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Abstract

Let H0 (respectively H∞) denote the class of commuting pairs of subnormal operators on Hilbert space
(respectively subnormal pairs), and for an integer k � 1 let Hk denote the class of k-hyponormal pairs in H0.
We study the hyponormality and subnormality of powers of pairs in Hk . We first show that if (T1, T2) ∈ H1,
the pair (T 2

1 , T2) may fail to be in H1. Conversely, we find a pair (T1, T2) ∈ H0 such that (T 2
1 , T2) ∈ H1 but

(T1, T2) /∈ H1. Next, we show that there exists a pair (T1, T2) ∈ H1 such that T m
1 T n

2 is subnormal (for all
m,n � 1), but (T1, T2) is not in H∞; this further stretches the gap between the classes H1 and H∞. Finally,
we prove that there exists a large class of 2-variable weighted shifts (T1, T2) (namely those pairs in H0
whose cores are of tensor form (cf. Definition 3.4)), for which the subnormality of (T 2

1 , T2) and (T1, T 2
2 )

does imply the subnormality of (T1, T2).
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1. Introduction

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient
conditions for a pair of subnormal operators on Hilbert space to admit commuting normal ex-
tensions. It is well known that the commutativity of the pair is necessary but not sufficient [1,3,
19–21], and it has recently been shown that the joint hyponormality of the pair is necessary but
not sufficient [10], thus disproving the conjecture in [13]. An abstract answer to the Lifting Prob-
lem was obtained in [14], by stating and proving a multivariable analogue of the Bram–Halmos
criterion for subnormality, and then showing concretely that no matter how k-hyponormal a pair
might be, it may still fail to be subnormal. While this provides new insights into the LPCS, it
stops short of identifying other types of conditions that, together with joint hyponormality, may
imply subnormality.

Our previous work [10–12,14,25,26] has revealed that the nontrivial aspects of the LPCS are
best detected within the class H1 of commuting hyponormal pairs of subnormal operators; we
thus focus our attention on this class. More generally, we will denote the class of commuting
pairs of subnormal operators on Hilbert space by H0, the class of subnormal pairs by H∞, and
for an integer k � 1 the class of k-hyponormal pairs in H0 by Hk . Clearly, H∞ ⊆ · · · ⊆ Hk ⊆
· · · ⊆ H2 ⊆ H1 ⊆ H0; the main results in [10] and [14] show that these inclusions are all proper.
(The LPCS thus asks for necessary and sufficient conditions for a pair T ∈ H0 to be in H∞.)

In [15], E. Franks proved that if T ≡ (T1, T2) ∈ H0 and p(T) is subnormal for all polynomials
p ∈ C[z] with degp � 5, then T is necessarily subnormal. Motivated in part by this result, and
in part by J. Stampfli’s work in [22] and [23], in this article we consider the role of the powers
of a pair in ascertaining its subnormality. Clearly, if T ≡ (T1, T2) ∈ H∞, and if m,n � 1, then
T(m,n) := (T m

1 , T n
2 ) ∈ H∞, and therefore T m

1 T n
2 is a subnormal operator. It is thus natural to ask

whether the subnormality of both T(2,1) and T(1,2) can force the subnormality of T.
Our first main result shows that the class H1 is not invariant under squares, as follows: we

construct a pair T ≡ (T1, T2) ∈ H1 such that T(2,1) = (T 2
1 , T2) /∈ H1 (Theorem 2.7). Conversely,

we find a pair T ∈ H0 such that T(2,1) = (T 2
1 , T2) ∈ H1 but T /∈ H1. We then show that for a large

class of commuting pairs of subnormal operators, the subnormality of both T(2,1) and T(1,2) does
force the subnormality of T. Concretely, if T ∈ T C, the class of all 2-variable weighted shifts
T ∈ H0 whose cores are of tensor form (see Definition 3.4), then T(1,2) ∈ H∞ ⇔ T(2,1) ∈ H∞ ⇔
T ∈ H∞ (Theorem 3.9). Our results thus seem to indicate that the subnormality of T(2,1),T(1,2)

may very well be essential in determining the subnormality of T within the class H0 (Conjec-
ture 3.11). Next, we prove that it is possible for a pair T ∈ H1 to have all powers T m

1 T n
2 (m,n � 1)

subnormal, without being subnormal (Example 4.5). This provides further evidence that the gap
between the classes H∞ and H1 is fairly large.

To prove our results, we resort to tools introduced in previous work (e.g., the Six-point Test
to check hyponormality (Lemma 2.1) and the Backward Extension Theorem for 2-variable
weighted shifts (Lemma 3.3)), together with a new direct sum decomposition for powers
of 2-variable weighted shifts which parallels the decomposition used in [9] to analyze k-
hyponormality for powers of (one-variable) weighted shifts. Specifically, we split the ambi-
ent space �2(Z2+) as an orthogonal direct sum H0 ⊕ H1, where Hm := ∨∞

k=0{e(j,2k+m): j =
0,1,2, . . .} (m = 0,1). Each of the subspaces H0 and H1 reduces T1 and T2, and T(1,2) is sub-
normal if and only if each of T(1,2)|H0 and T(1,2)|H1 is subnormal (cf. Fig. 4).

We devote the rest of this section to establishing our basic terminology and notation. Let H
be a complex Hilbert space and let B(H) denote the algebra of bounded linear operators on H.
We say that T ∈ B(H) is normal if T ∗T = T T ∗, subnormal if T = N |H, where N is normal and
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N(H)⊆ H, and hyponormal if T ∗T � T T ∗. For S,T ∈ B(H) let [S,T ] := ST − T S. We say
that an n-tuple T ≡ (T1, . . . , Tn) of operators on H is (jointly) hyponormal if the operator matrix

[T∗,T] :=

⎛
⎜⎜⎝

[T ∗
1 , T1] [T ∗

2 , T1] · · · [T ∗
n , T1]

[T ∗
1 , T2] [T ∗

2 , T2] · · · [T ∗
n , T2]

...
...

. . .
...

[T ∗
1 , Tn] [T ∗

2 , Tn] · · · [T ∗
n , Tn]

⎞
⎟⎟⎠

is positive on the direct sum of n copies of H (cf. [2,8,13]). The n-tuple T is said to be normal
if T is commuting and each Ti is normal, and T is subnormal if T is the restriction of a normal
n-tuple to a common invariant subspace. Finally, we say that a pair T ≡ (T1, T2) is 2-hyponormal
if T is commuting and (T1, T2, T

2
1 , T1T2, T

2
2 ) is hyponormal. Clearly,

normal ⇒ subnormal ⇒ 2-hyponormal ⇒ hyponormal.

The Bram–Halmos criterion for subnormality states that an operator T ∈ B(H) is subnormal if
and only if

∑
i,j

(
T ixj , T

j xi

)
� 0

for all finite collections x0, x1, . . . , xk ∈ H [4,5]. Using Choleski’s algorithm for operator ma-
trices, it is easy to verify that this condition is equivalent to the assertion that the k-tuple
(T ,T 2, . . . , T k) is hyponormal for all k � 1.

