yn > y1 + s it is allowed to
replace the first number y1 with yn − s and the last number yn with y1 + s.

It is convenient to think of the numbers yi as written on cards which are arranged in a line and are numbered from
left to right. Then the first operation exchanges two neighboring cards, the card carrying the greater number “moving
right” and the card with the smaller number “moving left”. The second operation is allowed if the difference yn − y1
is greater than s. Here the larger number yn is diminished by s, the smaller number y1 is increased by s, and the two
cards change places.

Since the numbers yi are only changed by multiples of s, all possible values belong to a discrete set R. This set
is even finite, since the maximal number yi never increases and the minimal number never decreases. Because R is
finite, max yi must remain constant after a number of steps. Let this maximum be m. Since no card with yi < m can
ever reach the value m, at least one card must carry the number m forever. Now, analogously, each of the remaining
n− 1 cards can change its value only a finite number of times. Going on by induction, we see that after some time the
values of all cards remain unchanged. It is now clear that the remaining sorting process must stop, since it contains no
cycle and the number of permutations is finite. �

As an alternative to the above reasoning one may consider the nonnegative function f (y) =
∑

y2
j . If the second

operation is performed the value of f decreases by

d := 2s(yn − y1)− 2s2
= 2s(yn − y1 − s) > 0.

Since yn and y1 belong to the finite set R, the number d is bounded from below by a positive constant. So the second
operation can be applied only a finite number of times.

In order to determine the final configuration x∗j we remark that the final values y∗i of yi must satisfy

y∗1 ≤ y∗2 ≤ · · · ≤ y∗n ≤ y∗1 + s.

Moreover, the final value on each card differs from its initial value by a multiple of s and the sums
∑n

i=1 yi and∑n
i=1 y∗i must be equal. These observations allow to find y∗i as follows:
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Let 0 ≤ r j < s be the remainders of y j modulo s. Denote by r∗j the rearrangement of the r j such that
0 ≤ r∗1 ≤ . . . ≤ r∗n < s. Then y∗j is given by

y∗i = r∗i+ j + ks (i = 1, . . . , n − j), y∗i = r∗i+ j−n + (k + 1)s (i = n − j + 1, . . . , n),

where the integers j and k are chosen such that 0 ≤ j ≤ n − 1 and

n∑
i=1

(yi − ri ) = (kn + j)s.

For the final values x∗i of xi we then obtain

x∗1 = y∗2 − y∗1 , x∗2 = y∗3 − y∗2 , . . . , x∗n−1 = y∗n − y∗n−1, x∗n = y∗1 − y∗n + s.

1.4. Keeping symmetry – threshold sorting

The solution via the above sorting procedure breaks the symmetry between the variables. In the sequel we develop
a similar approach keeping symmetry. This will lead to a new kind of problems which are treated in more generality
in the next section. Here we start with a simple situation.

The threshold sorting procedure. Let d be a positive constant and let y1, . . . , yn be a finite sequence of real numbers.
If there are u = yi and v = y j with u > v + d then replace u by v + d and v by u − d. Repeat this step as long as
numbers u and v with u > v + d exist. Determine whether this procedure always stops.

First of all we observe that all numbers yi are changed by multiples of d , their maximum is not increasing and their
minimum is not decreasing. Consequently the set of all possible values is finite. Hence there exists a number c such
that u − v − d ≥ c > 0 for all u, v to which the operation might be applied during the whole process. It follows that
the nonnegative function f (y) =

∑
y2

i is decreasing in each step of the algorithm by

u2
+ v2
− (u − d)2 − (v + d)2 = 2d(u − v − d) ≥ 2cd.

Therefore the procedure always stops.
The function f gives a rather bad estimate of the number of steps. A better one can be obtained using the function

g given by g(y) :=
∑
|yi − y j |.

In order to prove that g is decreasing, we remark that the new numbers u − d and v + d lie in the interval with
endpoints u and v. It follows that |(u − d)− (v + d)| is less than |u − v| by at least 2 min(c, d), and it is easy to see
that for any w the sum |(u − d)− w| + |w − (v + d)| is less than or equal to |u − w| + |w − v|.

The last result can be used to symmetrize the fourth solution of the Pentagon game.

Sixth solution. There exist uniquely determined values y1 := 0, y2, . . . , yn, yn+1 := y1, such that the xi have the
symmetric representation

xi = yi+1 − yi +
s

n
, i = 1, . . . , n.

