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Abstract

A concise formulation for mixed-symmetry gauge fields on AdS space is proposed. It is explicitly local,
gauge invariant, and has manifest AdS symmetry. Various other known formulations (including the original
formulation of Metsaev and the unfolded formulation) can be derived through the appropriate reductions
and gauge fixing. As a byproduct, we also identify some new useful formulations of the theory that can be
interesting for further developments. The formulation is presented in the BRST terms and extensively uses
Howe duality. In particular, the BRST operator is a sum of the term associated to the spacetime isometry
algebra and the term associated to the Howe dual symplectic algebra.
© 2010 Published by Elsevier B.V.

1. Introduction

There have been numerous approaches to mixed-symmetry higher spin gauge fields on the
AdS space. In contrast to the totally symmetric case where a simple Lagrangian formulation is
available [1], describing mixed-symmetry AdS fields is not so straightforward. In particular, gen-
eral AdS gauge fields have been described much later [2] and only at the level of equations of
motion. Moreover, these equations are not truly gauge-invariant as the gauge parameters satisfy
differential constraints. The true gauge fields were then identified in [3,4] within the unfolded
approach [5,6]. The unfolded formulation of AdS gauge fields was recently proposed in [7,8].
However, beyond the totally symmetric field case [6] this formulation happens to be rather in-
volved technically because the constraints imposed on the fields bring the respective projectors to
the equations of motion. As far as particular cases of mixed-symmetry AdS fields are concerned
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there are other successful approaches available in the literature [9–21]. Light-cone formulation
for mixed-symmetry fields of any spins was elaborated in [22–24].

Although all these formulations are believed (and partially proved) to describe the same
physical degrees of freedom their explicit interrelations remain unclear. Moreover, further de-
velopments and especially a search for mixed-symmetry fields consistent interactions call for a
simple and algebraically transparent formulation that is free of the above difficulties. This paper
is devoted to constructing a candidate formulation that meets these criteria. This turns out to be
a natural generalization of the recent [25] (see also [26] for the case of Fronsdal fields) formula-
tion for Minkowski space mixed-symmetry fields. At the same time, it naturally generalizes the
formulation [27] of totally symmetric AdS fields to the mixed-symmetry case. In particular, the
equations of motion and gauge symmetries has one and the same structure for massless fields of
arbitrary symmetry type in both Minkowski and AdS spaces.

An important technical ingredient used throughout the paper is the twisted version of the
Howe dual [28] realisation of symplectic and orthogonal algebras (in the case of Fronsdal fields,
i.e. for sp(4) algebra, this realization was first used in [27]). Though equivalent to the usual
one in the space of polynomials it turns out inequivalent in the space of formal power series
because the equivalence transformation is not well-defined in this space. In the same way as usual
Howe duality is useful in describing finite-dimensional irreducible modules (e.g. irreducibility
conditions for one algebra are highest weight conditions for its Howe dual) the twisted realization
also describes infinite-dimensional indecomposable representations. This is crucial because both
type of modules are necessary to describe gauge fields. Namely, the generalized curvatures take
values in the indecomposable module (known as Weyl module) while the generalized gauge
potentials in the irreducible modules (known as gauge modules) of the AdS isometry algebra
[29]. The twisted Howe duality allows to embed both type of modules in one and the same
o(d − 1,2) − sp(2n) bimodule.

An attractive feature of the proposed construction is that the irreducibility constraints com-
mute with the equations of motion. Strictly speaking, they are BRST invariant with respect to the
BRST operator defining the equations of motion and gauge symmetries. This allows to simulta-
neously describe a collection of irreducible fields such that an individual field can be then singled
out by the appropriate constraints. This feature is important from the string theory perspective,
where the string spectrum contains a huge collection of mixed-symmetry fields. Although string
theory leads to massive mixed-symmetry fields and is not well-defined on AdS space, in the ap-
propriate limit it is expected to incorporate massless fields and to admit AdS background (see
e.g. [30,31]). Motivated by this relationship we also propose other equivalent reformulations of
the AdS mixed-symmetry fields including that defined in terms of the ambient space and based
on the BRST operator,1 analogous to the standard one associated to the bosonic string.

2. Preliminaries

2.1. Howe dual realizations

In this section we introduce main technical tools of our construction that make the whole
consideration manifestly o(d − 1,2) covariant.

1 It is also similar to the formulation of [15] for totally symmetric fields.
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The anti-de Sitter spacetime AdS can be described as a hyperboloid X embedded in the am-
bient flat pseudo-Euclidean space R

d+1. Labelling the coordinates in R
d+1 as XA, A = 0, . . . , d ,

the embedding equation is

ηABXAXB + 1 = 0, ηAB = (− + · · · + −). (2.1)

Infinitesimal isometries of the hyperboloid form a pseudo-orthogonal algebra o(d − 1,2).
Let AA

I , where A = 0, . . . , d and I = 0, . . . , n − 1 be commuting variables transforming as
vectors of o(d − 1,2). The realization of o(d − 1,2) on the space of functions in AA

I reads

J AB = AA
I

∂

∂ABI

− AB
I

∂

∂AAI

. (2.2)

The realization of sp(2n) reads

TIJ = AA
I AJA, TI

J = 1

2

{
AA

I ,
∂

∂AA
J

}
, T IJ = ∂

∂AA
I

∂

∂AJA

. (2.3)

These two algebras form a Howe dual pair o(d − 1,2)− sp(2n) [28]. The diagonal elements TI
I

form a basis in the Cartan subalgebra while T IJ and TI
J , I < J are the basis elements of the

appropriately chosen upper-triangular subalgebra. Let us note that gl(n) algebra is realized by
the generators TI

J as a subalgebra of sp(2n) while its sl(n) subalgebra is generated by TI
J with

I �= J .
In what follows we also need to pick up a distinguished direction in the space of oscillators

AA
I . Without loss of generality we take it along AA

0 so that from now on we consider variables AA
0

and AA
i , i = 1, . . . , n − 1 separately. In particular, we identify sp(2n − 2) ⊂ sp(2n) subalgebra

preserving the direction. We use the following notation for some of sp(2n − 2) generators

Ni
j ≡ Ti

j = AA
i

∂

∂AA
j

, i �= j, Ni = Ni
i ≡ Ti

i − d + 1

2
= AA

i

∂

∂AA
i

, (2.4)

which form gl(n − 1) subalgebra, and

Tij = AA
i AjA, T ij = ∂

∂AA
i

∂

∂AjA

, (2.5)

that complete above set of elements to sp(2n − 2) algebra.
In what follows we use two different realizations of sp(2n) generators involving AA

0 and/or
∂/∂AA

0 :

• realization on the space of polynomials in AA
i with coefficients in functions on R

d+1 with
the origin excluded. In this case

AA
0 = XA,

∂

∂AA
0

= ∂

∂XA
, (2.6)

where XA are Cartesian coordinates in R
d+1. We keep the previous notation (2.4), (2.5) for

generators that do not involve XA and/or ∂/∂XA while those that do are denoted by

S †
i = AA

i

∂

∂XA
, S̄ i = XA ∂

∂AA
i

,

S i = ∂

∂AA

∂

∂X
, �X = ∂

∂XA

∂

∂X
. (2.7)
i A A
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It is convenient to split the o(d − 1,2) generators J AB in two pieces as J AB = LAB + MAB,
where an orbital part LAB is given by

LAB = XA ∂

∂XB

− XB ∂

∂XA

. (2.8)

• realization on the space of polynomials in AA
i with coefficients in formal power series in

variables YA such that

AA
0 = Y ′A = YA + V A,

∂

∂AA
0

= ∂

∂YA
, (2.9)

where V A is some o(d − 1,2) vector normalized as V AVA = −1. Respective sp(2n) gener-
ators are realized by inhomogeneous differential operators on the space of functions in AA

i

and YA. We use for them the following notation

S
†
i = AA

i

∂

∂YA
, S̄i = (

YA + V A
) ∂

∂AA
i

,

Si = ∂

∂AA
i

∂

∂YA

, �Y = ∂

∂YA

∂

∂YA

. (2.10)

Note that this realization is the same as in [25] but with YA replaced by YA + V A. Shift-
ing by V A is crucial because this realization is inequivalent with the usual one (i.e., the
one with V A = 0). This happens because the change of variables YA → YA + V A is ill-
defined in the space of formal power series. In contrast to the usual realization where
highest (lowest) weight conditions of sp(2n − 2) determine finite-dimensional irreducible
o(d − 1,2)-modules, the inhomogeneous counterpart of these conditions can determine both
finite-dimensional irreducible or infinite-dimensional indecomposable o(d − 1,2)-modules.
In particular, it allows one to describe finite-dimensional gauge modules and infinite-
dimensional Weyl modules associated with gauge fields in AdS at the equal footing. Note
that the case n = 1,2 has been originally described in [27]. Analogous representation has
been also used in [32] to describe conformal fields.
The orbital part LAB of the generators J AB takes the form

LAB = (
YA + V A

) ∂

∂YB

− (
YB + V B

) ∂

∂YA

. (2.11)

This realization of the dual orthogonal and symplectic algebras will be refereed to as twisted
Howe dual realization.