For α ≡ {αn}∞n=0 a bounded sequence of positive real numbers (called weights) let Wα :
�2(Z+) → �2(Z+) be the associated unilateral weighted shift, defined by Wαen := αnen+1 (all
n � 0), where {en}∞n=0 is the canonical orthonormal basis in �2(Z+). For notational convenience,
we will often write shift(α0, α1, . . .) to denote Wα . In particular, we shall let U+ := shift(1,1, . . .)

(U+ is the (unweighted) unilateral shift) and Sa := shift(a,1,1, . . .). For a weighted shift Wα ,
the moments of α are given by

γk ≡ γk(α) :=
{

1 if k = 0,

α2
0 · · ·α2

k−1 if k > 0.

It is easy to see that Wα is never normal, and that it is hyponormal if and only if α0 � α1 � · · · .
Similarly, consider double-indexed positive bounded sequences αk, βk ∈ �∞(Z2+), k ≡ (k1, k2) ∈
Z

2+ := Z+ ×Z+, and let �2(Z2+) be the Hilbert space of square-summable complex sequences in-
dexed by Z

2+. (Recall that �2(Z2+) is canonically isometrically isomorphic to �2(Z+) ⊗ �2(Z+).)
We define the 2-variable weighted shift T ≡ (T1, T2) by{

T1ek := αkek+ε1,

T2ek := βkek+ε2,

where ε1 := (1,0) and ε2 := (0,1). Clearly,

T1T2 = T2T1 ⇔ βk+ε1αk = αk+ε2βk
(
for all k ∈ Z

2+
)
. (1.1)

In an entirely similar way one can define multivariable weighted shifts.
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A 2-variable weighted shift T ≡ (T1, T2) is called horizontally flat if α(k1,k2) = α(1,1) for all
k1, k2 � 1; T is called vertically flat if β(k1,k2) = β(1,1) for all k1, k2 � 1. If T is horizontally and
vertically flat, then T is simply called flat.

For an arbitrary 2-variable weighted shift T, we shall let Rij (T) denote the restriction of T
to Mi ∩ Nj , where Mi (respectively Nj ) is the subspace of �2(Z2+) spanned by the canonical
orthonormal basis vectors associated to indices k = (k1, k2) with k1 � 0 and k2 � i (respectively
k1 � j and k2 � 0).

Trivially, a pair of unilateral weighted shifts Wα and Wβ gives rise to a 2-variable weighted
shift T ≡ (T1, T2), if we let α(k1,k2) := αk1 and β(k1,k2) := βk2 (all k1, k2 ∈ Z

2+). In this case, T is
subnormal (respectively hyponormal) if and only if so are T1 and T2; in fact, under the canonical
identification of �2(Z2+) and �2(Z+) ⊗ �2(Z+), T1 ∼= I ⊗ Wα and T2 ∼= Wβ ⊗ I , and T is also
doubly commuting. For this reason, we do not focus attention on shifts of this type, and use them
only when the above mentioned triviality is desirable or needed. Given k ∈ Z

2+, the moment of
(α,β) of order k is

γk ≡ γk(α,β) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if k = 0,

α2
(0,0) · · ·α2

(k1−1,0) if k1 � 1 and k2 = 0,

β2
(0,0) · · ·β2

(0,k2−1) if k1 = 0 and k2 � 1,

α2
(0,0) · · ·α2

(k1−1,0)β
2
(k1,0) · · ·β2

(k1,k2−1) if k1 � 1 and k2 � 1.

(We remark that, due to the commutativity condition (1.1), γk can be computed using any nonde-
creasing path from (0,0) to (k1, k2).) We now recall a well-known characterization of subnormal-
ity for multivariable weighted shifts [18], due to C. Berger (cf. [5, III.8.16]) and independently
established by Gellar and Wallen [16]) in the single variable case: T ≡ (T1, T2) admits a com-
muting normal extension if and only if there is a probability measure μ (which we call the Berger
measure of T) defined on the 2-dimensional rectangle R = [0, a1] × [0, a2] (where ai := ‖Ti‖2)
such that γk = ∫

R
sk1 tk2 dμ(s, t), for all k ∈ Z

2+. In the single variable case, if Wα is subnormal
with Berger measure ξα and h � 1, and if we let Lh := ∨{en: n � h} denote the invariant sub-
space obtained by removing the first h vectors in the canonical orthonormal basis of �2(Z+), then

the Berger measure of Wα|Lh
is sh

γh
dξα(s); alternatively, if S :�∞(Z+) → �∞(Z+) is defined by

S(α)(n) := α(n + 1)
(
α ∈ �∞(Z+), n � 0

)
, (1.2)

then

dξS(α)(s) = s

α2
0

dξ(s). (1.3)

2. The class H1 is not invariant under squares

For a general operator T on Hilbert space, it is well known that the hyponormality of T

does not imply the hyponormality of T 2 [17]. However, for a unilateral weighted shift Wα , the
hyponormality of Wα (detected by the condition αk � αk+1 for all k � 0) clearly implies the hy-
ponormality of every power Wm

α (m � 1). For 2-variable weighted shifts, one is thus tempted to
expect that a similar result would hold, especially if we restrict attention to the class H1 of com-
muting hyponormal pairs of subnormal operators. Somewhat surprisingly, it is actually possible
to build a 2-variable weighted shift T ∈ H1 such that T(2,1) /∈ H1, and we do this in this section.
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We begin with some basic results. First, we recall a hyponormality criterion for 2-variable
weighted shifts.

Lemma 2.1. (See Six-point Test [6].) Let T ≡ (T1, T2) be a 2-variable weighted shift, with weight
sequences α and β . Then T is hyponormal if and only if

HT(k) :=
(

α2
k+ε1

− α2
k αk+ε2βk+ε1 − αkβk

αk+ε2βk+ε1 − αkβk β2
k+ε2

− β2
k

)
� 0

(
for all k ≡ (k1, k2) ∈ Z

2+
)
.

Next, given integers i and � (� � 1, 0 � i � �−1), consider H ≡ �2(Z+) = ∨∞
j=0{ej }. Define

Hi := ∨∞
j=0{e�j+i}, so H = ⊕�−1

i=0 Hi . Following the notation in [9], for a weight sequence α let

Pi�(α) ≡ α(� : i) :=
{

�−1∏
m=0

α�j+i+m

}∞

j=0

; (2.1)

that is, α(� : i) denotes the sequence of products of weights in adjacent packets of size �, be-
ginning with αi · · ·αi+�−1. For example, α(2 : 0) : α0α1, α2α3, α4α5, . . . , α(2 : 1) : α1α2, α3α4,

α5α6, . . . and α(3 : 2) : α2α3α4, α5α6α7, α8α9α10, . . . . Observe that, using the notation intro-
duced in (1.2), Pi� = P0�S

i . For a subnormal weighted shift Wα , it was proved in [9] that WPi�(α)

is also subnormal (all � � 1, 0 � i � � − 1). In fact, more is true.

Lemma 2.2. (See [9].) For � � 1, and 0 � i � � − 1, WPi�(α) is unitarily equivalent to W�
α |Hi

.