Reformulating the original algorithm for x1, . . . , xn in terms of y1, . . . , yn we get the following operation:
If there are two neighbors u = yi and v = yi+1 such that u > v + s/n then u is replaced with v + s/n and v is

replaced with u − s/n.
Clearly this rule is more restrictive than that of the Threshold Sorting Procedure, and so the algorithm must

stop. �
It is interesting to see how the function g looks in terms of the xi . In fact it is quite similar to the one considered

earlier in (3), namely

g(x) =
n∑

i=1

n−1∑
j=i

∣∣∣∣∣ ( j − i + 1)s
n

−

j∑
k=i

xk

∣∣∣∣∣ .
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2. The signed mean value procedure

It turns out that threshold sorting is just a special case of a more general algorithm which we introduce and
investigate in this section. We start with fixing the rules of the game, which is now played on an arbitrary finite
collection of real numbers.

The signed mean value procedure. Fix a positive constant d and let y1, . . . , yn be real numbers. If there are numbers
(signs) η1, η2, . . . , ηn ∈ {−1, 0, 1} such that

s := η1 y1 + η2 y2 + · · · + ηn yn > d, (6)

then set m := η2
1 + η

2
2 + . . .+ η

2
n and substitute

y j 7→ y j − 2η j

(
s − d

m

)
, j = 1, 2, . . . , n. (7)

Repeat this as long as numbers η1, η2, . . . , ηn ∈ {−1, 0, 1} with (6) exist.
Note that m always satisfies 1 ≤ m ≤ n and can vary from step to step.
The Threshold Sorting Procedure corresponds to the more restrictive rule where all the η j are zero, except two

which are 1 and −1, respectively.

Theorem 1. The Signed Mean Value Procedure always stops.

Proof. In what follows we assume that there is a procedure which does not stop.
1. The function f (y) = y2

1 + y2
2 + · · · + y2

n is strictly decreasing. In fact

f (yold)− f (ynew) =

n∑
j=1

y2
j −

n∑
j=1

(
y j − 2η j

s − d

m

)2

= 4
d(s − d)

m
> 0. (8)

Let fk denote the value of f at step k. Since the sequence ( fk) is monotone and bounded it converges to a limit f ∗.
2. Let sk , mk , η j,k and y j,k denote the values of s, m, η j and y j in the k-th step, respectively. Since 1 ≤ mk ≤ n it

follows from (8) that

0 < sk − d ≤
n

4d
( fk − fk+1). (9)

We write f1 − f ∗ as a (absolutely) convergent telescopic series,

f1 − f ∗ =
∞∑

k=1

( fk − fk+1).

Together with (9) this shows the (absolute) convergence of
∑
∞

k=1(sk − d), and in particular we have sk → d . Further,
by (7),

|y j,k+1 − y j,k | ≤ 2(sk − d), j = 1, . . . , n.

Consequently, the convergent series

y j,1 + 2
∞∑

k=1

(sk − d)

serves as a majorant for the representation

y j,k+1 = y j,1 +

k∑
i=1

|y j,i+1 − y j,i |.

This implies that all sequences (y j,k) converge to certain limits Y j as k tends to infinity.
3. We now consider the difference

(η1,k y1,k + · · · + ηn,k yn,k)− (η1,kY1 + · · · + ηn,kYn),
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which converges to zero, since y j,k → Y j as k → ∞. The first term in parentheses is sk , which has been shown to
converge to d. Consequently also

η1,kY1 + η2,kY2 + · · · + ηn,kYn → d. (10)

However, the set

{η1Y1 + η2Y2 + · · · + ηnYn : η j ∈ {−1, 0,+1}}

contains only a finite number of elements, which together with (10) then implies that

η1,kY1 + η2,kY2 + · · · + ηn,kYn = d (11)

for all sufficiently large k, say for all k ≥ K .
4. Finally, we observe that the values

Ik :=

n∑
j=1

(y j,k − Y j )
2

all converge to zero, since y j,k → Y j as k →∞. In fact all Ik are equal for k ≥ K , namely,

Ik+1 − Ik =

n∑
j=1

(
y j,k − 2η j,k

sk − d

mk
− Y j

)2

−

n∑
j=1

(
y j,k − Y j

)2
= 4

n∑
j=1

η2
j,k

(
sk − d

mk

)2

− 4
n∑

j=1

η j,k
sk − d

mk
(y j,k − Y j )

= 4
sk − d

mk

[
n∑

j=1

η2
j,k

sk − d

mk
−

n∑
j=1

η j,k y j,k +

n∑
j=1

η j,kY j

]

= 4
sk − d

mk

[
sk − d −

n∑
j=1

η j,k y j,k +

n∑
j=1

η j,kY j

]
= 0,

where we used (6) and (11) in the last step. Since Ik → 0 it follows that Ik = 0 for all k ≥ K , which implies
y j,k = Y j . But then all variables y j would be constant after the K -th step, a contradiction. �

3. Relaxation procedures

In this section we return to the IMO Pentagon Game and formulate a natural generalization to graphs.

