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A B S T R A C T

This article presents a new approach for estimating the depth, size, and metabolic heat genera-

tion rate of a tumour. For this purpose, the surface temperature distribution of a breast thermal

image and the dynamic neural network was used. The research consisted of two steps: forward

and inverse. For the forward section, a finite element model was created. The Pennes bio-heat

equation was solved to find surface and depth temperature distributions. Data from the analy-

sis, then, were used to train the dynamic neural network model (DNN). Results from the DNN

training/testing confirmed those of the finite element model. For the inverse section, the trained

neural network was applied to estimate the depth temperature distribution (tumour position)
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from the surface temperature profile, extracted from the thermal image. Finally, tumour param-

eters were obtained from the depth temperature distribution. Experimental findings (20

patients) were promising in terms of the model’s potential for retrieving tumour parameters.

� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Breast cancer is the most common type of cancer in the world
and survival chances vary by stage at diagnosis [1]. In risk
assessment of patients suspected of having breast cancer, ther-

mography plays a key role. Breast thermography is a valuable
method for cancer diagnosis in early stages of tumour growth,
when it is not yet recognizable by mammography. Patients

with an abnormal thermogram have a high risk of developing
breast cancer during their lifetime [2,3]. Thermography is a
physiological test while mammography is an anatomical one

[3]. Thermovision techniques have been widely used to detect
malignant breast tumours [4].

One basic question for breast thermography is how to

quantify complex relationships between breast thermal pat-
terns and underlying heat source parameters (size, depth and
metabolic heat generation rate) [5]. Similar to other inverse
problem applications, solving the breast thermography inverse

problem is typically much more challenging, compared to its
forward counterpart because of its intrinsically ill-posed
nature.

Many researches have been conducted to understand rela-
tionships between surface thermal patterns and underlying
physiological or pathological parameters. Analysing surface

temperature and tissue temperature profiles, Ng and Sud-
harsan developed a 3-D direct numerical model of a breast
with and without tumour [6,7]. They found that the tissue tem-

perature profile was distorted at the tumour location, compa-
rable well with in vivo tests. Mital and Pidaparti applied an
evolutionary algorithm using artificial neural networks and
Genetic Algorithms to estimate breast tumour parameters.

Their algorithm was based on a simplified 2-D breast model
and therefore, less practical for realistic data [8]. To estimate
the metabolic heat generation rate of a tumour, Gonzalez per-

formed a numerical simulation on the basis of the size and
depth of the tumour achieved from X-ray mammography [9].
In more recent studies [8–10], an iterative optimization proce-

dure based on forward thermography modelling techniques
with spatial constraints, which requires a time-consuming
computer calculation, is used to estimate tumour parameters.
Also in most of the studies [6,7], the temperature distribution

of body surface can be acquired as long as relevant data on
the source of internal heat are known. However, in practice
body surface temperature can be acquired through an infrared

camera and the information of internal heat source should be
approximated. This is an inverse problem.

The present study aimed to suggest a new solution to the

inverse problem of breast thermography by using black box
modelling. In order to address the inverse problem, surface
temperature distribution, extracted from a breast thermal

image and a dynamic neural network, was used. In order to
validate the method, several cases with different tumour sizes
and depths are presented. Fig. 1a shows block diagram of
the proposed method.
Methodology

The proposed approach involved two steps. For the forward
section, a finite element modelling was carried out. For this
purpose, the Pennes bio-heat equation was solved to find the

surface temperature distribution (STD) and depth temperature
distribution at the tumour location (DTD). A 3D model of the
breast similar to that of used by Ng and Sudharsan [6] was

considered. Dynamic neural network was applied to map the
relationship between the temperature profile over the breast
model with the depth temperature profile at the tumour loca-

tion. For the inverse section, the trained neural network was
applied to estimate depth temperature distribution from sur-
face temperature profile, extracted from a thermal image.