2.2. Fields on the hyperboloid in terms of the ambient space

We start with the description of the unitary irreducible o(d − 1,2)-modules originally devel-
oped by Fronsdal [1] for totally symmetric fields and then extended to mixed-symmetry fields by
Metsaev [2]. However, we need the description in terms of a slightly different basis for the irre-
ducibility conditions and in terms of fields defined on R

d+1 rather than on the hyperboloid. We
show that irreducibility conditions imposed on fields on R

d+1 within the Metsaev formulation
can be seen as the highest weight conditions for an upper-triangular subalgebra of sp(2n). This
is natural as o(d − 1,2) and sp(2n) are dual in this representation in the sense of Howe duality.
To make this algebraic interpretation manifest we reformulate the Metsaev description using the
basis elements (2.4), (2.7) and restoring the radial dependence of the fields on the hyperboloid.
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For the moment, we restrict our consideration to unitary massless fields2 in AdS space in the
explicitly o(d − 1,2)-invariant way. It is useful to define them as tensor fields on the ambient
space R

d+1 with the origin excluded and the radial dependence eliminated through the appropri-
ate o(d − 1,2)-invariant constraint. More technically, tensor fields are represented by functions
on R

d+1/{0} taking values in the space of polynomials in variables AA
i , i = 1, . . . , n − 1,

A = 0, . . . , d introduced in Section 2. Such a filed can be viewed as a function φ = φ(X,A).
The radial coordinate dependence is effectively eliminated through the homogeneity condition

(NX − k)φ = 0, NX = XA ∂

∂XA
, (2.12)

where k is a number whose explicit value will be fixed later. This allows to uniquely represent
any field defined on hyperboloid in terms of the ambient space field satisfying (2.12). More
explicitly, taking a new coordinate system (r, xm) in R

d+1, such that r = √−X2 is a radius and
xm are dilation-invariant coordinates NXxm = 0, one finds φ = φ0(x,A)rk .

In order to describe irreducible representation let us impose the following irreducibility con-
ditions (in the sector of AA

i -variables):

T ijφ = 0, Ni
jφ = 0 i < j, (Ni − si)φ = 0. (2.13)

In addition, we also impose the transversality, divergencelessness, and the “mass-shell” condi-
tions (in the sector of XA-variables):

S̄ iφ = 0, S iφ = 0, �Xφ = 0. (2.14)

In contrast to purely algebraic conditions (2.13) the latter ones explicitly involve space–time
coordinates.

All together, constraints (2.12), (2.13), and (2.14) form the upper-triangular subalgebra of
sp(2n) algebra supplemented with Cartan elements. Because sp(2n) and o(d − 1,2) commute
these constraints single out an o(d −1,2)-module.3 By solving the homogeneity condition (2.12)
and transversality constraints S̄ iφ = 0 one finds the description in terms of o(d − 1,1)-tensor
fields defined on the hyperboloid as was originally observed in the case of totally symmetric
fields [1].

For fields subjected to the irreducibility conditions (2.12) and (2.14), one derives the following
wave equation [2](�AdS + m2)φ = 0, �AdS ≡ 1

2
LABLAB, (2.15)

where LAB is an orbital part of o(d − 1,2) generators (2.8). Evaluating 1
2LABLAB = �X −

NX(d − 1 + NX) on the hyperboloid (2.1) and substituting the mass-shell condition (2.14) one
finds an explicit value of the mass-like term

m2 = NX(d − 1 + NX). (2.16)

Comparing with the original formula m2 = E0(d − 1 + E0) derived in [2] we see that an eigen-
value of the o(d − 1,2) energy operator E0 and an eigenvalue of sp(2n) Cartan element NX

defined by (2.12) are linearly dependent.

2 The case of non-unitary massless fields as well as partially-massless fields in AdS space is discussed in Section 3.4.
3 Note that this module is not necessarily irreducible. In the space of polynomials in XA these conditions are known to

determine a finite-dimensional irreducible o(d − 1,2)-module. This is not the case for functions on R
d+1/{0} though.
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2.3. Gauge invariance

The theory determined by conditions (2.13) and (2.14) does not in general describe irreducible
fields. More precisely, depending on the value of NX and Ni the space of solutions may contain
singular vectors. In this case we obtain a gauge theory.

It is useful to describe the gauge symmetry using the BRST formalism. To this end, we in-
troduce Grassmann odd ghost variables bα , α = 1, . . . , p � n − 1. The BRST description comes
together with the ghost number grading gh(bα) = −1 and gh(XA) = gh(AA

i ) = 0. The gauge
invariance is encoded in the BRST operator

Ωp = S †
α

∂

∂bα

, (2.17)

acting in the space of functions Ψ = Ψ (X,A|b) in XA taking values in polynomials in AA
i and

ghost variables bα .
Field φ = φ(X,A) considered in the previous section should be identified as the physical field

which is the ghost-number-zero component of Ψ (X,A|b) while the ghost number −1 component
is identified with gauge parameters. The gauge transformation is defined as

δφ = Ωpχ, gh(χ) = −1, gh(φ) = 0, (2.18)

where χ = χα(X,A)bα is a gauge parameter.
In order to consistently impose conditions (2.12), (2.13), and (2.14) some of them are to be

extended by ghost contributions to make Ωp act in the subspace. More precisely, in the ghost
extended space one imposes unchanged constraints

S̄ iΨ = 0, S iΨ = 0, �XΨ = 0, T ijΨ = 0, (2.19)

and modified constraints

N̂i
jΨ = 0 i < j, (N̂i − si)Ψ = 0, Ĵα

βΨ = 0, (2.20)

where

N̂i
j = Ni

j + Bi
j , N̂i = Ni + Bi

i, Ĵα
β = N̂α

β − δβ
α (NX − B + p + 1). (2.21)

Here and in what follows we use the following useful notations:

Bi
j = δα

i δ
j
βbα

∂

∂bβ

, Bα = bα

∂

∂bα

, B =
∑
α

Bα. (2.22)

Note that for ghost independent elements constraints (2.20) impose additional restrictions com-
pared to their counterparts in (2.12) and (2.13). Additional constraints Ĵα

β appear as the con-
sistency condition following from the commutators of the BRST operator Ωp with constraints
S̄ α .

Requiring gauge invariance restricts possible values of weights si . Their admissible values are
specified by consistency of the second and the third conditions in (2.20) which, in turn, originate
from the consistency with the gauge transformation. Indeed, from the third condition it follows
that Nα

βΨ = 0 for α �= β . This implies (Nα − Nβ)Ψ = 0 and hence sα = sβ for all α, β . In
other words, Ψ has vanishing sl(p) weights so that fields are sl(p) singlets. At the same time,
they cannot be sl(p + k) singlets for k > 0, therefore sp > sp+k . For the later convenience, we
introduce a notation s1 ≡ s and order the weights as follows

s ≡ s1 = s2 = · · · = sp > sp+1 � sp+2 � · · · � sn−1. (2.23)
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Consistency with the gauge transformation also fixes the value of constant term in the con-
straint (NX − k)φ = 0 (2.12) because it is now encoded in the constraint Jα

α . More precisely,
for a physical field φ one gets

NXφ = (s − p − 1)φ. (2.24)

By virtue of formula (2.16) one explicitly calculates a value of the mass-like term

m2 = (s − p − 1)(s − p + d − 2), (2.25)

thereby recovering the result of [2] for unitary massless AdS fields having the uppermost block
of length s and height p.