Therefore, W�
α is unitarily equivalent to

⊕�−1
i=0 WPi�(α). Consequently, W�

α is k-hyponormal if and
only if WPi�(α) is k-hyponormal for each i such that 0 � i � �− 1. Moreover, if Wα is subnormal
with Berger measure ξα , then WPi�(α) is subnormal with Berger measure

dξPi�(α)(s) = dξP0�S
i (α(s) = si

γi(α)
dξP0�

(s) = si/�

γi(α)
dξα

(
s1/�

)
(0 � i � � − 1). (2.2)

Example 2.3. Let Wα ≡ shift(α0, α1, . . .) be a subnormal weighted shift, with Berger measure ξα .
Then shift(α2α3, α4α5, . . .) ≡ WP22(α) is also subnormal, with Berger measure s

α2
0α2

1
dξα(

√
s ).

To produce an example of T ≡ (T1, T2) ∈ H1 such that T(2,1) /∈ H1, we start with an example
given in [14]. For 0 < κ � 1, let α ≡ {αn}∞n=0 be defined by

αn :=
⎧⎨
⎩

κ

√
3
4 if n = 0,

√
(n+1)(n+3)

(n+2)
if n � 1.

(2.3)

We know that Wα is subnormal, with Berger measure

dξα(s) := (
1 − κ2)dδ0(s) + κ2

2
ds + κ2

2
dδ1(s) [14, Proposition 4.2],

where δp denotes the Dirac measure at p.
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Fig. 1. Weight diagram used in the Six-point Test and weight diagram of the 2-variable weighted shift in Lemma 2.4.

For 0 < a < 1, consider the 2-variable weighted shift given by Fig. 1, with α ≡ {αn}∞n=0 as
above.

Lemma 2.4. (See [14].) Let T ≡ (T1, T2) be the 2-variable weighted shift whose weight diagram

is given by Fig. 1, with 0 < a �
√

1
2 . Then

(i) T1 and T2 are subnormal;

(ii) T ∈ H1 if and only if 0 < κ � h1(a) :=
√

32−48a4

59−72a2 ;

(iii) T ∈ H2 if and only if 0 < κ � h2(a) :=
√

81−144a2

157−360a2+144a4 ;

(iv) T ∈ H∞ if and only if 0 < κ � h∞(a) := 1√
2−a2

.

Remark 2.5. Close inspection of the proof of Lemma 2.4 reveals that the hyponormality of the
2-variable weighted shift T whose weight diagram is given by Fig. 1 extends beyond the range

0 < a �
√

1
2 . As a matter of fact, the hyponormality of T is controlled by the nonnegativity of

the two expressions, f (a) := 84 − 95a2 and g(a, κ) := (72a2 − 59)κ2 + 32 − 48a4. Of course,

the nonnegativity of f requires a �
√

84
95 , while to analyze the second expression we need to

consider three cases:

(i) 72a2 − 59 < 0; (ii) 72a2 − 59 = 0; and (iii) 72a2 − 59 > 0.

In case (i),

g(a, κ) � 0 ⇔ a4 � 2
and κ2 � 32 − 48a4

2
;

3 59 − 72a
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in case (ii),

a2 = 59

72
and g(a, κ) = 32 − 48

(
59

72

)2

< 0;

and in case (iii),

g(a, κ) � 0 ⇔ a2 >
59

72
and κ2 � 32 − 48a4

59 − 72a2
.

Now, it is easy to verify that on the interval (

√
59
72 ,

√
84
95 ] the expression 32−48a4

59−72a2 is always greater
than 1, and since we must have κ � 1, case (iii) cannot really happen. If we now observe that

a �
√

84
95 is implied by the condition a4 � 2

3 , we conclude that T is hyponormal if and only if

a � 4
√

2
3 and κ �

√
32−48a4

59−72a2 = h1(a).

Theorem 2.6. Let T ≡ (T1, T2) be the 2-variable weighted shift whose weight diagram is given

by Fig. 1. Then T(2,1) ≡ (T 2
1 , T2) is hyponormal if and only if 0 < κ � h21(a) := 3

√
3−5a4

47−60a2 ,

with 0 < a � 4
√

3
5 .

Proof. For m = 0,1, let Hm := ∨∞
j=0{e(2j+m,k): k = 0,1,2, . . .}. Then �2(Z2+) ≡ H0 ⊕H1, and

each of H0 and H1 reduces T 2
1 and T2. We can thus write

(
T 2

1 , T2
) ∼= (

Wα(2:0) ⊕ (I ⊗ Sa), T2|H0

)⊕ (
Wα(2:1) ⊕ (I ⊗ U+), T2|H1

)
.

By [10, Theorem 5.2 and Remark 5.3], the second summand, (Wα(2:1) ⊕ (I ⊗ U+), T2|H1), is
subnormal. Thus, the hyponormality of (T 2

1 , T2) is equivalent to the hyponormality of the first
summand, (Wα(2:0) ⊕ (I ⊗ Sa), T2|H0). Now, to check the hyponormality of the first summand,
by Lemma 2.1 it suffices to apply the Six-point Test at k = (0,0). We have

H(Wα(2:0)⊕(I⊗Sa),T2|H0 )(0) ≡
(

α2
3α2

2 − α2
1α2

0
a2κ
α0α1

− κα0α1

a2κ
α0α1

− κα0α1 1 − κ2

)

=
( 9

10 − 2
3κ2

√
6( 1

2a2 − 1
3κ2)√

6( 1
2a2 − 1

3κ2) 1 − κ2

)
� 0

⇔ (
1 − κ2)( 9

10
− 2

3
κ2

)
� 6

(
a2

2
− κ2

3

)2

⇔ 9

10
− 47

30
κ2 − 3

2
a4 + 2a2κ2 � 0

⇔ h(a, κ) := (
60a2 − 47

)
κ2 + 27 − 45a4 � 0.

As in Remark 2.5, three cases arise:

(i) 60a2 − 47 < 0; (ii) 72a2 − 59 = 0; and (iii) 60a2 − 47 > 0.
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Fig. 2. Graphs of h1, h21, h2 and h∞ on the interval [0, 4
√

3
5 ].

In case (i),

h(a, κ) � 0 ⇔ a4 � 3

5
and κ2 � 9(3 − 5a4)

47 − 60a2
;

in case (ii),

a2 = 47

60
and h(a, κ) = 27 − 45

(
47

60

)2

< 0;

and in case (iii),

h(a, κ) � 0 ⇔ a2 >
47

60
and κ2 � 27 − 45a4

47 − 60a2
.

As before, it is easy to verify that on the interval (

√
47
60 ,1] the expression 27−45a4

47−60a2 is always
greater than 1, and since we must have κ � 1, case (iii) cannot really happen. We conclude that

T is hyponormal if and only if a � 4
√

3
5 and κ �

√
9(3−5a4)

47−60a2 ≡ h21(a), as desired. �
We are now ready to formulate our first main result. Consider the two functions h1 and h21

in Remark 2.5 and Theorem 2.6, respectively, restricted to the common portion of their domains,

namely the interval (0, 4
√

3
5 ]. A calculation shows that there exists a unique point aint ∈ (0, 4

√
3
5 ]

such that h1(aint) = h21(aint); in fact, aint ∼= 0.8386. Fig. 2 shows two regions in the (a, κ)-plane,
one where T is hyponormal but T(2,1) is not, and one where T(2,1) is hyponormal but T is not.
For added emphasis, we include the graphs of h2 and h∞ mentioned in Lemma 2.4, which are

only defined on the interval (0,

√
1
2 ]. We thus have:

Theorem 2.7. Let T be the 2-variable weighted shift whose weight diagram is given by Fig. 1.
Then
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(i) T ∈ H1 and T(2,1) /∈ H1 ⇔ aint < a � 4
√

3
5 and h21(a) < κ � h1(a) (see Fig. 2).