Using this depth temperature distribution, the size and heat
generation rate of the tumour were predicted via Eq. (1).

kDT� bT ¼ qvrect � a

2

� �
ð1Þ

where T is the breast temperature distribution, a is the diame-
ter of the heat source, rect is the rectangular function, b is the
perfusion term, k is the thermal conductivity and qm can be

regarded as the internal heat source. This equation is the 1-
D static Pennes bio-heat equation. The dynamic bio-heat
transfer process presented by Pennes is described in Eq. (2)

as follows:

qc
@T

@t
¼ rðk � rTÞ þWb � Cb � qbðTb � TÞ þ qm ð2Þ

where q is density of the tissue, c is the heat capacity of the tis-
sue, k is thermal conductivity of tissue and qm is the metabolic

heat term (or heat that the tumour generates from its meta-
bolic processes). xb, cb, qb, and Tb represent blood perfusion
rate, blood heat capacity, blood density, and arterial blood
temperature, respectively [11]. At a steady state, time deriva-

tive is zero in Eq. (2) and to simplify the heat-transfer model
in Eq. (1), the diffusion term b and internal heat source qm were
defined the same as in Eqs. (3) and (4).

b ¼ wbcbqb ð3Þ

qv ¼ wbcbqbTb þ qm ð4Þ
Analytical solution for the model is defined in the following

equation:

TðxÞ ¼ ðTmax � qv=bÞ cos h
ffiffiffi
b

k

r
x

 !
þ qv=b x 2 � a

2
;
a

2

h i
ð5Þ

In the equations, T(x) means temperature distribution func-

tion, x is the interval from the centre of the heat source to the
point, and Tmax is the maximum temperature. Eq. (5) shows the
temperature distribution within the heat. To find coefficients of

Eq. (5), assumptions (6) and (7) are considered, meaning that
centre of the heat source has the maximum temperature.
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Fig. 1 Block diagram of the proposed inverse thermal modelling. (b) Schema of applied dynamic neural network.
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Tð0Þ ¼ Tmax ð6Þ

dT

dx
jx¼0 ¼ 0 ð7Þ

The breast tumour could be considered as a highly perfused
tissue. Its blood perfusion rate (b) and effective thermal con-

ductivity (k) are taken as 48 * 103 W/m3 and 0.48 W/m, respec-
tively [7,11]. Therefore, by estimating the temperature
distribution at the tumour location and fitting the obtained

function (Eq. (5)) to it, heat generation rate and size of the heat
source were obtained. Subsequently, the depth of the tumour
was directly predicted by the relationship obtained from the

numerical model. To specify the temperature distribution at
the tumour location, dynamic neural network was used.

Using dynamic neural networks to work out inverse thermal

mapping

Black box modelling approaches are suitable when no prior

information about a system is available. In black boxmodelling,
a general model structure must be selected, flexible enough to
build models for a wide range of different systems [13]. Neural
networks play an important role in the modelling. Dynamic
neural networks are general dynamic nonlinearmodelling archi-

tectures [13]. In these architectures, dynamics using past values
of system inputs and outputs are fed into the network. There are
several ways to form dynamic neural networks from a static

neural network such as multi-layer perceptron (MLP) and
radial basis function (RBF) network. In all ways the static net-
work is extended by an embedded memory which stores past

output or input values or any other intermediate nodes.
If a tapped delay line is used in the output signal path, a

feedback architecture can be constructed, where the inputs

or some of the inputs of a feed-forward network consist of
delayed outputs of the network. Fig. 1 shows an applied
dynamic network constructed from a static multi-
input�single-output network (MLP) and added tapped delay

lines. In this dynamic model structure, a regressor vector is
used, and the output of the model (yM) is described as a
parameterized function of this regressor vector (Eq. (8)) [14]:
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yMðkÞ ¼ fðH;uÞ ð8Þ
where H is the parameter vector and u denotes the regressor
vector. The regressor can be formed from the past inputs

and past model outputs as Eq. (9):

uðkÞ ¼ xðk� 1Þ;xðk� 2Þ; . . . ;xðk�NÞ;yMðk� 2Þ; . . . ;yMðk�PÞ½ �
ð9Þ

The corresponding structure is the neural network output

error (NOE) model, the one used in the present article. As
shown in Fig. 1b, there is feedback from model output to its
input in a NOE model.

In the present study, the feed-forward backpropagation
network with feedback from output to input was used to con-
struct the NOE network. The network has one hidden layer

with Tanh activation function and a single saturated linear
function in the output layer. The network number of inputs
is 30 vectors, including 20 input dynamics (tapped delay lines)
and 10 output ones. In what follows, a description of how the

optimal network architecture was selected has been provided.
In the identification framework, it is assumed that the

inverse thermal model can be represented in a discrete input–

output form by the identification structure: the input (x) of
interest is the surface temperature distribution (STD) while
the output (y) is the depth temperature distribution (DTD).

These distributions are obtained by numerical simulation of
a breast model during the forward phase so as to train neural
networks.