From a more algebraic point of view, consistency with the gauge transformation (2.18) extends
conditions (2.12), (2.13), and (2.14) that form upper-triangular subalgebra of sp(2n) (including
Cartan elements) to an extended set of conditions (2.19) and (2.20) whose ghost independent
parts form the parabolic subalgebra of sp(2n). The consistency can be immediately seen from
the fact that together with S †

α these conditions also form a parabolic subalgebra.
To complete the description of unitary gauge fields in terms of the ambient space let us spell

out in components the gauge transformation of the physical fields (2.18). It takes the following
form

δφ = S †
1χ1 + · · · + S †

pχp, (2.26)

where gauge parameters χα = χα(X,A) are components of ghost-number −1 element χ =
χαbα satisfying constraints (2.19) and (2.20). The peculiar feature of the gauge transformation is
that gauge parameters χα do not satisfy Young symmetry conditions and are linearly dependent.
By virtue of constraints (2.20) one can show that gauge parameters χα at α < p are expressed
through parameter χp satisfying Young symmetry conditions Ni

jχp = 0, i < j and weight con-
ditions Nαχp = (s − δαp)χp . With the help of gauge parameter χp gauge variation (2.26) can
be equivalently rewritten in the form

δφ = Π S †
pχp ≡ (

S †
p − S †

p−1Np
p−1 − S †

p−2Np
p−2 − · · · − S †

1Np
1)χp, (2.27)

where Π involves appropriate Young symmetrizations needed to adjust symmetry properties of
both sides [2].

3. Generating BRST formulation

The formulation of the unitary gauge fields developed in the previous section is not completely
satisfactory. First of all, it is not a genuine local gauge field theory because gauge parameters are
subjected to the differential constraints (i.e., constraints involving derivatives with respect to
XA-coordinates). Furthermore, the way it is formulated is not explicitly local because fields are
defined in terms of the ambient space. A natural question is to find a realization of the theory in
terms of internal coordinates on the hyperboloid and gauge parameters not subjected to differ-
ential constraints. This can be done following the procedure used in [27] in the case of totally
symmetric fields.

The idea suggested from [27]4 is to put the ambient space to the fiber of the vector bundle over
AdS space and then eliminate additional degrees of freedom through auxiliary constraints. More

4 In its turn it originates in (the generalization [33,34,26] to constrained systems of) the Fedosov quantization procedure
[35] and Vasiliev unfolded formalism [36,37,39]. In the related context it was also used in [40,32].
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technically, one replaces coordinates XA with formal variables YA and then consider fields on
the AdS space with values in the fiber that is in the space of “functions” in YA and AA

i variables.
In this procedure all the algebraic constraints stay the same while those involving XA and ∂

∂XA

(in particular, those entering the BRST operator) are replaced with the respective constraints for
YA variables and hence also become algebraic. The extra degrees of freedom are then eliminated
by introducing additional constraints.

3.1. BRST operator and field equations

The well-known approach to describe AdS geometry structure on manifold X is to consider
vector bundle V0 over X with the fiber being (d − 1,2)-dimensional pseudo-Euclidean space.
The AdS geometry structure is then encoded in the compatible flat o(d −1,2)-connection ωAB(x)

and a given section V A(x) of V0 satisfying ηABV AV B = −1, where ηAB are coefficients of the
fiber-wise pseudo-Euclidean bilinear form. If in addition ∇V A seen as a map from the tangent
bundle to V0 is of maximal rank then indeed eA = ∇V A can be identified with the vielbein and
η(e, e) with the AdS metric. Here ∇ denotes the covariant derivative determined by connection ω.

The space of polynomials in AA
i with coefficients in formal power series in YA is equipped

with the action of sp(2n) and o(d − 1,2) defined by (2.4), (2.5), (2.10) and (2.11), respectively.
Taking this space as a fiber gives a vector bundle V associated to V0. In what follows, the fibre
is also assumed to contain ghost variables bα on which o(d − 1,2) and sp(2n) act trivially. The
o(d − 1,2)-connection ωAB determines the following covariant derivative (also denoted by ∇) in
the associated bundle V

∇ = d + 1

2
θmωAB

m JAB ≡ θm ∂

∂xm
− θmωA

mB

((
YB + V B

) ∂

∂YA
+ AB

i

∂

∂AA
i

)
, (3.1)

where ωAB
m and V A are components of ωAB(x) and V A(x) introduced using a suitable local frame

and xm are local coordinates on X. Here the frame is chosen such that V A = const ; the expres-
sion for ∇ gets additional terms if a local frame where V A �= const is used. We have replaced
basis differential forms dxm with extra Grassmann odd ghost variables θm, m = 0, . . . , d − 1
because ∇ will be interpreted later as a part of BRST operator.

Let us consider the following BRST operator

Ω̂ = ∇ + Qp, Qp = S†
α

∂

∂bα

, (3.2)

defined on the space of sections of the bundle above. We assign the following gradings to the
ghost variables gh(θm) = −gh(bα) = 1 so that BRST operator Ω̂ has a standard ghost-number
gh(Ω̂) = 1. The BRST operator is nilpotent because of the following obvious relations5

∇2 = Q2
p = 0, [Qp,∇] = 0. (3.3)

The former relation holds in virtue of the zero-curvature condition for connection ωAB. The latter
one is true because ∇ and Qp are build of generators of two commuting (Howe dual) algebras
o(d − 1,2) and sp(2n).

5 Here and in what follows the commutator denotes the graded commutator, [f,g] = fg − (−)|f ||g|gf , where |f | is
the Grassmann parity of f .
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That BRST operator is build out of the flat o(d − 1,2) connection and sp(2n) generators
implies the explicit o(d − 1,2)-invariance of the theory described by Ω̂ . To see how o(d − 1,2)-
algebra acts on fields let us note that o(d − 1,2) naturally acts on the fibre at any point x0 ∈ X.
This determines an action on fields by taking as parameter a covariantly constant section of
the associated bundle with the fibre being o(d − 1,2) considered as the adjoint module.6 In
terms of components, let ξ0

AB = −ξ0
BA represent an o(d − 1,2)-element. It can be extended to

a covariantly constant ξAB(x) satisfying ∇ξAB(x) = 0 and ξAB(x0) = ξ0
AB , where x0 ∈ X is a

given point of X. If φ = φ(x,Y,A,ghosts) represents a field then the o(d − 1,2)-action can be
defined as

R
(
ξ0)φ = 1

2
ξABJ ABφ, ∇ξAB(x) = 0, ξAB(x0) = ξ0

AB. (3.4)

Note that the above expression is not unique since it is defined modulo a gauge transformation
and terms proportional to the equations of motion. For instance, one can also represent the action
such that coordinates xm are affected (see [25] for a more extensive discussion).

Let us recall how the BRST operator and its representation space encode a gauge field theory.
Physical fields are identified as elements Ψ (0) at ghost number 0, gauge parameters as elements
χ(−1) at ghost number −1. The equations of motion and the gauge transformations read as

Ω̂Ψ (0) = 0, δΨ (0) = Ω̂χ(−1), (3.5)

where the gauge parameters have ghost number gh(χ(−1)) = −1. Elements at other ghost num-
bers correspond to higher structures of the gauge algebra. For instance, order k, k = 1, . . . , p − 1
reducibility parameters are described by ghost-number −k elements. The respective reducibility
identities read as δχ(−k) = Ω̂χ(−k−1).

Specializing to the case at hand: an element of vanishing ghost degree reads as

Ψ (0) = ψ0 + ψ1 + · · · + ψp, ψk = ψα1...αk
m1...mk

(x,Y,A)bα1 · · ·bαk
θm1 · · · θmk . (3.6)

The expansion coefficients ψ
α1...αk
m1...mk

are identified as differential k-forms (k � p) on X. The
equations of motion take the form

∇ψ0 + S†
α

∂

∂bα

ψ1 = 0,

∇ψ1 + S†
α

∂

∂bα

ψ2 = 0,

...