(ii) T /∈ H1 and T(2,1) ∈ H1 ⇔ 0 < a < aint and h1(a) < κ � h21(a) (see Fig. 2).

3. A large class for which (T 2
1 ,T2) ∈ H∞ ⇔ (T1,T 2

2 ) ∈ H∞ ⇔ (T1,T2) ∈ H∞

It is well known that for a single operator T , the subnormality of all powers T n (n � 2)

does not imply the hyponormality of T , even if T is a unilateral weighted shift [23]. In the
multivariable case, the analogous result is nontrivial if one further assumes that each component
is subnormal. To study this, we begin by recalling some useful notation and results. Given a
weighted shift Wα , a (one-step) backward extension of Wα is the weighted shift Wα(x), where
α(x) : x,α0, α1, α2, . . . .

Lemma 3.1. (Subnormal backward extension of a 1-variable weighted shift; cf. [7], [10, Propo-
sition 1.5].) Let Wα be a weighted shift whose restriction Wα|L to L := ∨{e1, e2, . . .} is sub-
normal, with Berger measure μL. Then Wα is subnormal (with Berger measure μ) if and only
if :

(i) 1
t
∈ L1(μL), and

(ii) α2
0 � (‖ 1

t
‖L1(μL))

−1.

In this case,

dμ(t) = α2
0

t
dμL(t) +

(
1 − α2

0

∥∥∥∥1

t

∥∥∥∥
L1(μL)

)
dδ0(t).

In particular, Wα is never subnormal when μL({0}) > 0.

Corollary 3.2. Let Wα be a subnormal weighted shift, let L2 := ∨{e2, e3, . . .} and let μL2

denote the Berger measure of Wα|L2 . Then α1 is completely determined by μL2 , namely
α2

1 = (‖1/t‖L1(μL2 ))
−1. More generally, for j � 3 let Lj := ∨{ej , ej+1, . . .}, and let μLj

denote

the Berger measure of Wα|Lj
; then αj−1 = (‖1/t‖L1(μLj

))
−1.

Proof. Without loss of generality, we prove only the first assertion. Since Wa|L is subnormal,
Lemma 3.1 implies that α2

1 � (‖1/t‖L1(μL2 ))
−1. If strict inequality occurred, then the mea-

sure μL would have an atom at 0, which would render the subnormality of Wα impossible. �
To state the 2-variable version of Lemma 3.1, we need to recall two notions from [10]:

(i) given a probability measure μ on X × Y ≡ R+ × R+, with 1
t

∈ L1(μ), the extremal
measure μext (which is also a probability measure) on X × Y is given by dμext(s, t) :=
(1 − δ0(t))

1
t‖1/t‖

L1(μ)
dμ(s, t); and

(ii) given a measure μ on X × Y , the marginal measure μX is given by μX := μ ◦ π−1
X , where

πX :X × Y → X is the canonical projection onto X. Thus, μX(E) = μ(E × Y), for every
E ⊆ X.
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Fig. 3. Weight diagram of the 2-variable weighted shift in Lemma 3.3 and weight diagram of a 2-variable weighted shift
with R11(T) ∼= (I ⊗ Wα,Wβ ⊗ I ), respectively.

Observe that if μ is a probability measure, then so is μX . For example,

d(ξ × η)ext(s, t) = (
1 − δ0(t)

) 1

t‖1/t‖L1(η)

dξ(s) dη(t) (3.1)

and (ξ × η)X = ξ .

Lemma 3.3. (Subnormal backward extension of a 2-variable weighted shift; cf. [10, Proposition
3.10].) Consider the following 2-variable weighted shift (see Fig. 3), and let M be the subspace
of �2(Z2+) spanned by the canonical orthonormal basis vectors associated to indices k = (k1, k2)

with k1 � 0 and k2 � 1. Assume that R10(T) ≡ T|M is subnormal with Berger measure μM and
that W0 := shift(α00, α10, . . .) is subnormal with Berger measure ν. Then T is subnormal if and
only if :

(i) 1
t
∈ L1(μM);

(ii) β2
00 � (‖1/t‖L1(μM))

−1;
(iii) β2

00‖1/t‖L1(μM)(μM)Xext � ν.

Moreover, if β2
00‖1/t‖L1(μM) = 1, then (μM)Xext = ν. In the case when T is subnormal, the

Berger measure μ of T is given by

dμ(s, t) = β2
00

∥∥∥∥1

t

∥∥∥∥
L1(μM)

d(μM)ext(s, t) +
(

dν(s) − β2
00

∥∥∥∥1

t

∥∥∥∥
L1(μM)

d(μM)Xext(s)

)
dδ0(t).

Definition 3.4.

(i) The core of a 2-variable weighted shift T is the restriction of T to M1 ∩ N1, in symbols,
c(T) := T|M1∩N1 ≡ R11(T).
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(ii) A 2-variable weighted shift T is said to be of tensor form if T ∼= (I ⊗Wα,Wβ ⊗ I ). When T
is subnormal, this is equivalent to requiring that the Berger measure be a Cartesian product
ξ × η.

(iii) The class of all 2-variable weighted shifts T ∈ H0 whose cores are of tensor form will be
denoted by T C, that is, T C := {T ∈ H0: c(T) is of tensor form}.

(iv) For each k ≡ (k1, k2) ∈ Z
2+, let Ak := {T ∈ H0: Rk1k2(T) ∈ T C}.

Observe that for k,m ∈ Z
2+ with k � m (i.e., m − k ∈ Z

2+), we have Ak ⊆ Am. Thus, the col-
lection {Ak} forms an ascending chain with respect to set inclusion and the partial order induced
by Z

2+. Moreover, T C = A0 ⊆ Ak for all k ∈ Z
2+. All 2-variable weighted shifts considered

in [10–12] and [14] are in T C. Thus, T C is a rather large class; as a matter of fact, much more is
true. The following theorem shows that an outer propagation phenomena occurs for T C.

Theorem 3.5. For all k ∈ Z
2+, Ak = T C.