Numerical simulations of a breast model

Pennes bioheat equation contains heat transfer by conduction
via the tissue, metabolic heat generation of the tissue, and

blood perfusion rate, whose strength is considered to be pro-
portional to temperature differences between arteries and
veins. This equation was used to model the dynamic heat

transfer process within the tissue [12]. Finite element simula-
tions were carried out using the commercially available COM-
SOL Multiphysics.

Based on a study conducted by Jiang and his colleagues
[15], the gravity-induced geometric deformation can change
breast temperature distribution because of shifted distances
from the breast surface to the chest wall. Therefore, in this

study, for a better representation of the actual breast, a special
geometric shape was considered. An ellipsoid rotated 30
degrees around y-axis and cut from x–y plane were used as

the desired shape. Similar to that of used by Ng and Sudershan
[6], it had four quadrants and four concentric tissue layers,
representing the core glandular, subcutaneous glandular, fatty,

and skin. Fig. 2a illustrates the desired shape schematically.
According to the average female breast geometry [11], the

outer major and minor semi-axis lengths of the ellipsoid were

set to 0.08 m and 0.05 m, respectively, and the distance
between the layers was set on 0.005 m. Steady state solutions
match experimental thermographic results by choosing the
proper thermal properties [16]. Therefore, values of thermal

conductivity (k), metabolic rates (qm), and blood perfusion
terms (the product of specific heat capacity and blood mass
flow rate) for various layers were taken from Werner and Buse

[17].
Sudharsan and Ng [18] reported that out of thousand cases

screened, the percentage of women with carcinomas sizes of
11–15 mm, 16–20 mm, and 50 mm was respectively around
52%, 62%, and 95%. According to their findings, the average
size of a tumour was 1.415 cm in spheroid shape when detected

in clinics for the first time. Therefore, in the present study, the
tumour was assumed to have a spherical shape and four
tumour sizes with a range of 5 mm to 20 mm were considered.

From Gautherie [11], the tumour metabolic heat generation
rate and the doubling time are related as a hyperbolic function

qms ¼ cðW day=m3Þ ð10Þ
where qm is the tumour metabolic heat generation rate per unit
volume (W/m3), s the time required for the tumour to double
its volume, also known as doubling time, and c a constant and
equal to 3.27 � 106 W day/m3. The relation between the

tumour diameter, D, and the doubling time, s is shown in
Eq. (11) [6,7,11].

D ¼ 10�2 exp 0:002134ðs� 50Þ½ � ðmÞ ð11Þ
Since these simulations are performed for several tumour

sizes, the corresponding qm for each tumour size was calculated
from Eq. (10) and (11). The k and wb values of the cancerous
tissue were taken to be 0.48 W/mC and 48 * 103 W/m3 [11],
respectively. In the present study, the off-axis tumour was con-

sidered and the tumour depth was defined as the distance
between the tumour surface and the breast surface.

The DTDs and STDs for tumours with four different diam-

eters at a constant location are depicted in Fig. 3a. Similarly,
Fig. 3b shows that temperature distributions of the tumour
with 10 mm diameter in depth vary from 0.011 m to 0.035 m.

As shown in Fig. 3b, the increase in the tumour depth results
in a significant decrease in the magnitude of the corresponding
STD. Even if this minor temperature changes had been repre-

sented by a pseudo-colour map, they could have hardly been
detected by humans’ eyes [4].

The normal breast tissue was divided into sixteen layers
with equal thickness, and then, the average temperature for

each layer was calculated. Fig. 2b shows a cross-sectional view
of the temperature distribution in each layer in a normal
breast. The depth of the tissue layer versus the average temper-

ature difference between the surface and depth in a normal
breast model is illustrated in Fig. 3c. The average temperature
difference increases gradually from the surface to the chest wall

base in a normal beast model.
As seen in Figs. 3a and 3b, by locating the tumour in each

layer, the tumour induced contrast is added to the normal tem-

perature of that layer. Therefore, to estimate tumour depth,
the minimum (baseline) temperature in DTD is assumed to
be the average temperature of the layer located at it. Finally,
tumour depth was calculated using Fig. 3c.

Data preparation

Using the finite element analysis of the breast model, four

tumour sizes (5 mm, 10 mm, 15 mm and 20 mm) at 10 different
depths with 2 mm interval were simulated. For each tumour
size and location, the depth temperature distribution (DTD)

and the corresponding surface temperature distribution
(STD) were extracted. These distributions were used for train-
ing and testing the dynamic neural network (overall 40 vectors,
each vector has length around 70 samples). Since dynamic net-

work is a sequential network, the samples of input–output data



Fig. 2 The rotated semi ellipsoid breast tissue model: (a) The normal surface temperature. (b) The temperatures of four concentric tissue

layers with uniform thickness.