∇ψp = 0. (3.7)

First order gauge parameters can be represented as

ξ (−1) = ξ1 + ξ2 + · · · + ξp, ξk = ξ
α1...αk

i1...ik−1
(x,A,Y )bα1 . . . bαk

θ i1 . . . θ ik−1 . (3.8)

For instance, gauge parameter ξ1 = ξαbα is a 0-form. The gauge transformations have the form

δξψ0 = S†
α

∂

∂bα

ξ1,

6 See [25] for a discussion of a general symmetry algebra and the example of Poincaré algebra.
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δξψ1 = ∇ξ1 + S†
α

∂

∂bα

ξ2,

...

δξψp = ∇ξp. (3.9)

In the same way one can spell out the reducibility relations.
Let us stress that in this formulation the structure of the equations of motion and gauge sym-

metries is exactly the same as of the formulation [25] for the Minkowski space fields. The
difference is in o(d − 1,2)-module structure of the fiber replaced with the iso(d − 1,1) (i.e.
Poincaré) one. Respectively, o(d − 1,2) covariant derivative of the present formulation is re-
placed with Poincaré one. However, the explicit structure of the fibre is quite different for AdS
and Poincaré gauge fields. In particular, the algebraic constraints imposed to describe irreducible
fields belong to different algebras.

3.2. Algebraic constraints

The system just constructed does not describe an irreducible representation. Moreover, it is
an off-shell system in a sense that it does not impose true differential equations on fields. All
equations are equivalent to constraints and can be solved in terms of some unconstrained fields
(see [41,42,40] for more details on the off-shell form of HS dynamics). To make it dynamical
one should impose the fiber version of the constraints (2.19) and (2.20). These read as

T IJ Ψ = 0, S̄iΨ = 0, N̂i
jΨ ≡ (

Ni
j + Bi

j
)
Ψ = 0 i < j,

Ĵα
βΨ ≡ (

N̂α
β − δβ

α (NY ′ − B + p + 1)
)
Ψ = 0, (3.10)

where we introduced Euler operator NY ′ = (YA + V A) ∂
∂YA (cf. (4.5)). In addition, conditions

N̂iΨ ≡ (Ni + Bi)Ψ = siΨ (3.11)

single out a particular spin field. As before, all the constraints together with S†
α imposed through

the BRST operator form a parabolic subalgebra of sp(2n) represented on the fiber. This ensures
the consistency of the system. Note that among the constraints (3.10), (3.11) those involving ∂

∂YA

(except for Ĵα
β ) lead to differential equations of motion while the remaining ones give rise to

algebraic constraints.
Applying the same reasoning as in Section 2.3 one concludes that spins are arranged according

to (2.23). In particular, it follows that constraints Ĵα
β split in two parts

N̂α
βΨ = 0, hΨ ≡ (NY ′ − B + p + 1)Ψ = sΨ, (3.12)

for α �= β and α = β , respectively.

3.3. Equivalence to Metsaev formulation

Our next aim is to show that the theory determined by BRST operator (3.2) and the constraints
(3.10) and (3.11) indeed describes unitary gauge fields. To this end let us note that by eliminating
auxiliary fields and fixing the gauge, equations of motion (3.7) can be written as

∇ψ0 = 0, ∇ψ1 + · · · = 0, ∇ψ2 + · · · = 0, . . . , (3.13)
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where by slight abuse of notation we denote by ψk the field of the reduced theory. More precisely,
ψk is a k-form obtained by eliminating auxiliary components and fixing algebraic gauge symme-
tries from the respective fields in (3.6) while dots in the equations for ψk denote the extra terms
depending on ψl with l < k. This form of the equations of motion is known as unfolded form
[5,6]. It can be obtained [26,27] from BRST formulation (3.7) by reducing to Qp-cohomology.
Here we do need an explicit form of the unfolded equations. We only note that analysing the
gauge invariance of (3.13) one concludes that ψ0 is invariant while higher components are deter-
mined in terms of ψ0 modulo gauge transformations. It follows that physical degrees of freedom
are carried by ψ0 only.7

It is then enough to concentrate on equations for ψ0 that decouple from others. Field ψ0
can be shown to take values in Qp-cohomology at vanishing ghost degree. Because the cocycle
condition is trivial for ghost-number-zero elements the cohomology class can be identified with
the equivalence class of ψ0 from (3.7) modulo the equivalence relation ψ0 ∼ ψ0 +S†

αχα . Because
∇ is flat there exists local frame where connection coefficients ω vanish. In such frame equations
for ψ0 takes the form

∇ψ0 ≡ θm

(
∂

∂xm
− ∂V A(x)

∂xm

∂

∂YA

)
ψ0 = 0, (3.14)

where we have reintroduced the term proportional to dV A that was missing in (3.1) (because V A

was assumed constant there). Moreover, in this frame the compensator components V A satisfying
V 2 = −1 can be identified with the Cartesian coordinates on the ambient space R

d+1 expressed
through the intrinsic coordinates on X ⊂ R

d+1. Note also that in this frame the interpretation of
∇ as o(d − 1,2)-connection is not straightforward.

On the other hand, let φ = φ(X,A) be a field on the ambient space R
d+1 satisfying (2.12),

(2.13), (2.14) and subjected to gauge equivalence (2.26) with the gauge parameters χα satisfying
(2.19) and (2.20). Let us introduce formal variables YA and represent φ and χα by ψ(X,Y,A)

and λα(X,Y,A) satisfying(
∂

∂XA
− ∂

∂YA

)
ψ = 0, ψ |Y=0 = φ,

(
∂

∂XA
− ∂

∂YA

)
λα = 0, λα|Y=0 = χα.

(3.15)

This representation is obviously one-to-one.8 In view of (3.15) one observes that T ψ is equiva-
lent to Tφ, where T and T are two realization of an element of sp(2n). More precisely, T and T

are related by the change XA ↔ XA + V A and ∂
∂X

↔ ∂
∂YA (see Section 2.1). For instance, �Xφ

is equivalent to �Y ψ if (3.15) is imposed.
The condition ( ∂

∂XA − ∂
∂YA )ψ = 0 can be interpreted as a covariant constancy condition

∇0ψ = 0 with respect to an appropriate9 connection ∇0 so that it is similar to (3.14). Indeed,
ψ and ψ0 take values in the same space of polynomials in Ai with coefficients in formal series
in YA-variables. Although ψ and ψ0 are defined on different spaces (Rd+1 and X, respectively)
it turns out that ∇0ψ = 0 and ∇ψ0 = 0 have isomorphic spaces of (equivalence classes modulo
gauge invariance) solutions. To see this let us first introduce a trivial vector bundle V (Rd+1) with

7 This is a general feature of the unfolded form of equations of motion [29].
8 This is true both in the space of smooth functions and formal power series in YA-variables. As before we assume

formal series.
9 This can be seen as a standard iso(d − 1,2)-connection.
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the fiber being the space of polynomials in Ai with coefficients in formal series in YA-variables.
It is associated to the tangent bundle over the ambient space R

d+1.
In terms of general coordinates XA on R

d+1 the covariant derivative ∇0 takes the form [27] :

∇0 = ΘA

(
∂

∂XA
− ∂XA

∂XA

∂

∂YA

)
, (3.16)

where new ghost variables ΘA stand for the basis differentials dXA. Note that using a gen-
eral orthogonal local frame of the tangent bundle over R

d+1 would also bring the usual term
ΘAWA

AB(YA
∂

∂YB + AiA
∂

∂AB
i

) with the connection coefficients WA
AB. Furthermore, vector bun-

dle V (X) introduced in Section 3.1 can be identified as a pullback of the bundle V (Rd+1) to
X ⊂ R

d+1. Moreover, flat connection ∇ in V (X) can be seen as a pullback of ∇0 in V (Rd+1)

to V (X). More explicitly, reducing to the hyperboloid amounts to choosing a new coordinate
system (r, xm) in R

d+1, where r = √−X2 is a radial coordinate and xm are dilation invariant co-
ordinates. Then ∇ can be seen as restriction of ∇0 to the surface of fixed radius r = 1 and radial
ghost component θ(r) = 0, and is given by (3.1) if one identifies dilation-invariant coordinates
and the intrinsic coordinates on X.