A relaxation procedure on graphs: Let G be a connected graph with at least two vertices. To each vertex v j of G a
real number x j , called a label, is assigned. Assume that s :=

∑
x j > 0. If the label x associated with a vertex v is

negative then it is allowed to add 2x/m to each of the m labels at the vertices adjacent to v, and then to replace x by
−x . This step is performed repeatedly as long as negative labels exist.

In their paper [1], Akiyama, Hosono and Urabe asked if this procedure necessarily terminates for regular graphs.
We shall prove that this indeed always happens for arbitrary graphs. Note that connectedness can be omitted if we
assume that s > 0 holds in every component of the graph.

The name “Relaxation Procedure” is motivated by the following interpretation. If we consider the x j as charges
sitting at the vertices v j , their distribution induces a “tension” of the graph G. We do not describe precisely what this
means but vaguely speaking, the more an edge contributes to the tension, the greater the differences of charges at its
incident vertices is. So “tension” is a measure for non-uniformity of a charge distribution. The rules of a “relaxation
procedure” are such that the charges are allowed to be shifted along the edges so that the tension is reduced.

Quite recently we learned that procedures of this kind are basic for iterative methods in circle packing, as described
in Kenneth Stephenson’s beautiful and inspiring book [20]. Here the vertices of the graph correspond to the circles
involved in the packing and the edges are defined by the prescribed tangency structure of the packing. Each circle
(vertex) carries two labels, one is the “radius”, the other one is the “angle sum” (which measures the “local curvature”).
The angle sum at a circle C is expressed by the radii of C and all circles adjacent to C .
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The goal is to find appropriate radii which “flatten” the packing, which happens if all interior angle sums are 2π
(or a multiple thereof for branched packings). This is achieved by an iterative procedure, where in each step one circle
is chosen and its radius is adjusted such that the local curvature becomes zero (or “small”). This changes the curvature
labels of C and of the adjacent circles. In effect the “curvature overhead” of C is distributed among its neighbors
according to a rule which resembles the setting of the above relaxation procedure. The iteration is stopped if the
absolute values of all local curvatures are less then a positive threshold. For details we refer to [20], especially pages
243–244.

Does a relaxation procedure necessarily terminate? If yes, how many steps can be (or must be) performed and
what are the possible final configurations? For the procedure defined above the following theorem gives an affirmative
answer to the first question.

Theorem 2. For each graph the above relaxation procedure stops.

Proof. 1. We reduce the problem to a special case of the Signed Mean Value Procedure. In order to do so, G is first
converted to a digraph by choosing arbitrary directions of its edges. Further, we double the number n of vertices of G
by associating with any vertex v j a new vertex v′j which is adjacent (exactly) to v j by an edge e j directed from v′j to
v j . The resulting digraph is denoted by G ′. To each vertex v′j of G ′ which does not belong to G we assign the label
−d , where d := s/n and n denotes the number of vertices of G. Then the total sum of all vertex labels of G ′ is zero.

2. With any directed edge ei of G ′ we associate a label (“the conductance”) yi , such that the vertex labels x j are
equal to the sum of the edge labels at the incident incoming edges minus the sum of the edge labels at the incident
outgoing edges.

The existence of such labels follows from Kirchhoff’s law, using the fact that the sum of all vertex labels is zero.
More directly, to find appropriate edge labels one can select a spanning tree T of G ′ and choose arbitrary labels at
those edges of G ′ which do not belong to T . The remaining labels at the edges of T are then uniquely determined and
can be found by successively deleting monovalent vertices of T together with the corresponding edges. Note that all
edges from v′j to v j belong to any spanning tree and carry the label d .

3. We investigate the edge labels during a step of the relaxation procedure. Each vertex label x has the representation

x = d −
∑

ηi yi

where yi are the labels of the incident edges belonging to G, with ηi = −1 for incoming, and ηi = +1 for outgoing
edges.