Proof. Since we always have T C ⊆ Ak, we prove the reverse inclusion. Without loss of gen-
erality, it is enough to show that if T ∈ H0 and T|M2∩N2 is of tensor form, then c(T) is of
tensor form. If T|M2∩N2 is of tensor form, then shift(β22, β23, . . .) = shift(βk12, βk13, . . .) for
all k1 � 2. The subnormality of T2 then implies that shift(βk10, βk11, . . .) is subnormal for all

k1 � 2. By Corollary 3.2, we have βk11 =
√

(‖1/t‖L1(ξk1 ))
−1 (k1 � 2), where ξk1 is the Berger

measure of shift(βk12, βk13, . . .). Thus, shift(β21, β22, . . .) = shift(βk11, βk12, . . .) for all k1 � 2.
Now, since β21 = βk11 (all k1 � 2), the commutativity of T1 and T2 implies αk12 = αk11 for all
k1 � 2. Thus, shift(α21, α31, . . .) = shift(α2k2 , α3k2 , . . .) for all k2 � 1. By the subnormality of T1

and Lemma 3.1, we have shift(α11, α21, . . .) = shift(α1k2 , α2k2 , . . .) for all k2 � 1. Therefore c(T)

is of tensor form. �
We now consider the 2-variable weighted shift given by Fig. 3, where Wx := shift(x0, x1, . . .)

and Wy := shift(y0, y1, . . .) are subnormal with Berger measures μy and μx , respectively. Fur-
ther, we let Wα := shift(α1, α2, . . .) and Wβ := shift(β1, β2, . . .) be subnormal with Berger mea-
sures ξ and η, respectively, and we let r := ‖1/s‖L1(ξ) ∈ (0,∞] and dξ̃(s) := (dξ(s))/s. We
then have:

Theorem 3.6. Let T ≡ (T1, T2) ∈ T C. Then R10(T) ∈ H∞ if and only if x2rη � (μy)1. In this
case, the Berger measure of R10(T) is x2ξ̃ × η + δ0 × ((ηy)1 − x2rη), where (ηy)1 is the Berger
measure of the subnormal shift shift(y1, y2, . . .).

Proof. This is a straightforward application of Lemma 3.3, if we think of R10(T) as the back-
ward extension of c(T) (in the s direction). �
Proposition 3.7. Let T ≡ (T1, T2) ∈ T C. Then ‖ 1

t
‖L1((ηy)1)

= y2
1‖ 1

t
‖L1((ηy)2

2)
, where (ηy)1 (re-

spectively (ηy)
2
2) is the Berger measure of shift(y1, y2, . . .) (respectively shift(y2y3, y4y5, . . .)).

Moreover, ‖ 1‖L1(η) = β2‖ 1‖L1(η2), where η2 is the Berger measure of shift(β2β3, β4β5, . . .).
t 1 t 1 1
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Proof. Since shift(y0, y1, . . .) has Berger measure ηy , we have (dηy)1 = t

y2
0
dηy(t); moreover,

the Berger measure of shift(y2, y3, . . .) is

(dηy)2(t) = t2

y2
0y2

1

dηy(t).

Thus by Lemma 2.2, shift(y2y3, y4y5, . . .) has Berger measure

(dηy)
2
2 ≡ t

y2
0y2

1

dηy(
√

t ).

Observe that

∥∥∥∥1

t

∥∥∥∥
L1((ηy)1)

= 1

y2
0

=
A∫

0

1

y2
0

dηy(t) = 1

y2
0

A2∫
0

dηy(
√

t ) = 1

y2
0

A2∫
0

y2
0y2

1

t
d(ηy)

2
2 = y2

1

∥∥∥∥1

t

∥∥∥∥
L1((ηy)2

2)

,

where A := ‖shift(y0, y1, . . .)‖2. Thus, we get

∥∥∥∥1

t

∥∥∥∥
L1((ηy)1)

= y2
1

∥∥∥∥1

t

∥∥∥∥
L1((ηy)2

2)

,

as desired.
Next, we observe that dη1(t) ≡ t

β2
1
dη(t) is the Berger measure of shift(β2, β3, . . .) and

dη2
1(t) ≡

√
t

β2
1
dη(

√
t ) is the Berger measure of shift(β2β3, β4β5, . . .). Let B := ‖shift(β0, β1,

. . .)‖2; we then have

∥∥∥∥1

t

∥∥∥∥
L1(η)

=
B∫

0

1

t
dη(t) =

B2∫
0

1√
t
dη(

√
t ) = β2

1

B2∫
0

1

t

√
t

β2
1

dη(
√

t ) = β2
1

∥∥∥∥1

t

∥∥∥∥
L1(η2

1)

,

as desired. �
We next recall that (T1, T

2
2 ) can be regarded as the orthogonal direct sum of two 2-variable

weighted shifts. For m = 0,1, let

Hm :=
∞∨

k=0

{e(j,2k+m): j = 0,1,2, . . .}.

Then �2(Z2+) ≡ H0 ⊕H1 and each of H0 and H1 reduces T1 and T2. Thus, (T1, T
2
2 ) is subnormal

if and only if each of (T1, T
2
2 )|H0 and (T1, T

2
2 )|H1 is subnormal. The weight diagrams of these

2-variable weighted shifts are shown in Fig. 4.
We first focus on (T1, T

2)|H1 :
2
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Fig. 4. Weight diagrams of (T1, T 2
2 )|

H0 and (T1, T 2
2 )|

H1 in the proof of Proposition 3.8 and Theorem 3.9.

Proposition 3.8. Let T ≡ (T1, T2) ∈ T C. Then (T1, T
2
2 )|H1 is subnormal if and only if R10(T) is

subnormal.

Proof. First, recall that shift(y0, y1, y2, . . .) has Berger measure ηy , that d(ηy)1(t) = t

y2
0
dηy(t)

and that d(ηy)2(t) = t2

y2
0y2

1
dηy(t). Now, Theorem 3.6 states that

(T1, T2)|M1 is subnormal ⇔ x2rη � (ηy)1.

On the other hand, Theorem 3.6 (applied to (T1, T
2

2 )|H1 ) says that

(
T1, T

2
2

)∣∣
H1

is subnormal ⇔ x2rη2 � (ηy)
2
1,

and if (T1, T2)|H1 is subnormal, its Berger measure is x2ξ̃ × η2 + δ0 × ((ηy)
2
1 − x2rη2), where

(ηy)
2
1 is the Berger measure of shift(y1y2, y3y4, . . .) and η2 is the Berger measure of Wβ :=

shift(β1β2, β3β4, . . .). By observing that

x2rη2 � (ηy)
2
1 ⇔ x2r dη(

√
t ) � d(ηy)1(

√
t) ⇔ x2r dη(t) � d(ηy)1(t),

we obtain the desired result. �
Theorem 3.9. Let T ≡ (T1, T2) ∈ T C. Then(

T1, T
2

2

) ∈ H∞ ⇔ (
T 2

1 , T2
) ∈ H∞ ⇔ (T1, T2) ∈ H∞.

Corollary 3.10. Let T ≡ (T1, T2) ∈ T C. If (T1, T
2
2 ), (T 2

1 , T2) ∈ H∞, then (T1, T2) ∈ H∞.

In view of Corollary 3.10, the following conjecture for 2-variable weighted shifts seems nat-
ural.
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Conjecture 3.11. If (T1, T
2
2 ), (T 2

1 , T2) ∈ H∞, then (T1, T2) ∈ H∞.

Proof of Theorem 3.9. Clearly, it is enough to show that (T1, T
2
2 ) ∈ H∞ ⇒ (T1, T2) ∈ H∞.