Fig. 3a The STDs and DTDs for different tumour sizes at constant depth: The red curves are STDs and the blue ones are DTDs.

Fig. 3b The STDs and DTDs for different tumour depths with constant size (Diam = 0.005 m): The red curves are STDs and the blue

ones are DTDs.
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pairs of static networks were replaced by input–output data
sequences. These data sequences were divided into two subsets:
75% of the samples were assigned to the train set (30 vectors

with around 2100 samples) and 25% to the test set (10 vectors
with around 700 samples). Neural network training can be
made more efficient if certain pre-processing actions are per-
formed on the network’s inputs and outputs. In this study, ini-
tially, the linear trend was removed from the data in order to

separate the tumour-induced thermal contrast from normal
temperature distribution. This was carried out by computing



Fig. 3c Depth of tissue versus the average temperature difference between surface and depth.
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the least-squares fit of a composite line to the data and sub-
tracting the resulting function from the data.

Data adjustment

In order to apply the method to real data (thermal image), the
model data had to be matched and normalized with thermal
image data in both spatial and thermal scales. The minimum

spatial distance between samples in thermal image is restricted
by the camera field of view (FOV). In this study, the camera’s
FOV (Thermoteknix Visir 640) was 19.5 * 25.8. In addition,

participants were asked to stay 1 m away from the camera.
Therefore, considering these parameters, vertical and horizon-
tal dimensions of the image were calculated to be 0.4515 m and
0.34125 m, respectively. Considering resolution indexes

(480 * 640) of the camera, the distance between samples in
the image was 7.05 * 10�4 m. This value was used as sampling
interval in the model data. For this purpose, the interpolation

function (interp1) of MATLAB software with cubic spline
method was used.

For normalizing the thermal scale, the mapminmax func-

tion of MATLAB software was applied to the image and
model data. At the forward stage, the thermal range of all data
was saved and data were mapped to the interval [�1,+1] by

applying the function to the model data. During the inverse
stage, this function with saved conditions was reapplied to
the image data so as to match it to the thermal scale.

Selection of optimal network structure

In order to avoid overtraining and obtain a system with
acceptable performances, a number of neurons in the hidden

layer and optimum number of epochs are crucial. Since deter-
mining the dynamics and number of neurons and epochs are
not independent on each other, so they are iteratively deter-

mined. Initially, dynamics with forward selection method were
selected by assuming a fixed number of neurons and epochs.
Then, the optimum number of neurons with obtained dynam-

ics and fixed epochs was determined. For this purpose, the
number of neurons varied from 10 to 30 in 10 steps
(Fig. 4a). Having trained the network with each number of
neurons, the MSE of train and test data set was calculated.
Finally, the number of neurons in which the MSE of test data
set had the minimum value was selected as an optimum num-
ber of neurons. Similarly, with achieved dynamics and neu-
rons, the optimum number of epochs was determined. For

this purpose, the epoch number varied from 50 to 600 in 23
steps. In Fig. 4b, the MSE of train and test data set was plotted
versus epoch numbers. The procedure was iterated until these

values remained fixed.
In the model, the simulator network has thirteen hidden

layer neurons with Tanh activation functions and a single sat-

urated linear function in the output layer. The Levenberg–
Marquadt algorithm is applied to train the neural network.
Five hundred (500) training iterations are performed, at the
end of which the MSE is reduced to the order of 10�2. At this

point, optimal network weights for the trained network are
stored and used for validation. Training this neural network
is a time consuming task. But it will not take too much time

to test (the practical application) the trained network, an edge
over iterative methods used in previous studies [8–10]. Valida-
tion of the neural model on training data is shown in Fig. 4c.

As indicated in Fig. 4c, the range of data presented to the neu-
ral network indicates the entire range of data.

Neural network identification results in the forward step

Once the neural network is trained with a suitable data set, it is
ready to predict the DTD for a new data set not exposed to

during the training phase. The network is validated for ten dif-
ferent cases. As shown in Fig. 4d, for each validation case, the
output of the neural network model shows good agreement
with simulation results with regard to R2 values (a measure

of the goodness of fits). Simulation errors in the test data are
shown in Fig. 4e. According to the results, the performance
of the neural network is acceptable and simulation errors are

not large.

