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a b s t r a c t

We consider the two-machine flowshop scheduling problem where jobs have random
processing times which are bounded within certain intervals. The objective is to minimize
total completion time of all jobs. The decision of finding a solution for the problemhas to be
made based on the lower and upper bounds on job processing times since this is the only
information available. The problem is NP-hard since the special case when the lower and
upper bounds are equal, i.e., the deterministic case, is known to be NP-hard. Therefore, a
reasonable approach is to come up with well performing heuristics. We propose eleven
heuristics which utilize the lower and upper bounds on job processing times based on
the Shortest Processing Time (SPT) rule. The proposed heuristics are compared through
randomly generated data. The computational analysis has shown that the heuristics using
the information on the bounds of job processing times on both machines perform much
better than those using the information on one of the two machines. It has also shown
that one of the proposed heuristics performs as the best for different distributions with an
overall average percentage error of less than one.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The deterministic (where processing times are known with certainty) two-machine flowshop scheduling problem with
the minimization of total completion time has been considered by many researchers for a long time. The performance
measure of total completion time is very important as it is directly related to the cost of inventory. The significance of
minimizing the total cost of inventory has been discussed by many researchers, e.g., [1–7].
The deterministic two-machine flowshop scheduling problem is unary NP-hard, e.g. see [8]. Therefore, themain research

has been focused on the development of either implicit enumeration techniques or heuristics. For some scheduling
environments, it is perfectly valid to assume that job processing times are deterministic in which case the implicit
enumeration techniques and heuristics appeared in the literature can be utilized. Nonetheless, for some other scheduling
environments, the assumption of deterministic processing times may not be applicable. As stated by Soroush [9,10], the
random variation in processing times needs to be taken into account while searching for a solution.
The flowshop scheduling problem has been addressed by some researchers where job processing times follow certain

probability distributions. For example, Cunningham and Dutta [11] and Ku and Niu [12] addressed the problem where
jobs have exponentially distributed processing times while Kalczynski and Kamburowski [13] addressed the problem
for the case where job processing times follow Weibull distribution. Portougal and Trietsch [14] suggested that variance
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Table 1
Upper and lower bounds of job processing times.

Job j 1 2 3

Ltj,1 4 5 10
Utj,1 10 9 18
Ltj,2 2 8 3
Utj,2 6 20 9

reduction should be also taken into account while selecting a solution for stochastic flowshops. Portougal and Trietsch [15]
concluded that both the mean and the variance are required for valid comparison of different schedules. Assuming that job
processing times are randomvariableswith known cumulative distribution functions, Portougal and Trietsch [16] developed
and evaluated two heuristics. For some scheduling environments, even when job processing times are deterministic, job
completion timesmay be stochastic as a result of randommachine breakdowns, e.g., [17]. Moreover, some researchers have
recently proposed the use of a fuzzy set theory to model the uncertainty in scheduling problems, e.g., [18–20]. Uncertainly
modeling is very important for some environment, in particular, for supply chains, e.g., [21–23].
For some scheduling environments, it is hard to obtain exact probability distributions for random processing times, and

therefore assuming a specific probability distribution is not realistic. Usually, solutions obtained after assuming a certain
probability distribution are not even close to the optimal solution. It has been observed that, although the exact probability
distribution of job processing times may not be known, upper and lower bounds on job processing times are easy to obtain
in many cases. Hence, this information on the bounds of job processing times should be utilized in finding a solution for the
scheduling problem. The scheduling problemwith bounded processing times was first introduced by Lai et al. [24], and later
studied by different researchers including Lai and Sotskov [25], Allahverdi and Sotskov [26], and Matsveichuk et al. [27]. It
should be noted that this situation may occur for jobs that are processed for the first time so that not much information
is available. Otherwise, the average or most likely value of processing times could be taken into account as being used in
project scheduling, e.g., [28].
For the two-machine flowshop scheduling problem with bounded processing times to minimize total completion time,

Sotskov et al. [29] and Allahverdi [30] provided some dominance relations. These dominance relations help in reducing the
solution set of the problem, and for some restricted problems, the size of solution set may be very small. In particular, when
the lower and upper bounds are very close to each other, then the size of the solution set can be small. Nevertheless, in
general, it may be impossible to reduce the solution set by these dominance relations to a small number. In this paper, we
present different heuristics that can be used to obtain a good solution regardless of the closeness of the lower and upper
bounds.
The paper is organized as follows. In Section 2, the problem is defined. Section 3 presents the proposed heuristics. The

computational evaluation of these heuristics is conducted in Section 4 and concluding remarks are given in Section 5.