Restriction to X clearly sends covariantly constant sections of V (Rd+1) to those of V (X).
Moreover, this map is an isomorphism. To see this, let us note that this would be a trivial
statement if the fiber were finite-dimensional. Indeed, a covariantly constant (with respect to
∇) section defined at r = 1 can be extended to a unique covariantly constant (with respect to
∇0) section defined in the vicinity of r = 1. In the case at hand, however, the fiber is infinite-
dimensional and solving for r-dependence could result in a nonconvergent series. This does note
happen because the r-dependence of φ is fixed by constraint XA ∂

∂XA φ = kφ (2.12) which in turn

originates from fiber constraint (YA + V A) ∂
∂YA ψ = kψ . This shows that restriction to X is an

isomorphism. In its turn, it determines an isomorphism between fields φ(X,A) satisfying (2.12),
(2.13), and (2.14) and the covariantly constant sections ψ0(x,A) of V (X) satisfying (3.14).

This isomorphism is compatible with the sp(2n) actions defined in Section 2.1. In particu-
lar, this guarantees that this map is compatible with the gauge transformation so that spaces of
respective equivalence classes are also isomorphic. In addition, it is also compatible with the
o(d − 1,2) action. This implies that the value of the energy evaluated in Section 2.2 remains
the same. Moreover, the computation of energy in Section 2.2 is only based on the relations of
o(d −1,2) and sp(2n) realized on the space of functions in XA,AA

i . Because the relations are the
same for realizations of the same algebras on the fiber one immediately finds the same value for
a fiber at a given point of X. As the equations of motion have the form of a covariant constancy
conditions one finds that this value is the same everywhere for a given field configuration.

3.4. Beyond the unitary case

We have by now constructed a compact gauge-invariant description of unitary gauge fields on
AdS. It turns out that it can be generalized to a more general class of fields. To demonstrate the
idea of such a generalization let us first show how the unitary fields can be seen as a subsector of
a wider theory.

Let us consider BRST operator that can be obtained from (3.2) by taking p = n − 1

Ω = ∇ + Q, Q = S
†
i

∂
, i = 1, . . . , n − 1, (3.17)
∂bi
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acting on the subspace of a space of functions Ψ = Ψ (x,Y,A|θ, b) singled out by constraints

T IJ Ψ = 0,
(
Ni

j + Bi
j
)
Ψ = 0, i < j, (Ni + Bi)Ψ = siΨ. (3.18)

Note that these form a subset of constraints (3.10) and (3.11). As we are going to see this theory
describes a reducible system so that one or another irreducible field (not necessarily unitary) can
be singled out by imposing further constraints.

For instance, suppose that in addition to (3.18) one impose the following constraints

∂

∂bi

Ψ = 0, i = p + 1, . . . , n − 1. (3.19)

One then observes that in this subspace Ω coincides with (3.2) while constraints (3.18) coincide
with their counterparts from (3.10) and (3.11). Imposing the remaining constraints from (3.10)
and (3.11) one indeed recovers the description of unitary gauge fields presented in Sections 3.1
and 3.2. This shows that unitary fields can indeed be singled out from a big theory (3.17) and
(3.18) through farther algebraic conditions.

To give an example of non-unitary fields let us take n = 2 (totally symmetric fields) so that
Q = S† ∂

∂b
and impose the following constraints(

S̄†)t
Ψ = 0, (NY ′ − B + t + 1)Ψ = sΨ, (3.20)

in addition to (3.18). One can check that Q indeed acts in the subspace.
To see which theory this defines let us evaluate Q-cohomology. In the minimal ghost number

the coboundary condition is trivial so that the cohomology is defined by the cocycle condi-
tion S†Ψ1 = 0. This, in particular, implies that Ψ1 is a polynomial in YA and it is legitimate
to re-express it in terms of change Y ′A = YA + V A. The full list of conditions determining the
cohomology at ghost degree −1 reads as

NΨ1 = (s − 1)Ψ1, NY ′Ψ1 = (s − t)Ψ1,

(S̄)tΨ1 = 0, S†Ψ1 = 0. (3.21)

Being written in terms of variables AA and Y ′A these give the description of cohomology classes
in terms of two-row o(d − 1,2) Young diagrams with the first row of length s − 1 and the
second row of length s − t . These cohomology classes determine gauge fields that are 1-form
connections with values in the respective o(d − 1,2) module originally considered in two-row
Young diagrams [6,43]. These are known to describe partially-massless dynamics of spin s and
depth t field [44–46,43].

The cohomology classes at vanishing ghost degree can be represented by elements satisfying

S̄Ψ0 = 0, S̄ = YA ∂

∂AA
. (3.22)

Comparing with constraints (3.20) gives the following generalized V A-transversality condition

V A1 · · ·V Am
∂

∂AA1
· · · ∂

∂AAt
Ψ0 = 0, (3.23)

and (
YA + V A

) ∂
Ψ0 = (s − t − 1)Ψ0. (3.24)
∂YA
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Along with S̄Ψ0 = 0 this gives the description of the respective Weyl module. Using the repre-
sentation [27] of the Weyl module for massless spin-s fields as a subspace of totally traceless
elements satisfying

YA ∂

∂AA
φ = 0, V A ∂

∂AA
φ = 0,

(
YA + V A

) ∂

∂YA
φ = (s − 2)φ, (3.25)

one finds that the partially-massless Weyl module (3.23) decomposes into a collection of Weyl
modules of massless Fronsdal fields of spins s − t + 1, . . . , s − 1, s.

In this way we have extended the construction of previous sections to partially-massless fields
originally described in [44–46,43]. In the similar manner, one can describe other irreducible AdS
fields. Indeed, by Howe duality basis elements of o(d − 1,2) commutes with Q and therefore
AdS algebra acts in the Q-cohomology. The Q-cohomology in non-zero negative ghost numbers
0 < p � n − 1 has been explicitly calculated in [25] and is represented by finite-dimensional
irreps of o(d − 1,2) algebra. These give rise to p-form fields with values in the respective
o(d − 1,2) irreps and coincide with those identified in [4]. According to [4] these fields cor-
respond to all possible massless (unitary and non-unitary) fields and partially-massless fields of
any symmetry types.

Let us finally comment on the relation of the theory determined by (3.17) and (3.18) to mass-
less fields on R

d+1. It turns out that this theory can be identified as a pull-back to X of a theory
defined on R

d+1. This can be constructed by considering fields on R
d+1 and replacing ∇ with

∇0 given by (3.16). The resulting theory describes massless mixed-symmetry fields10 propagat-
ing in R

d+1 spacetime [25,26]. Indeed, the BRST operator and the constraints simply coincide
with those from [25]. Under the reduction to X the massless fields on R

d+1 decomposes into
a collection of gauge fields propagating on X. As we have seen on examples one or another
irreducible subsystem can be then singled out by auxiliary constraints compatible with (3.17)
and (3.18). Let us note that this ideology is to some extent analogous to that of [7,8] where the
unfolded form of the equations of motion for mixed-symmetry massless fields on AdS has been
constructed starting from massless fields on the ambient space.

4. Parent form and other formulations

4.1. Parent form

Although the formulation constructed in Section 3.1 is rather compact and transparent other
formulations can also be useful. An efficient way to handle various forms of the theory is to start
with a sufficiently wide formulation such that other ones can be seen as one or another particular
reductions. Such a formulation is refereed to as a parent form of the theory and is known for the
case of totally symmetric [26] and mixed-symmetry [25] fields on Minkowski space as well as
for totally symmetric AdS fields [27].