Since (T1, T
2
2 ) ∈ H∞ ⇒ (T1, T

2
2 )|H0 ∈ H∞, our strategy consists of first characterizing the

subnormality of T and of (T1, T
2
2 )|H0 in terms of the given parameters (y0, ν, etc.), and

then establishing the desired implication at the parameter level. That is, we will show that
(T1, T

2
2 )|H0 ∈ H∞ ⇒ T ∈ H∞ using their parametric characterizations. Proposition 3.8 will

help us characterize the subnormality of T. Recall that (T1, T
2
2 )|H1 is subnormal if and only

if (T1, T2)|M1 is subnormal, and in that case the Berger measure of (T1, T2)|M1 is

μM = x2ξ̃ × η + δ0 × (
(ηy)1 − x2rη

)
.

We then have

∥∥∥∥1

t

∥∥∥∥
L1(μM)

=
∫

1

t
dμM(s, t) = x2r

∥∥∥∥1

t

∥∥∥∥
L1(η)

+
∫

1

t
d(ηy)1(t) − x2r

∥∥∥∥1

t

∥∥∥∥
L1(η)

=
∥∥∥∥1

t

∥∥∥∥
L1((ηy)1)

. (3.2)

Thus, we get

d(μM)ext(s, t) = d
{
x2ξ̃ × η + δ0 × (

(ηy)1 − x2rη
)}

ext(s, t)

= 1

t‖1/t‖L1(μM)

{
x2dξ̃(s) dη(t) + dδ0(s)

(
d(ηy)1(t) − x2r dη(t)

)}

= 1

‖1/t‖L1(μM)

{
x2dξ̃(s)

dη(t)

t
+ dδ0(s)

(
d(ηy)1(t)

t
− x2r

dη(t)

t

)}
.

From (3.2), it follows that

(μM)Xext =
(

x2‖1/t‖L1(η)

‖1/t‖L1((ηy)1)

)
ξ̃ +

(
1 − x2r‖1/t‖L1(η)

‖1/t‖L1((ηy)1)

)
δ0. (3.3)

If we let ϕ denote the right-hand side in (3.3), it follows that

(T1, T2) is subnormal ⇔ y2
0

∥∥∥∥1

t

∥∥∥∥
L1(μM)

(μM)Xext � ν (by Lemma 3.3)

⇔ y2
0

∥∥∥∥1

t

∥∥∥∥
L1((ηy)1)

ϕ � μx

(
using (3.2)

)
. (3.4)

We have thus characterized the subnormality of T.
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We now consider the 2-variable weighted shift (T1, T
2
2 )|H0 and the associated subspace

HM := ∨{ek ∈H0: k2 � 1}. Observe that (T1, T
2
2 )|H0 can be regarded as a backward extension

of (T1, T
2
2 )|HM, and that the latter is subnormal with Berger measure

θ := x2β2
1

y2
1

ξ̃ × η2
1 + δ0 ×

(
(ηy)

2
2 − x2rβ2

1

y2
1

η2
1

)
,

where η2
1 (respectively (ηy)

2
2) is the Berger measure of shift(β2β3, β4β5, . . .) (respectively

shift(y2y3, y4y5, . . .)). We then have∥∥∥∥1

t

∥∥∥∥
L1(μHM)

=
∥∥∥∥1

t

∥∥∥∥
L1((ηy)2

2)

, (3.5)

and

d(μHM)ext(s, t) = dθext(s, t) = 1

t‖1/t‖L1(μHM)

dθ(s, t).

From (3.5), we have

(μHM)Xext = 1

‖1/t‖L1((ηy)2
2)

{
x2β2

1

y2
1

∥∥∥∥1

t

∥∥∥∥
L1(η2

1)

ξ̃ +
(∥∥∥∥1

t

∥∥∥∥
L1((ηy)2

2)

− x2rβ2
1

y2
1

∥∥∥∥1

t

∥∥∥∥
L1(η2

1)

)
δ0

}
.

(3.6)

If we now let ψ denote the expression in braces in the right-hand side of (3.6), Lemma 3.3
combined with (3.5) imply that

(
T1, T

2
2

)∣∣
H0 is subnormal

⇔ y2
0y2

1

∥∥∥∥1

t

∥∥∥∥
L1(μHM)

(μHM)Xext � ν ⇔ y2
0y2

1ψ � μx

⇔ y2
0

{
x2β2

1

∥∥∥∥1

t

∥∥∥∥
L1(η2

1)

ξ̃ +
(

y2
1

∥∥∥∥1

t

∥∥∥∥
L1((ηy)2

2)

− x2rβ2
1

∥∥∥∥1

t

∥∥∥∥
L1(η2

1)

)
δ0

}
� μx. (3.7)

Observe that

y2
0

∥∥∥∥1

t

∥∥∥∥
L1((ηy)1)

ϕ � μx

⇔ y2
0y2

1

∥∥∥∥1

t

∥∥∥∥
L1((ηy)2

2)

ϕ � μx

⇔ y2
0

{
x2

∥∥∥∥1

t

∥∥∥∥
L1(η)

ξ̃ +
(

y2
1

∥∥∥∥1

t

∥∥∥∥
L1((ηy)2

2)

− x2r

∥∥∥∥1

t

∥∥∥∥
L1(η)

)
δ0

}
� μx

⇔ y2
0

{
x2β2

1

∥∥∥∥1

t

∥∥∥∥
1 2

ξ̃ +
(

y2
1

∥∥∥∥1

t

∥∥∥∥
1 2

− x2rβ2
1

∥∥∥∥1

t

∥∥∥∥
1 2

)
δ0

}
� μx. (3.8)
L (η1) L ((ηy)2) L (η1)
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Fig. 5. Weight diagrams of the 2-variable weighted shifts in Theorem 3.13 and Lemma 4.3, respectively.

By combining (3.7) and (3.8), we easily see that

(
T1, T

2
2

)∣∣
H0 is subnormal ⇔ y2

0

∥∥∥∥1

t

∥∥∥∥
L1((ηy)1)

ϕ � μx. (3.9)

We thus have a characterization of the subnormality of (T1, T
2

2 )|H0 . From (3.4) and (3.9) it now
follows that the subnormality of (T1, T

2
2 ) implies the subnormality of (T1, T2). �

It is straightforward from Definition 3.4 that a flat 2-variable weighted shift T ∈ H0 necessarily
belongs to T C. Thus, the following result is an easy consequence of Theorem 3.9.

Corollary 3.12. Let T ≡ (T1, T2) be a flat 2-variable weighted shifts, that is, a 2-variable
weighted shift T ∈ H0 given by Fig. 5. Then we have

(
T1, T

2
2

) ∈ H∞ if and only if
(
T 2

1 , T2
) ∈ H∞ if and only if

(
T1, T2

) ∈ H∞.

For a flat, contractive 2-variable weighted shift T ≡ (T1, T2), we can give a concrete condition
for the subnormality of T. To do this, let shift(α0, α1, . . .) and shift(β0, β1, . . .) have Berger
measures ξ and η, respectively. Also, recall that for 0 < α < β , shift(α,β,β, . . .) is subnormal
with Berger measure

(
1 − α2

β2

)
δ0 + α2

β2
δβ2 .