2. Problem definition

The two-machine flowshop scheduling problem is considered with the objective of minimizing total completion time.
There are n jobs ready to be processed by two machines where each job first has to be processed by the first machine, and
then it has to be processed by the second machine. It should be noted that the considered objective function is equivalent
to minimizing average job completion time.
It is well known that permutation schedules are dominant for the deterministic two-machine flowshop problem of

minimizing mean or total completion time criterion. That is, one only needs to consider the same sequence of jobs on both
machines in order to find the optimal schedule. Permutation schedules are also known to be dominant for the problem of
two-machine flowshop with random processing times. Since we assume that the processing times are random variables
with given lower and upper bounds, permutation schedules are dominant for the problem under consideration as well.
Let Ltj,m and Utj,m denote the lower bound and the upper bound of processing time of job j on machine m, respectively.

The exact value tj,m of the processing time of job j onmachinem is not known until machinem completes processing the job
j. However, it is known that the processing time will be somewhere between its lower and upper bounds. In other words,
Ltj,m ≤ tj,m ≤ Utj,m. Even if Ltj,m = tj,m = Utj,m for all jobs and both machines, it is known that the problem is NP-hard.
For the problem that we consider in this paper, the exact realizations of job processing times are not known. Therefore, the
quality of an earlier developed solution (i.e., a sequence) might change depending on the exact realization of job processing
times, which will only be known after all jobs have been processed on both machines. For example, consider a problem of
three jobs where the lower and upper bounds on processing times are given in Table 1.
Since job processing times can be any real number between lower and upper bounds, there is an infinite number of

realizations. For example, five different realizations for the problem described in Table 1 are given in Table 2. Unfortunately,
we do not knowwhich one of these or others (an infinite number of realizations)will occur. Therefore, it is almost impossible
to find a sequence that will remain optimal for all realizations. Of course, after jobs have been completed we know the exact
values of ti,j, where we are in a position to find the optimal sequence, for at least small number of jobs since we can find
the solution by exhaustive enumeration. Unfortunately, we have to make a decision about a sequence before the schedule
takes place, which we can only use the lower and upper bounds on processing times, i.e., based on the data given in Table 1.
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Table 2
Five different realizations for the example given in Table 1.

Realization Job
1 2 3

1 tj,1 4 5 10
tj,2 2 8 3

2 tj,1 10 9 18
tj,2 6 20 9

3 tj,1 7 7 14
tj,2 4 14 6

4 tj,1 9 6 14
tj,2 3 18 4

5 tj,1 10 5 10
tj,2 6 8 4

It can be shown that the sequence (1, 2, 3) is optimal for the realizations 1, 2, 3, and 4. However, the sequence (1, 2, 3) is
not optimal for realization 5. The optimal sequence for realization 5 is either the sequence (2, 1, 3) or (2, 3, 1). In fact, an
example can easily be constructed such that each of the five realizations in Table 2 may have a different optimal solution.
It should be noted that the only information available before making a decision on a solution is the knowledge of lower

and upper bounds on job processing times. Therefore, these bounds should be used in finding a solution for the problem. In
the following section, we propose different heuristics which utilize the information about these bounds.

3. Proposed heuristics

It is known that ordering jobs based on Shortest Processing Time (SPT) minimizes total completion time for the
deterministic single machine scheduling problem. For the two-machine flowshop scheduling problem, when Uti,j = Lti,j
for all i = 1, 2, . . . , n and j = 1, 2, the problem reduces to the deterministic two-machine flowshop scheduling problem.
Therefore, two SPT rules (SPT1 and SPT2) can be defined. Allahverdi and Tatari [31] defined SPT1 as the SPT based on job
processing times on the first machine while SPT2 as the SPT based on job processing times on the secondmachine. It should
be noted that even the deterministic version of our problem does not have a polynomial solution as it is known that the
problem is NP-hard, e.g., [8]. Moreover, Uti,j 6= Lti,j for at least some of the jobs, and the exact realization of ti,j will not be
known unless job i has finished its processing on machine j. However, a decision on when to process job i on machine j has
to bemade earlier, i.e., before the realization of ti,j. In other words, a decision can bemade only on the available data on job i
onmachine j, which are the lower and upper bounds, i.e., Uti,j and Lti,j. It should be also noted that it does not make sense to
use meta-heuristics since the exact values of ti,j are not known. In other words, there is no point in spending so much time
as to where job i should be placed since even small changes in the processing times would significantly affect the quality
of schedule obtained before realization of processing times. Therefore, the only possible option would be to use heuristics
which utilize Uti,j and Lti,j.
We can use the idea of SPT while searching for heuristics. However, the exact values of ti,j are not knownwhile the lower