Let x be the (negative) label of a vertex v with valency m selected in a step of the procedure. Then x < 0 is
equivalent to s′ :=

∑
ηi yi > d . If the labels yi of the incident edges belonging to G are replaced by yi−2ηi (s′−d)/m

and the label d of the edge between v and v′ remains unchanged, these new values are compatible with the new vertex
labels. In fact,

xnew = d −
m∑

i=1

(
ηi yi − 2

s′ − d

m

)
= d − s′ + 2s′ − 2d = −xold,

and changing the labels yi of all edges incident with v according to the rule

yi 7→ yi − 2ηi
s′ − d

m
≡ yi + 2ηi

x

m
has the same effect like adding 2x/m to the labels at all vertices adjacent to v.

So the relaxation procedure for the vertex labels induces a special Signed Mean Value Procedure (with preselected
ηi ) for the edge labels. By Theorem 1 the latter must terminate. �

In contrast to the problem for polygons neither the final configuration nor the number of steps is uniquely
determined. For instance, if the labels −1,−2, 3, 4 are attached to the vertices of a complete graph of order four
we get the following results (scaled by a common factor of 27), depending on whether one starts with−1 or−2 in the
initial step:

(−27,−54, 81, 108)→ (27,−72, 63, 90)→ (−21, 72, 15, 42)→ (21, 58, 1, 28)

(−27,−54, 81, 108)→ (−63, 54, 45, 72)→ (63, 12, 3, 30).
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Open problem: Find a characterization of all graphs where the final configuration and/or the number of steps are
unique.

There are many possibilities to change the rules of the game. One option is to admit weighted shifts of the charges,
which leads to relaxation procedures on weighted digraphs.

To define these procedures we assume that every edge ei j of a digraph G with n vertices vi carries a non-negative
label ci j , its “edge conductance”, such that for all i = 1, . . . , n

ci :=
∑
j 6=i

ci j > 0. (12)

To simplify notations we assume that G is completely bi-oriented, which can be achieved by adding virtual edges with
conductance zero, and define the weights wi j for i, j = 1, . . . , n by

wi j :=

{
−1 if i = j
ci j/ci if i 6= j.

(13)

A relaxation procedure on weighted digraphs. Let G be a digraph endowed with edge conductances ci j , let the
weights wi j be defined by (12) and (13), and fix a “relaxation parameter” λ ∈ R+. Assume further that any vertex vi
of G carries a label xi , its “charge”, so that the total charge x1 + · · · + xn is positive.

If there is at least one negative charge, say xi , it is allowed to replace all charges according to the rule

x j 7→ x j + 2λwi j xi , j = 1, . . . , n. (14)

Repeat this step as long as there are negative charges.

Remark. Condition (12) guarantees that any negative charge has the option to be distributed among their neighboring
vertices. If one admits that ci vanishes for some indices i , it is natural to set all corresponding weights wi j , including
wi i , to zero and to modify the procedure by not allowing the substitution (14) for those values of i .

Open problem: Assume that the edge conductances of G are given. Describe the set of all relaxation parameters λ
such that, for any initial distribution of the charges, the relaxation procedure terminates.

The rules of the relaxation procedure are designed so that the total charge remains invariant, which was motivated
by our physical interpretation. One should not think that this condition is natural to get a “reasonable” procedure – on
the contrary.

In 1987 Shahar Mozes invented what is now called Mozes’ Numbers Game (see [16]), which corresponds to the
substitution rule

x j 7→

{
−x j if i = j
x j + wi j xi if i 6= j

(15)

with integer weights wi j . Using Weyl groups and Kac-Moody algebras, Mozes gave an algebraic characterization
of the initial positions giving rise to finite games and proved that for those the number of steps and the finial
configuration do not depend on the moves of the player. For wi j ∈ {0, 1} (which includes the original Pentagon
problem) Anders Björner [3] (see also [4], Section 4.3, and [8]) gave an elementary proof (without characterizing the
initial configurations for which the game terminates). Kimmo Eriksson [9] showed that (for a subclass of problems)
one can decide which positions are reachable from a given initial configuration, and his subsequent investigations [10,
11] revealed deep connections to Coxeter groups and greedoids. Proctor [17] discovered that Mozes’ Numbers Game
is related to Bruhat lattices.

Further modifications of the problem arise if one admits simultaneous substitutions of (some or all) negative
labels. Another direction is to allow substitutions without sign restrictions, and to ask for the set of all reachable
configurations. Does this set contain “minimal” configurations? Of, course one can also replace the real numbers by
other (partially ordered) algebraic structures . . .

Isn’t it fascinating to find so much mathematics hidden in a simple game?
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