To avoid trivial cases, and to ensure that each of T1 and T2 is a contraction, we need to assume
that abn <

∏n
j=1 βj , and we shall see in Theorem 3.13 that we also need a2/b2 < ‖1/t‖L1(η1)

,
where η1 is the Berger measure of shift(β1, β2, β3, . . .). Finally, we know from [11, Theorem 3.3]
and [12, Section 5] that if T ≡ (T1, T2) is subnormal, then ξ and η are of the form
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ξ = pδ0 + qδ1 + [
1 − (p + q)

]
ρ,

η = uδ0 + vδb2 + [
1 − (u + v)

]
σ, (3.10)

where 0 < p,q,u, v < 1, p + q � 1, u + v � 1, and ρ,σ are probability measures with ρ({0} ∪
{1}) = 0, σ({0} ∪ {b2}) = 0. We then have:

Theorem 3.13. Let T ≡ (T1, T2) ∈ H0 be a contractive 2-variable weighted shift whose weight
diagram is given by Fig. 5, let v := η({b2}) and ξ ≡ pδ0 + qδ1 + [1 − (p + q)]ρ, with p,q > 0,
p + q � 1 (cf. (3.10)), and let η1 denote the Berger measure of shift(β1, β2, . . .). Then (T1, T2) ∈
H∞ if and only if

β0 � min

{
b

a

√
v,

√
p

‖1/t‖L1(η1)
− a2/b2

,
b

a

√
q,

√
1

‖1/t‖L1(η1)

}
.

Proof. We first observe that

μM = a2δ1 × δb2 + δ0 × (
η1 − a2δb2

)
. (3.11)

Using (3.10) and (3.11), a calculation shows that (T1, T2)|M1 ∈ H∞ if and only if β0 � b
a

√
v.

Observe that

(μM)Xext = 1

‖1/t‖L1(η1)

{(∥∥∥∥1

t

∥∥∥∥
L1(η1)

− a2

b2

)
δ0 + a2

b2
δ1

}
.

By [10, Theorem 5.2], (T1, T2)|N1 ∈ H∞. Therefore

(T1, T2) ∈ H∞

⇔ y2
0

∥∥∥∥1

t

∥∥∥∥
L1(μM)

(μM)Xext � ν (by Lemma 3.3) and β0 � b

a

√
v

⇔ β2
0

{(∥∥∥∥1

t

∥∥∥∥
L1(η1)

− a2

b2

)
δ0 + a2

b2
δ1

}
� ξ and β0 � b

a

√
v

⇔ β0 � min

{
b

a

√
v,

√
p

‖1/t‖L1(η1)
− a2/b2

,
b

a

√
q,

√
1

‖1/t‖L1(η1)

}
. � (3.12)

4. Subnormality for powers of hyponormal pairs

In this section we study the connection between the joint subnormality of pairs (T1, T2) ∈ H1
and the subnormality of the associated monomials T m

1 T n
2 (m,n � 1). Our results will further

exhibit the large gap between the classes H∞ (subnormal pairs) and H0 (commuting pairs of
subnormal operators). We begin with the following proposition, which is a direct consequence
of a well-known result of J. Stampfli’s [22,23]: if T is hyponormal and T n is normal for some
n � 1, then T is necessarily normal.
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Proposition 4.1. Let T ≡ (T1, T2) be hyponormal, and assume that (T m
1 , T n

2 ) is normal for some
m � 1 and n � 1. Then (T1, T2) is normal.

In view of Proposition 4.1, one might conjecture that if (T1, T2) is hyponormal and T m
1 T n

2 is
normal for some m � 1 and n � 1, then (T1, T2) is normal (cf. [23]). But this is not true even
if we assume that (T1, T2) is subnormal and T m

1 T n
2 is normal for all m � 1 and n � 1, as the

following example shows.

Example 4.2. Let T1 := U+ ⊕ 0∞ and T2 := 0∞ ⊕ U+, then (T1, T2) is subnormal and T m
1 T n

2 is
normal for all m � 1 and n � 1. However, (T1, T2) is not normal.

Whether Proposition 4.1 holds with “normal” replaced by “subnormal” is not at all obvious.
Our main result of this section states that it is indeed possible to have a pair (T1, T2) ∈ H1 with
T m

1 T n
2 subnormal for all m � 1 and n � 1, but such that (T1, T2) /∈ H∞. (Observe, however, that

the subnormality of the monomials T m
1 T n

2 is a condition weaker than the subnormality of the
pairs (T m

1 , T n
2 ).) To do so, consider a subnormal weighted shift shift(β1, β2, . . .) with Berger

measure η. For 0 < a < x < 1 and y > 0, let

α(k) :=
{

x if k1 = 0 and k2 = 0,

a if k1 = 0 and k2 � 1,

1 otherwise

and

β(k) :=
{

βk2 if k2 � 1,

y if k1 = 0 and k2 = 0,

ay/x if k1 � 1 and k2 = 0,

(k = (k1, k2) ∈ Z
2+). We now let T := (T1, T2) denote the pair of 2-variable weighted shift on

�2(Z2+) defined by α(k) and β(k). We then have:

Lemma 4.3. Let T ≡ (T1, T2) be the 2-variable weighted shift associated with α and β above
(see Fig. 5). Then

(i) T ≡ (T1, T2) ∈ H1 if and only if

y � min

{
β1x

√
1 − x2

√
x2 + a4 − 2a2x2

,

√
‖1/t‖−1

L1(η)

}
.

(ii) T ≡ (T1, T2) ∈ H∞ if and only if

y �
√

‖1/t‖−1
L1(η)

·
√

1 − x2

1 − a2
.
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Proof. First observe that if shift(y,β1, β2, . . .) is subnormal then T2 is subnormal. To guarantee

this, by Lemma 3.3 we must have y �
√

‖1/t‖−1
L1(η)

. For the hyponormality of (T1, T2), it suffices

to apply the Six-point Test to k = (0,0), since

R10(T) ≡ (T1, T2)|M1
∼=

(
I ⊗ U+, shift

(
ay

x
,β1, β2, . . .

)
⊗ I

)
∈ H∞

and

R01(T) ≡ (T1, T2)|N1
∼= (

I ⊗ Sa, shift(β1, β2, β3, . . .) ⊗ I
) ∈ H∞.

Thus,

(
1 − x2 a2y

x
− xy

a2y
x

− xy β2
1 − y2

)
� 0 (by Lemma 2.1)

⇔ y2
(

1 + a4

x2
− 2a2

)
� β2

1

(
1 − x2)

⇔ y � β1x
√

1 − x2
√

x2 + a4 − 2a2x2
.

Therefore, T ≡ (T1, T2) ∈ H1 if and only if

y � min

{
β1x

√
1 − x2

√
x2 + a4 − 2a2x2

,

√
‖1/t‖−1

L1(η)

}
.

We now study the subnormality of T. Since μM(s, t) = [(1 − a2)δ0(s) + a2δ1(s)] · η(t) is the
Berger measure of (I ⊗ Sa, shift(β1, β2, β3, . . .) ⊗ I ), Lemma 3.3 implies that

T is subnormal

⇔ y2‖1/t‖L1(μM)μM(s, t)Xext �
(
1 − x2)δ0(s) + x2δ1(s) and y �

√
‖1/t‖−1

L1(η)

⇔ y2‖1/t‖L1(η)

[(
1 − a2)δ0(s) + a2δ1(s)

]
�

(
1 − x2)δ0(s) + x2δ1(s)

and y �
√

‖1/t‖−1
L1(η)

⇔ y � min

{√
‖1/t‖−1

L1(η)
·
√

1 − x2

1 − a2
,

√
‖1/t‖−1

L1(η)
· x

a
,

√
‖1/t‖−1

L1(η)

}

⇔ y �
√

‖1/t‖−1
L1(η)

·
√

1 − x2

1 − a2

(
because x > a implies

√
1 − x2

1 − a2
<

x

a
and

√
1 − x2

1 − a2
< 1

)
. �
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We now detect the hyponormality and subnormality of the powers of (T1, T2) in Lemma 4.3.
Let

H(m,i) :=
∞∨

j=0

{
e(mj+i,k): m � 1, 0 � i � m − 1 and k = 0,1,2, . . .