Experimental data analysis

In order to apply the proposed method to the thermal image,
thermography was conducted on twenty patients with histo-
logically confirmed breast cancers with ages ranging from 22

to 55 years old (mean = 39 years, SD = 9 years) at the ‘‘Imam



Fig. 4a and b (a) Effect of increasing the number of neurons on train and test error. (b) Effect of increasing the number of epochs on

train and test error.

Fig. 4c Validation of the neural model on training data.
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Khomeini hospital” in Tehran, Iran. All procedures followed
were in accordance with the ethical standards of the responsible

committee on human experimentation (institutional and
national) and with the Helsinki Declaration of 1975, as revised
in 2008 (5). Informed consent was obtained from all patients

for being included in the study.
The patients had tumour sizes ranging from 0.5 to 4 cm and

tumour depths ranging from 1 to 3.5 cm. Infrared imaging was
performed on all patients before they performed biopsy.

Breast thermal images were acquired by using the thermal
camera (FLIR) with a spectral of 7–13 lm. For this, partici-
pants had to undergo 15 min of waist-up nude acclimation in

a sitting position. A thermal image is captured from the frontal
view of breasts and the corresponding temperature matrix is
saved.

Temperature and humidity of the imaging room, with
carpeted floor, must be controlled, free from heating sources.
Relative humidity should fall between 4% and 75% [4]. The

camera was fixed 90� to patients, and parallel to the ground
when mounted on a parallax free stand [3,4]. Fig. 5a shows
the original thermal image.

There are four feature boundaries which enclose breasts,

including left and right body boundaries and two lower bound-
aries of breasts [19]. In order to extract these boundaries, the
procedure explained in Saniei et al. [19] was applied. After
detecting target breast regions, corresponding temperature val-
ues from temperature matrix were chosen as favourite

temperatures.

Extraction of surface temperature distribution

To extract hot regions for detecting suspicious areas, different
types of image segmentation methods can be applied. These
methods are based on texture, colour, and intensity extracted

from the thermal image [20,21]. Thermal image is expressed
with pseudo-colour maps [22]. The graphical summary of tem-
peratures is connected with little loss of information [4].
Accordingly, the present study used a processed temperature

matrix for extracting hot regions.
In each breast’s temperature matrix, regions with degrees

between maximum temperature and one degree lower the level

were chosen as target areas. Since lower breast and armpit
areas are intrinsically warmer than other parts, it is essential
to eliminate them from suspicious areas. For this purpose,

the extracted regions with distance less than 3 pixels from
the breast boundaries were removed.

If the tumour shape is spherical, it will have a symmetrical
bell-shape distribution at any position at the surface [23] and

by choosing one line through the maximum temperature, this



Fig. 4d Comparison of output of trained DNN with finite element simulation.

Fig. 4e Simulation errors over the test data.
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distribution can be achieved. But practically speaking, there
are many lines (asymmetrical distribution in each direction)

in tumour areas because of tumours’ asymmetrical shape.
Therefore, just choosing one line for analysing is inappropri-
ate. Since in the present study a two-dimensional area was

analysed for extraction of STD, average distributions in differ-
ent directions could be calculated. Therefore, the correspond-
ing signal, which is a mean temperature distribution, reveals

an uncertainty in estimating tumour’s parameters. Considering
this, in the study, we used the approach proposed by Liu and
colleagues for a better approximation of the distribution [24].

At first, coordinate of the maximum temperature was cho-

sen as the centre to draw rectangles. Each rectangle has the
same gap and every rectangle is divided by 30 lines, which is
all through the rectangle centre. The number of rectangles is

proportional to the maximum diameter of the suspicious
region. Then every single line should be analysed to a value.
The procedure continues with averaging whole 30 values to

an average value. Finally, this value should be set as the rect-
angle’s value. In Fig. 5b–d the segmented hot region and its
corresponding STD for a patient with right breast cancer are
shown.

Finally for normalization of extracted STD as explained in
Section ‘Numerical simulations of a breast model’, the map-
minmax function with saved conditions of model data was
applied to map image data to interval [�1,+1].
Experimental results and discussion

After the normalization process, the trained dynamic neural

network was used to estimate DTD. Since DTD is the temper-
ature distribution at the tumour surface and its surrounding
tissue, in order to find tumour parameters the portion of tem-

perature distribution, which matches with Eq. (5) the most,
should be considered. Thus, by cutting data from the begin-
ning and end in some steps and fitting Eq. (5) to it, the best

function with minimum mse (mean square error) was chosen.
Then, the coefficients of desired function were extracted to esti-
mate the size and heat generation rate of tumours (Eq. (5)).
Finally, by selecting the baseline temperature of DTD as the

mean temperature layer and subtracting it from the mean tem-
perature of the surface by using the graph introduced in
Fig. 3c, the depth was estimated.