and upper bounds of ti,j, i.e., Uti,j and Lti,j are known. Hence, we can use the idea of SPT by using Uti,j and Lti,j values. For
example, a sequence can be obtained by ordering the jobs according to SPT based on Lti,1, i.e., based on the lower bounds on
machine 1. We call this sequence as SPTL1. Similarly, another sequence can be obtained by ordering jobs according to SPT
based on Uti2. This sequence is called SPTU2. By using Uti,j and Lti,j values, nine other sequences can be obtained. Table 3 lists
all the proposed sequences. The heuristic SPTA1 is obtained by ordering jobs following SPT according to the average of the
lower and upper bounds on job processing times on machine 1 while SPTA2 is obtained by doing the same for the second
machine. The heuristics SPTLL, SPTUU, SPTLU, SPTUL, and SPTAA are obtained by taking into account the information on job
processing times on both machines. For example, the heuristic SPTLU is obtained by following SPT according to the average
of Lti,1 and Uti,2. The rest of the heuristics are described in Table 3.
The heuristic SPTL1 for the problem given in Table 1 results in the sequence (1, 2, 3). This is because Lt1,1 = 4, Lt2,1 = 5,

Lt3,1 = 10. Therefore, first the first job is to be processed, then the second job, and finally the third job. Similarly, the heuristic
SPTU1 gives the sequence (2, 1, 3) since among Uti,1’s, the smallest processing time is 9 (job 2), the next smallest is 10 (job
1), and finally is 18 (job 3). The sequence of jobs obtained by all heuristics are given in Table 4. It should be noted that since
there are only three jobs for the given problem, most of the heuristics result in the same solution. For large size problems,
however, the probability of having several heuristics resulting in the same solution is very small.

4. Computational experiments

The proposed heuristics SPTL1, SPTUI, SPTA1, SPTL2, SPTU2, SPTA2, SPTLL, SPTUU, SPTLU, SPTUL, and SPTAA are evaluated
based on randomly generated data following different distributions. We compared the performance of the heuristics using
two measures: average percentage relative error (Error) and standard deviation (Std) out of two thousand replicates. The
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Table 3
Description of the proposed eleven heuristics.

Heuristic name Order the jobs based on SPT according to

SPTL1 Lti,1
SPTU1 Uti,1
SPTA1 (Lti,1+Uti,1)/2
SPTL2 Lti,2
SPTU2 Uti,2
SPTA2 (Lti,2+Uti,2)/2
SPTLL (Lti,1+Lti,2)/2
SPTUU (Uti,1+Uti,2)/2
SPTLU (Lti,1+Uti,2)/2
SPTUL (Uti,1+Lti,2)/2
SPTAA [(Lti,1+Uti,1)/2+ (Lti,2+Uti,2)/2]/2

Table 4
Heuristic solution for the problem given in Table 1.

Heuristic name Sequence of the jobs

SPTL1 1, 2, 3
SPTU1 2, 1, 3
SPTA1 1, 2, 3
SPTL2 1, 3, 2
SPTU2 1, 3, 2
SPTA2 1, 3, 2
SPTLL 1, 2, 3
SPTUU 1, 3, 2
SPTLU 1, 3, 2
SPTUL 1, 2, 3
SPTAA 1, 3, 2

percentage error is defined as 100* (total completion time of the heuristic – total completion time of the best heuristic out of 11
heuristics)/(total completion time of the best heuristic out of 11 heuristics).
The upper bounds of processing times are generated from uniform distributions such that Uti,j ∈ U(1, 100). The lower