}
.

Then �2(Z2+) ≡ ⊕m−1
i=0 H(m,i). Under this decomposition, we have

T m
1

∼= T1 ⊕ (I ⊗ U+) ⊕ · · · ⊕ (I ⊗ U+)

and

T2 ∼= T2 ⊕
(

shift

(
ay

x
,β1, β2, . . .

)
⊗ I

)
⊕ · · · ⊕

(
shift

(
ay

x
,β1, β2, . . .

)
⊗ I

)
.

Thus, for all m � 1 and n � 1,

(
T m

1 , T n
2

) ∼= (
T1, T

n
2

)⊕
m−1⊕
i=1

(C,D),

where C := I ⊗ U+ and D := (shift((ay)/x,β1, β2, . . .))
n ⊗ I . But, since (C,D) is subnormal,

the hyponormality (or subnormality) of (T m
1 , T n

2 ) is equivalent to the hyponormality (or subnor-
mality) of (T1, T

n
2 ). Therefore, (T1, T

n
2 ) is hyponormal (or subnormal) if and only if (T m

1 , T n
2 ) is

hyponormal (or subnormal) for all m � 1.

Theorem 4.4. For the 2-variable weighted shift T ≡ (T1, T2) in Lemma 4.3, the following are
equivalent.

(i) T m
1 T n

2 is subnormal for all m � 1 and n � 1;
(ii) T1T

n
2 is subnormal for all n � 1;

(iii) The shift(
ay·∏n−1

j=1 βj

x
,
∏2n−1

j=n βj ,
∏3n−1

j=2n βj , . . .) is subnormal for all n � 1;

(iv) y � x
a

· 1∏n−1
j=1 βj

√
‖1/t‖−1

L1(η(n))
for all n � 1, where dη(n)(t) := t1−1/n

β2
1 ···β2

n−1
dη(t1/n).

Proof. (i) ⇔ (ii). From the above observations, we can see that T m
1 T n

2 is subnormal for all m � 1
and n � 1 if and only if T1T

n
2 and CD are subnormal for all n � 1. But observe that CD is always

subnormal if shift(ay/x,β1, β2, . . .) is subnormal.
(ii) ⇔ (iii). Let M(i,j) := ∨{ei+k,j+k: k = 0,1,2, . . .} for i, j � 0 with ij = 0. Then

�2(Z2+) ≡ ⊕∞
i,j=0 M(i,j). Under this decomposition, we have

T1T
n
2

∼= · · · ⊕ W−1 ⊕ W0 ⊕ W1 ⊕ · · · ,

where
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W−1 := shift

(
a

2n−1∏
j=n

βj ,

3n−1∏
j=2n

βj ,

4n−1∏
j=3n

βj , . . .

)
:M(0,1) → M(0,1),

W0 := shift

(
ay ·

n−1∏
j=1

βj ,

2n−1∏
j=n

βj ,

3n−1∏
j=2n

βj , . . .

)
:M(0,0) →M(0,0), and

W1 := shift

(
ay

x
·
n−1∏
j=1

βj ,

2n−1∏
j=n

βj ,

3n−1∏
j=2n

βj , . . .

)
:M(1,0) → M(1,0).

Since W−1 is subnormal, the result follows from the fact that if W1 is subnormal then W0 is also
subnormal.

(iii) ⇔ (iv). Since shift(β1, β2, β3, . . .) has Berger measure η, we can use mathemati-

cal induction to show that shift(βn,βn+1, βn+2, . . .) has Berger measure tn−1

β2
1 ···β2

n−1
dη(t) for

each n � 1. Thus by Lemma 2.2, shift(
∏2n−1

j=n βj ,
∏3n−1

j=2n βj ,
∏4n−1

j=3n βj , . . .) has Berger mea-

sure dη(n)(t) ≡ t1−1/n

β2
1 ···β2

n−1
dη(t1/n) for each n � 1. Therefore, by Lemma 3.1 we see that

shift(
ay·∏n−1

j=1 βj

x
,
∏2n−1

j=n βj ,
∏3n−1

j=2n βj , . . .) is subnormal if and only if

y � x

a
· 1

�n−1
j=1βj

√
‖1/t‖−1

L1(η(n))
. �

For a concrete example, let

dη(t) := dt on [1/2,3/2],
so that

β1 = 1 and ‖1/t‖L1(η) = ln 3.

Since

γn−1 = β2
1β2

2 · · ·β2
n−1 =

3/2∫
1/2

tn−1 dη(t) = 1

n

(
3n − 1

2n

)
and γ2n−1 = 1

2n

(
32n − 1

22n

)
,

it follows that shift(βn,βn+1, . . .) has Berger measure n·2n·tn−1

3n−1 dt for each n � 1 on [ 1
2 , 3

2 ] and

shift(
∏2n−1

j=n βj ,
∏3n−1

j=2n βj , . . .) has Berger measure

dη(n)(t) = 2n

3n − 1
dt on

[
(1/2)n, (3/2)n

]
(for all n � 1).

Moreover,

√
‖1/t‖−1

L1(η(n))
=

√
3n − 1

n
.

n2 ln 3
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Thus, Lemma 4.3 implies that:

(i) T1 is subnormal if 0 < a < x < 1;

(ii) T2 is subnormal ⇔ y �
√

1
ln 3 ;

(iii) (T1, T2) ∈ H1 ⇔ y � m := min{ x
√

1−x2√
x2+a4−2a2x2

,

√
1

ln 3 };
(iv) (T1, T2) ∈ H∞ ⇔ y � s :=

√
1

ln 3
1−x2

1−a2 .

Therefore, we have the following result.

Example 4.5. For s < y � m and 0 < a < x < 1, we have

(i) T ≡ (T1, T2) ∈ H1;
(ii) T ≡ (T1, T2) /∈ H∞;

(iii) T m
1 T n

2 is subnormal for all m � 1, n � 1.

For, observe that if 0 < a < x < 1, then

s ≡
√

1

ln 3

1 − x2

1 − a2
<

x
√

1 − x2
√

x2 + a4 − 2a2x2
and s <

√
1

ln 3
;

thus, s < m, and it is then possible to choose values of y between these two quantities. From
Theorem 4.4, we can see that T m

1 T n
2 is subnormal for all m � 1, n � 1 if and only if

y � x

a
· 1∏n−1

j=1 βj

√
‖1/t‖−1

L1(μη)
= x

a

√
1

ln 3
.

But since

y �
√

1

ln 3
<

x

a

√
1

ln 3
,

it follows that T m
1 T n

2 is subnormal for all m � 1, n � 1.
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