Table 1 shows actual and estimated tumour sizes and
depths for participants in the study. Also, the calculated meta-
bolic heat generation rate is presented. Fig. 6a shows a com-

parison of estimated and actual tumour diameters for all



Fig. 5 (a) The original image. (b) Segmentation of hot regions (the white regions). (c) Elimination of unwanted regions. (d) STD of the

suspicious region.
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cases. Comparison of estimated and actual tumour depths is
presented in Fig. 6b. To estimate the model’s accuracy, a cor-
relation coefficient (R2) was run. The correlation coefficient,
Table 1 Results from parameter estimation procedure to determ

distribution.

Patient Age Pathological Pathological

# Tumour size (cm) Tumour depth (cm)

1 42 1.1 2

2 29 3 1

3 33 2.4 2

4 38 1.2 2

5 55 0.8 1

6 25 2 2.5

7 42 0.75 1

8 40 2.5 1.5

9 37 3.5 2

10 46 1.3 1

11 44 0.6 1.5

12 35 0.7 1.8

13 40 0.5 1

14 44 4 1.5

15 50 1.5 1

16 22 1.3 1.8

17 32 0.5 1.5

18 33 2.7 3.5

19 30 0.8 1.5

20 47 1.8 3
which indicates how strong the linear relationship between
two variables is, was found to be 0.84 and 0.71, respectively,
for size and depth. Absolute errors in depth and size were
ine embedded tumour parameters using surface temperature

Estimated Estimated Heat generation rate (mW/cm3)

Tumour size Tumour depth

0.95 1.89 68.642

2.7 1.02 26

1.98 1.7 40.973

1.5 2.47 56. 233

0.7 0.8 74.085

2.42 2.11 35.481

0.89 0.85 51.322

1.59 1.103 22.121

3.1 1.7 19.997

1.06 1.52 51.082

0.76 1.701 60.83

0.6 2 58.93

0.65 0.9 117.29

3.45 1.64 7.92

1.1 0.8 40.522

1.06 1.4 44.71

0.41 1.7 120.8

2 2.8 19.08

0.66 1.2 68.45

1.2 2.1 40.2



Fig. 6a Comparison of actual tumour size with estimated tumour size.

Fig. 6b Comparison of actual tumour depth with estimated tumour depth.
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within 0.31 cm and 0.2 cm, respectively. Results showed that
the depth estimation error was larger than the size estimation

error. Also, deep seated tumours had higher error than other
cases.

This less accurate estimation of tumour depth may be due

to applying a simple breast model which did not account for
gravity induced geometry, non-uniform layer thickness, differ-
ent tumour shapes, and departure of individual thermal prop-

erties from the population average used in this study. For
increasing the accuracy of the suggested method, it is favour-
able to analyse shape progress of tumours with stack-based
layering theory [25] in future works.

Practical constraints of this method (accuracy and resolu-
tion of thermograms) could be also other error sources.
Because of restricted accuracy of thermal cameras or inade-

quate knowledge about the emission coefficient, accuracy of
temperature measurements is restricted. As reported in Ng’s
study [4], the temperature of objects in a thermal image depen-

dents on the angle of view because the emission coefficient of
an object will change when infrared measurements are taken
at various angles.

Findings of the study suggest that it is possible to determine

required parameters from a pool of surface temperature data.
In comparison with previous studies [8–10], the method pro-
posed in the study is more time effective. In general, findings
were in agreement with actual parameters.

Conclusions

Thermography is a non-invasive, nonionizing, and efficient

method for an early diagnosis of breast cancer. One basic ques-
tion here is how complex relationships between breast thermal
patterns and underlying heat source parameters can be quanti-

fied. Using a thermography-based skin surface temperature
profile, the present article introduced a simple methodology
for estimation of breast tumour parameters. Data obtained

from numerical simulations coupled with an approximate
model and a dynamic neural network were used to address
the inverse problem.

According to the analysis of the clinical cases with correla-

tive theories, this method is practicable with certain usable val-
ues. However, there have been several aspects which need to
deal with, for example, the gravity induced geometry deforma-

tion, non-uniform layer thickness and the departure of individ-
ual thermal properties from the population average will have
some impacts on the result of analyses. As a future work,

the accuracy and reliability of the system can be improved
by increasing the number of images.
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