bounds LBt i,j on processing times are generated from LBt i,j = UBti,j − ∆ where ∆ was randomly generated from uniform
distribution from five different ranges, namely,∆ ∈ U(0, 5),∆ ∈ U(0, 10),∆ ∈ U(0, 15),∆ ∈ U(0, 20), and∆ ∈ U(0, 40).
Once the lower and upper bounds for each job have been generated, then an instance (a realization) for job processing
times is generated following different distributions. We consider the distributions of uniform, exponential (negative and
positive), and normal. For the normal distribution, the lower andupper boundswere set to the lower andupper bounds of the
processing times, and not to negative and positive infinities as in ordinary normal distribution. That is, the lower and upper
bounds were truncated, and hence, whenever a number below the lower bound or above the upper bound was generated,
the number was repeated until a number between the two bounds were obtained. It should be noted that the probability
of a number being generated outside the range is extremely small. The detail descriptions of the normal and exponential
distributions are given in the Appendix. These distributions are more or less representative to many distributions since the
extreme cases are considered.
The total number of cases is 100 as five different values of jobs (40, 60, 80, 100, 200), four different distributions

(uniform, positive exponential, negative exponential, normal), and five different values of ∆(U(0, 5),U(0, 10),U(0, 15),
U(0, 20),U(0, 40)) are considered. For each case, 2000 replicates (realizations or instances) are generated to evaluate the
performance of the proposed heuristics. This results in a total of 200,000 problems. It should be noted that a much larger
number of replicates (up to 10,000) has been tested and it was found that 2000 replicates were good enough to have a very
small standard deviation as indicated in Table 5.
The computational results for the proposed heuristics are given in Table 5 for the case of uniform distribution. As can

be seen from the table, the heuristics based on the information of either the lower or upper bound on only one machine,
i.e., SPTL1, SPTU1, SPTA1, SPTL2, SPTU2, SPTA2, perform very poorly compared to the heuristics based on the information
on both machines, i.e., SPTLL, SPTUU, SPTLU, SPTUL, and SPTAA. The performances of the heuristics SPTL1, SPTU1, SPTA1,
SPTL2, SPTU2, SPTA2 were also very poor compared to those of SPTLL, SPTUU, SPTLU, SPTUL, and SPTAA for the normal
and exponential (both negative and positive) distributions. This result is expected since the heuristics SPTL1, SPTU1, SPTA1,
SPTL2, SPTU2, and SPTA2 take into account the information on a single machine while the heuristics SPTLL, SPTUU, SPTLU,
SPTUL, and SPTAA are obtained by considering the information on both machines. Therefore, the results of heuristics SPTL1,
SPTU1, SPTA1, SPTL2, SPTU2, and SPTA2 will not be compared for the rest of the analysis. This will also make it easier to
compare the rest of well performing heuristics. The results of Table 5 are summarized in Fig. 1 for the well performing
heuristics. Moreover, for the sake of brevity, only the summary results are given in Figs. 2–4 for other distributions. It should
be noted that the standard deviations (Std), out of two thousand replicates, were significantly small. Moreover, comparison
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Table 5
Computational results for uniform distribution.

n = 40 n = 60 n = 80 n = 100 n = 200
Error Std Error Std Error Std Error Std Error Std

SPTL1 13.40 0.33 14.91 0.29 15.39 0.26 18.24 0.23 21.34 0.19
SPTU1 13.41 0.33 14.86 0.29 15.38 0.26 18.24 0.23 21.31 0.19
SPTA1 13.42 0.33 14.89 0.29 15.39 0.26 18.24 0.23 21.33 0.19
SPTL2 28.36 0.29 30.14 0.23 30.22 0.20 31.53 0.21 33.76 0.14
SPTU2 28.41 0.29 30.12 0.23 30.24 0.20 31.45 0.21 33.72 0.14

∆ = 5 SPTA2 28.45 0.29 30.16 0.23 30.18 0.20 31.45 0.21 33.72 0.14
SPTLL 0.71 0.05 0.50 0.05 0.71 0.05 0.34 0.03 0.37 0.03
SPTUU 0.80 0.05 0.77 0.05 0.52 0.04 0.57 0.04 0.47 0.03
SPTLU 0.92 0.06 0.76 0.05 0.61 0.04 0.44 0.04 0.44 0.03
SPTUL 0.59 0.05 0.58 0.04 0.46 0.04 0.45 0.03 0.33 0.03
SPTAA 0.67 0.05 0.73 0.05 0.51 0.04 0.39 0.04 0.40 0.03