A parent formulation for mixed-symmetry AdS fields can be constructed as follows: introduce
Grassmann odd ghost variables ci and c0 associated to the constraints �Y and Si . The total BRST
operator reads then as

Ωparent = ∇ + Ω̄, (4.1)

10 Strictly speaking one also needs to take R
d,1 rather then R

d−1,2 in order to have a usual interpretation in terms of
representations of Poincaré group.
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where ∇ is given by (3.1) and Ω̄ is given by

Ω̄ = Qp + “more” = S†
α

∂

∂bα

+ ciS
i + c0�Y − cα

∂

∂bα

∂

∂c0
. (4.2)

The representation space is that of formulation of Section 3.1 extended by polynomials in new
ghost variables ci, c0 and satisfying the following constraints

S̄
iΨ = 0, T ijΨ = 0, Ni

jΨ = 0, i < j, Jα
βΨ = 0, NiΨ = siΨ,

(4.3)

where

S̄
i = S̄i + 2C0

i , T ij = T ij + Gij , Ni
j = N̂i

j + Ci
j , (4.4)

and

Jα
β = Ĵα

β + δβ
α (2C0 − C). (4.5)

Here in addition to B and B
j
i introduced above we have also used the following useful notation

for operators involving new ghost variables

CI
J = cI

∂

∂cJ

, Gij = δi
α

∂

∂cj

∂

∂bα

+ δj
α

∂

∂ci

∂

∂bα

, (4.6)

along with the respective Euler operators

CI = cI

∂

∂cI

(no summation), C =
∑

i

Ci . (4.7)

To see that this formulation is equivalent to the one of Section 3.1 one introduces additional
degree such that deg co = deg ci = −1 and reduces the theory to the cohomology of the term
Ω

parent
−1 = c0�Y + ciS

i from (4.2) which carries lowest degree. In its turn, Ω
parent
−1 -cohomology

is concentrated in vanishing degree, and hence the reduced theory coincides with the one of
Section 3.1.11

The constraints (4.3) still contain those involving YA and ∂
∂YA . These are ghost modified S̄i

and h (recall that Jα
β can be split into Nα

β and h, cf. (3.12)). It can be useful to implement
these constraints through the BRST operator with their own ghost variables so that only purely
algebraic constraints

T ijΨ = 0, Ni
jΨ = 0, i < j, Nα

βΨ = 0, α �= β, (Ni − si)Ψ = 0

(4.8)

are directly imposed in the representation space. To show that such formulation is equivalent
to (4.1) one introduces a degree such that the term involving S̄i and h is of degree −1 and then
reduces to its cohomology. This gives back the theory (4.1).12

11 See [26,27] for more details on the equivalent reductions in cohomological terms.
12 This reduction is a straightforward generalization of that from [27] to which we refer for more details.
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4.2. Ambient space parent theory

The parent theory constructed in the previous section can be seen as a reduction to the hy-
perboloid X ⊂ R

d+1 of the related theory defined on the ambient space R
d+1/{0}. Indeed, the

arguments analogous to those of Section 3.3 show that the theory determined by

Ωparent amb. = ∇0 + Ω̄ (4.9)

defined on R
d+1 can be reduced to that determined by (4.1). Here, ∇0 is the covariant derivative

defined in (3.16). In addition, as this theory is defined on the entire R
d+1/{0} one also needs

to replace components of V A with Cartesian coordinates XA on R
d+1/{0} in the expression of

constraints.
Because all the constraints involving YA and ∂

∂YA can be assumed to be imposed through the

BRST operator one can consistently eliminate variables YA and ΘA. Indeed, using Cartesian
coordinates on R

d+1 and an appropriate degree one identifies ΘA ∂
∂YA as a lowest degree term

in the total BRST operator. Because YA and ΘA are unconstrained variables the cohomology
can be identified with YA,ΘA-independent elements (see [26], where the analogous reduction
was discussed in more details). Under this reduction all the remaining operators are changed
according to YA + XA → XA and ∂

∂YA → ∂
∂XA so that the reduced BRST operator reads as

Ωambient = c0�X + ci S i + S †
α

∂

∂bα

− cα

∂

∂bα

∂

∂c0
. (4.10)

Here we assumed that BRST invariant extensions of constraints S̄ i and hX are imposed directly.
All the algebraic constraints (4.8) stay the same.

Let us analyze the resulting ambient space theory in some more details. Fields Ψ =
Ψ (X,A|b, c) are convenient to represent in the form of the decomposition Ψ = Ψ1 + c0Ψ2.
For the ghost-number-zero component Ψ (0) fields Ψ

(0)
1 ≡ Φ and Ψ

(0)
2 ≡ C are the following

decompositions with respect to the ghost variables

Φ =
p∑

k=0

ci1 · · · cik bα1 · · ·bαk
Φi1...ik |α1...αk ,

C =
p−1∑
k=0

ci1 · · · cik bα1 · · ·bαk+1C
i1...ik |α1...αk+1 . (4.11)

The expansion coefficients in (4.11) are antisymmetric in each group of indices and the slash |
implies that no symmetry properties between two groups are assumed. In other words, the expan-
sion components take values in tensor products of gl(n−1) and gl(p) antisymmetric irreps. Note
that these component fields can be seen as an AdS version of the generalized triplets discussed
in [47–49,25].

Decomposing the BRST operator with respect to the homogeneity degree in c0 as Ωambient =
Ω1 + Ω0 + Ω−1 one can reduce the original theory to the cohomology of Ω−1 = cα

∂
∂bα

∂
∂c0

(see [26,25] for details). One then concludes that fields C are auxiliary while some components
of Φ are Stueckelberg. After the reduction one is left with the fields annihilated by operator
Z+ = cα

∂
∂bα

which is naturally interpreted as a generator of sl(2) realized on ghosts (see [25] for
an explicit discussion of this issue in the similar context). This reduction provides a relationship
between the AdS version of generalized triplet formulation and the ambient space metric-like
formulation. In particular, one can show that subjecting the dynamical fields of the reduced theory
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to the BRST extended trace conditions yields the generalized double-tracelessness conditions
introduced in [3].

5. Qp-cohomology and BMV conjecture

For the sake of completeness, we show here that the constructed generating formulation re-
produces infinite-dimensional Weyl module and finite-dimensional module of gauge fields of
the unfolded formulation for AdS mixed-symmetry massless fields [3,7,8]. More precisely, the
Qp-cohomology in the zeroth ghost degree is identified as Weyl module, while Qp-cohomology
in the minimal ghost number −p is identified as the gauge module. In all other ghost degrees
the cohomology is empty. Representation of the Weyl module as Qp-cohomology allows to de-
scribe it in terms of Lorentz irreducible fields that become Minkowski space gauge fields in the
flat limit. In particular, this gives a proof of the Brink–Metsaev–Vasiliev (BMV) conjecture, put
forward in [9], and partially proved in [7,8].

5.1. Elimination of (d + 1)-th direction

So far we used manifestly o(d − 1,2) covariant language. In this section it is convenient to
analyse the problem in terms of Lorentz (i.e. o(d −1,1)) tensor fields. To this end, we choose the
local frame where V A = δA

d . Set Ya = ya and Yd = z. Analogously, Aa
i = aa

i and Ad
i = wi . In

what follows, we always assume that all elements Ψ = Ψ (Y,A|b) are totally traceless, T IJ Ψ =
0. The following statement shows how constraints S̄i and h from (3.10), (3.12) eliminate the
dependence on (d + 1)-th variables z and wi .

Proposition 5.1. The space of all totally traceless elements Ψ = Ψ (Y,A|b) satisfying

S̄iΨ = 0, (h + m)Ψ = 0, (5.1)

is isomorphic to the space of all z,wi -independent totally traceless elements. Here m denotes
any integer. The isomorphism sends Ψ to the traceless component of Ψ |z=wi=0.

The dependence of elements on ghost variables bα is inessential here and is introduced for
future convenience.

Proof. The proof is a straightforward generalization of that from [27]. The idea is to introduce
auxiliary differential

δ = γiS̄
i + α(h + m) − αγi

∂

∂γi

, δ2 = 0,

where γi , α are auxiliary Grassmann odd ghost variables, gh(γi) = gh(α) = 1. For a ghost-
number-zero element Ψ , equation δΨ = 0 is equivalent to Eqs. (5.1). More formally, such
elements can be identified with δ-cohomology at vanishing ghost number.

The statement amounts to showing that any traceless z,wi -independent Ψ (y,a|b) can be
uniquely completed to a totally traceless element annihilated by δ. If one takes homogeneity
in z, wi as a degree such a completion can be constructed order by order using the homological
perturbation theory. More precisely, decomposing δ according to the degree

δ = δ−1 + δ0, δ−1 = α
∂ + γ i ∂

i
, (5.2)
∂z ∂w
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one observes that such a completion exists and is unique provided δ−1-cohomology is trivial
(any z,wi -independent elements). This is obviously the case in the space of all (not necessar-
ily traceless) elements. That this is also the case in the traceless subspace is a straightforward
generalization of the respective statement proved in [27]. �

Both the space of z,wi -independent traceless elements and its isomorphic space are sl(n −
1)-modules (in fact, also gl(n − 1)-modules), with sl(n − 1) algebra generated by operators
Ni

j = AA
i

∂

∂AA
j

, i �= j and ni
j = aa

i
∂

∂aa
j

, i �= j , respectively. The isomorphism above is also an

isomorphism of sl(n − 1)-modules. Indeed,

P
((

Ni
jΨ

)|z=w=0
) = ni

j
(

P (Ψ |z=w=0)
)
, (5.3)

where P denotes the standard projector to a totally traceless component. That the spaces above
are isomorphic as sl(n − 1)-modules implies, in particular, that if m = s then the subspace of
(5.1) satisfying in addition irreducibility conditions (3.10) is isomorphic to a subspace of trace-
less z,wi -independent elements satisfying the respective constraints in terms of ni

j . One may
formulate the above statement as follows: when reducing to Lorentz all constraints remain intact
while S̄i and h are relaxed. In particular, all the weights si remain the same.

Furthermore, the action of the BRST operator can be represented in terms of z,wi -
independent elements using the isomorphism of Proposition 5.1. It is easy to check that

P
(
(QpΨ )|z=w=0

) = qp P (Ψ |z=w=0), where qp = s†
α

∂

∂bα

≡ aa
α

∂

∂ya

∂

∂bα

. (5.4)

This implies that the field theory determined by Ω = ∇0 + Qp can be completely reformulated
in terms of z,wi -independent fields. In these terms the respective BRST operator reads as

Ω̃ = ∇̃ + qp, (5.5)

where ∇̃ represents the action of ∇ in terms of z,wi -independent fields. It acts in the space of
totally traceless functions φ = φ(x, y, a|b, θ) subjected to the following conditions

(ni + Bi)φ = siφ,
(
ni

j + Bi
j
)
φ = 0, i < j,

(
nα

β + Bα
β
)
φ = 0 (5.6)

where spins are arranged as in (2.23). Although this form of the theory is not very useful because
the explicit expression of ∇̃ and hence the form of the equations of motion is rather involved in
terms of o(d −1,1)-tensor fields we are going to use it for the analysis of the spectra of unfolded
fields. These can be found as Qp-cohomology classes.

In the flat limit ∇̃ becomes ∇̃|Λ=0 = θa( ∂
∂xa − ∂

∂ya ), where we made use of standard flat
coordinates xa and the associated local frame. Remarkably, in this limit the theory describes a
dynamics of a particular collection of Minkowski mixed-symmetry fields. Indeed, (5.5) coincides
with the BRST operator from [25] describing mixed-symmetry Minkowski fields provided one
replaces ∇̃ with a usual flat Poincaré covariant derivative. Moreover, for rectangular fields (p =
n − 1) conditions (5.6) explicitly coincides with their counterpart from [25] so that in this case
the flat limit is simply identical with the respective Minkowski field. More generally, if p < n−1
the flat limit of the theory (5.5) has less gauge invariance (only s

†
i with i � p determine gauge

symmetry) then its Minkowski space counterpart and hence carries more degrees of freedom.
The fact that in the flat limit an irreducible AdS gauge field decomposes into a collection of
Minkowski fields is known as BMV conjecture [9]. In Section 5.3 we give a general proof of
the conjecture for fields of any symmetry type. Note that for fields with at most four rows a
correctness of the BMV conjecture has been recently established in [8,7].
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5.2. AdS Weyl module

If one reduces the theory to Qp-cohomology, elements of vanishing ghost number give rise
to gauge invariant fields that are zero forms. In the literature the module where these fields take
values is known as Weyl module. In the present context we have the following:

Definition 5.2. An AdS Weyl module M̃0 of spins s1, . . . , sn−1 is a ghost number zero Qp-
cohomology evaluated in the subspace of elements φ(Y,A|b) satisfying (3.10) and (3.11).

At ghost number zero the cocycle condition is trivial, while the coboundary condition says
that any element of the form S†

αχα is trivial. As was explained above the Qp-cohomology can be
computed as cohomology of qp = s†

α
∂

∂bα
in the subspace of z,wi -independent traceless elements

satisfying (5.6).
Before the actual analysis of the qp-cohomology let us first introduce some useful notation

and definitions. As only generators of sl(n) algebra are involved in the constraints and the BRST
operator, it is enough to compute cohomology in the subspace K(k) of traceless homogeneity-k
polynomials in aa

i , ya tensored with ghost variables, i.e. the respective eigenspace of the Euler
operator n = ny +∑

i ni , ny = ya ∂
∂ya . Indeed, all sl(n) generators do not change the homogeneity

degree.
In its turn, K(k) decomposes into a collection of finite-dimensional irreducible sl(n)-modules.

Obviously, the following sets

n− = {
ni

j i < j
}

and n+ = {
ni

j i > j
}
, (5.7)

generate sl(n−1) ⊂ gl(n) subalgebra and can be identified as the upper-triangular and the lower-
triangular subalgebras of sl(n − 1).

In order to realize the AdS Weyl module in terms of representatives of the equivalence classes
it is useful to restrict the analysis to a finite-dimensional irreducible sl(n)-module V ⊂ K(k). In
particular, module V is completely specified by the eigenvalues my(ψ0), mi(ψ0) of its highest
weight (HW) vector ψ0 with respect to the Euler operators ny,ni .

Conditions ni
jφ = 0 for i < j imposed on φ are in fact the HW conditions with respect to

sl(n − 1) subalgebra. The space of n−-invariant elements can be then seen as a subspace V0 ⊂ V

of sl(n − 1) HW vectors. Decomposing V into the irreducible sl(n − 1)-submodules as

V =
⊕

i

Vi, (5.8)

and using the natural projection to the sl(n − 1) HW subspace of any irreducible sl(n)-module,
one defines the projector Π : V → V such that Π2 = Π and ImΠ is the n−-invariant subspace.

We have the following two lemmas. Integers mi(φ) below are eigenvalues of the Euler oper-
ators ni acting on φ.

Lemma 5.3. Let φ be an sl(n − 1) HW vector from Vi ⊂ V then φ can be represented as

φ = Πs
†
i1

· · · s†
il
Λi1...ilψ0, (5.9)

where ψ0 is a HW vector of irreducible sl(n)-module V and Λi1...il are some coefficients.

Lemma 5.4. Let φ be an sl(n− 1) HW vector from Vi ⊂ V then the conditions mα(φ) = mα(ψ0)

and φ �= s†
αχα are equivalent.
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Both lemmas follow from basic properties of finite-dimensional irreducible sl(k)-modules
(see Appendix A). Lemma 5.4 gives a description of Qp-cohomology at zeroth ghost numbers
in terms of HW vectors of irreducible sl(n)-modules.

5.3. AdS Weyl module in terms of Poincaré ones: BMV conjecture

Let us recall that a Poincaré Weyl module of spin l1 � l2 � · · · � ln−1 [50] can be defined as
a subspace of sl(n) HW vectors in K satisfying the respective weight conditions (see [25] for
more details). It turns out that the AdS Weyl M̃0 can be decomposed into the direct sum of some
Poincaré Weyl modules.

More precisely, given AdS Weyl module of spin (2.23) a Poincaré Weyl module is called
admissible associated module if li = si −νi , where nonnegative integers νi = 0, i � p and νi �= 0,
i > p, are chosen in a way compatible with the Young symmetry. We have:

Proposition 5.5. AdS Weyl module M̃0 of a given spin is isomorphic to a direct sum of the
admissible associated Poincaré Weyl modules.

Proof. We prove the statement by constructing the isomorphism explicitly. Let us first restrict
to K(k). As usual, we decompose K(k) into the direct sum of irreducible sl(n)-modules. Let V

be a given irreducible component. Its highest weight vector ψ0 by definition belongs to some
Poincaré Weyl module. Two things can happen: either ψ0 is admissible or not. If not then in V

there are no elements from M̃0. If ψ0 is admissible then there are nonnegative integers νi such
that si = li + νi and νi = 0 for i � p. It then follows from Lemma 5.4 that

φ = IV (ψ0) = Π
[(

s
†
p+1

)νp+1 · · · (s†
n−1

)νn−1ψ0
]

(5.10)

belongs to M0. Note that φ is the only element in V that belongs to M̃0. Defining the map IV

for each irreducible V (if V is not admissible IV is trivial) one determines I for any element of
the Poincaré module. By construction, IV is an isomorphism. �
5.4. AdS gauge module

To complete the description of the spectrum of unfolded fields let us identify the cohomology
at negative ghost degrees. The respective fields take values in the so-called gauge module. At
ghost degree −p the fields are identified as differential p-forms taking values in the respective
o(d − 1,2) modules [3]. Namely, the coboundary condition is trivial while the cocycle implies
that S†

αφ = 0, where φ = φm1...mpθm1 · · · θmp takes values in a subspace singled out by constraints
(3.10), (3.11). In particular, the field φ fulfills the following conditions: S̄iφ = 0 for all i and
(Nα − s + 1)φ = 0 and (Ni − si)φ = 0 for i > p. In view of these conditions representatives can
be chosen polynomials in YA. In terms of YA ′ = YA + V A all the conditions give an explicit
characterization of gauge modules in terms of o(d − 1,2) Young tableaux having the uppermost
block of length s − 1 and height p + 1 [3]. It turns out that Qp-cohomology at ghost numbers
other than 0, −p vanish. To see this we again use the representation in terms of z,wi -independent
elements.

First of all we note that constraints N̂α
βψ = 0 (3.12) for α �= β imply that element

ψ = ψα1...αk bα . . . bα with fixed weights contains just one independent component φ(k) ≡
1 k
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ψp−k+1...p−1p satisfying sl(n − 1) HW conditions Ni
jφ(k) = 0, i < j . The Young tableau as-

sociated to φ(k) includes the uppermost block of size [s,p − k], the neighboring block of size
[s − 1, k], while the rest of the diagram has rows of lengths si .

Operator qp obviously acts in the space of sl(n − 1) HW elements of definite weights. More

precisely, qp : φ(k+1) → φ(k) = Πs
†
p−kφ(k+1), where Π is a projector on sl(n − 1) HW elements

(see Section 5.2).
For the qp-cohomology at ghost number −k we have the following cocycle and the cobound-

ary conditions:

Πs
†
p−k+1φ(k) = 0, φ(k) ∼ φ(k) + Πs

†
p−kχ(k+1), (5.11)

where χ(k+1) are some sl(n−1) HW elements of definite weights. Note that for k = 0 the cocycle
condition is trivial as was already discussed in Section 5.2. For k = p the coboundary condition
is missing so we are left with the cocycle condition only. For intermediate values of the ghost
number 0 < k < p we have the following lemmas describing solutions to (5.11).

Lemma 5.6. Let φ(k) be an sl(n−1) HW vector from Vi ⊂ V then conditions mα(φ(k)) = mα(ψ0)

at 1 � α � p − k, and φ(k) �= Πs
†
p−kχ(k+1) are equivalent.

Lemma 5.7. Let φ(k) be an sl(n − 1) HW vector from Vi ⊂ V then Πs
†
p−k+1φ(k) = 0 iff

mα(φ(k)) > mα(ψ0) for some α such that 1 � α � p − k.

Here ψ0 denote respective sl(n) HW vectors from Lemma 5.3. Both lemmas result from
comparing admissible weights of sl(n − 1) HW elements φ(k) and their associated sl(n) HW
elements ψ0 (see Appendix A). Since there are no sl(n − 1) HW elements that simultaneously
satisfy both the cocycle and the coboundary conditions, one concludes that the cohomology is
empty for k �= 0,p.

6. Conclusions

In this paper, we have proposed the unified formulation for unitary dynamics of free bosonic
HS fields of any symmetry type in the AdS space. We have also observed and discussed how
to generalize the theory to include non-unitary fields. In particular, we have explicitly described
such a generalization for totally symmetric partially-massless fields. The theory is formulated
on the level of equations of motion using the usual BRST first quantized language. This makes
the formulation somewhat analogous to the usual string-inspired BRST approach to higher spin
fields. In particular, this can make the proposed formulation useful in describing relation to (a
tensionless limit of) the bosonic string theory on the AdS background.

Another motivation and possible application of these results have to do with studying consis-
tent interactions for mixed-symmetry AdS fields. While in the case of totally symmetric fields
consistent interactions are known to cubic order in the Lagrangian formulation [51,6,52–57] and
to all orders at the level of equations of motion [38,39], interactions of mixed-symmetry AdS
gauge fields are not known so far. We hope that the transparent algebraic structure and a due
control of the gauge invariance through the BRST technique make the present formulation useful
in searching for nonlinear theory. Moreover, a possible nonlinear deformation is necessarily re-
lated to the appropriate algebraic structure – higher spin algebra. In the case of totally symmetric
fields the respective algebra [39,58] can be identified with higher symmetries [59] of the scalar
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singleton, the corresponding algebra in the mixed-symmetry case is expected to be related to sin-
gletons of nonvanishing spins. The respective candidate higher spin algebras have been recently
identified in [32] using a framework closely related to the present one (see also a discussion of
singleton composites in [8]).
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Appendix A. Proofs of lemmas of Section 5

Proof of Lemma 5.3. Any element from V ⊂ K(k) can be represented as a linear combination
of elements obtained by acting on ψ0 with n+ and s

†
i . Representing φ in this way, moving n+

to the left by using the algebra commutation relations, and applying Π one finds that φ = Πφ =
Πs

†
i1

. . . s
†
il
Λi1...ilψ0 because all the terms involving n+ cannot contribute. Indeed, Πn+χ = 0

for any χ because n+ cannot map to HW subspace. �
Proof of Lemma 5.4. Let us first show that mα(φ) �= mα(ψ0) iff φ is trivial in the sense that
φ = s†

αχα for some χα . To this end introduce the following notation: n−1 denotes an element
from the subalgebra n+ of the form Nα

p+i , where p + i denote indices running p + 1, . . . , n − 1,

n0 either N
β
α or N

p+j
p+i from the subalgebra n+; s0 denotes s

†
p+i and s1 denotes s†

α . Note that
commutation relations have the structure

[n−1,n−1] = 0, [n−1,n0] = n−1, [n0,n0] = n0,

[n0, s0] = s0, [n0, s1] = s1, [n−1, s1] = s0, [n−1, s0] = 0. (A.1)

According to Lemma 5.3 a given HW vector can be represented as φ = Π(s1)
l(s0)

mψ0 for some
nonnegative integers l,m. The terms originating from the projector have the following structure

(n0)
i(n−1)

j (s1)
l+j (s0)

m−jψ0 (A.2)

where the weights my and mi of φ have been taken into account. Then using the commutation
relations above one moves all s1 to the left. This results in the expression of the form s1(...) iff
l > 0. Indeed, the terms without s1 can arise in this process only if l = 0 (indeed only commuting
n−1 with s1 one can get rid of s1; but the power of s1 is higher than that of n−1 unless l = 0). If
l = 0 then analogous arguments show that φ is nontrivial φ �= s1(. . .) and other way around. �
Proof of Lemma 5.6. It is analogous to that of Lemma 5.4.

In summary, both Lemma 5.4 and its generalization Lemma 5.6 mean that nontrivial sl(n− 1)

HW elements representing the equivalence relation cannot be generated from the respective sl(n)

HW elements by the first p − k generators s†
α (for k = 0 we recover Lemma 5.4). �

Proof of Lemma 5.7. The proof reduces to the following two observations. Firstly, one observes
that acting by s

† increases a value of weight si by one and recalls that sl(n − 1) HW elements
i
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with weights sj < sj+1 vanish identically. Secondly, given sl(n − 1) HW element φ it is easily

seen that the relation Πs
†
i s

†
i+1φ = 0 holds provided that at least two subsequent weights are

equal, i.e., mi(φ) = mi+1(φ). �
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