SPTL1 15.16 0.65 16.87 0.57 19.17 0.53 20.29 0.48 23.71 0.38
SPTU1 15.31 0.65 16.67 0.56 19.12 0.53 20.18 0.49 23.72 0.38
SPTA1 15.18 0.65 16.74 0.56 19.07 0.53 20.19 0.48 23.72 0.38
SPTL2 29.54 0.60 31.19 0.50 32.14 0.44 32.55 0.41 36.97 0.30
SPTU2 29.52 0.59 31.17 0.50 32.09 0.44 32.57 0.41 36.82 0.30

∆ = 10 SPTA2 29.51 0.60 31.20 0.50 32.14 0.44 32.50 0.41 36.84 0.30
SPTLL 1.30 0.16 0.96 0.11 0.82 0.12 0.78 0.11 0.59 0.07
SPTUU 1.12 0.16 0.89 0.12 0.70 0.10 0.76 0.11 0.59 0.08
SPTLU 1.42 0.19 0.97 0.13 0.97 0.11 0.87 0.12 0.85 0.09
SPTUL 0.85 0.14 0.71 0.10 0.58 0.09 0.72 0.09 0.37 0.06
SPTAA 1.17 0.16 0.82 0.12 0.76 0.09 0.67 0.10 0.62 0.08

SPTL1 17.35 1.04 16.59 0.88 18.11 0.79 21.61 0.70 23.54 0.58
SPTU1 17.24 1.05 16.33 0.88 17.93 0.79 21.45 0.70 23.44 0.58
SPTA1 17.30 1.05 16.38 0.88 17.95 0.79 21.46 0.70 23.43 0.58
SPTL2 30.69 0.87 31.01 0.72 32.40 0.65 33.90 0.65 35.73 0.43
SPTU2 30.18 0.87 31.40 0.73 32.08 0.64 33.96 0.64 35.69 0.43

∆ = 15 SPTA2 30.48 0.86 31.21 0.72 32.19 0.64 33.98 0.64 35.74 0.44
SPTLL 1.44 0.28 0.98 0.22 1.02 0.20 0.80 0.19 0.89 0.16
SPTUU 1.24 0.27 1.54 0.24 1.29 0.20 0.98 0.18 0.89 0.14
SPTLU 1.38 0.32 1.66 0.24 1.59 0.22 1.25 0.23 1.35 0.18
SPTUL 1.19 0.23 0.93 0.17 0.67 0.15 0.54 0.13 0.49 0.10
SPTAA 1.47 0.28 0.90 0.20 1.02 0.18 0.90 0.18 0.77 0.13

SPTL1 18.14 1.30 16.52 1.16 19.85 1.07 20.41 0.97 24.21 0.77
SPTU1 17.51 1.29 16.47 1.16 19.60 1.07 20.23 0.97 24.25 0.77
SPTA1 17.65 1.29 16.37 1.16 19.54 1.07 20.20 0.97 24.20 0.77
SPTL2 33.80 1.21 33.74 0.93 34.74 0.86 35.09 0.79 37.59 0.59
SPTU2 34.15 1.20 33.52 0.91 34.63 0.88 35.09 0.78 37.69 0.59

∆ = 20 SPTA2 34.18 1.20 33.64 0.91 34.58 0.88 35.19 0.79 37.75 0.59
SPTLL 1.85 0.46 1.53 0.29 1.16 0.28 1.22 0.24 1.13 0.21
SPTUU 1.74 0.42 1.32 0.31 1.27 0.32 1.32 0.27 1.17 0.20
SPTLU 2.55 0.47 2.31 0.39 2.24 0.39 1.61 0.29 1.72 0.26
SPTUL 1.36 0.42 0.88 0.22 0.58 0.17 0.62 0.16 0.37 0.11
SPTAA 1.63 0.40 1.35 0.30 1.29 0.29 1.07 0.22 0.89 0.20

SPTL1 18.14 1.30 16.52 1.16 19.85 1.07 20.41 0.97 24.21 0.77
SPTU1 17.51 1.29 16.47 1.16 19.60 1.07 20.23 0.97 24.25 0.77
SPTA1 17.65 1.29 16.37 1.16 19.54 1.07 20.20 0.97 24.20 0.77
SPTL2 33.80 1.21 33.74 0.93 34.74 0.86 35.09 0.79 37.59 0.59
SPTU2 34.15 1.20 33.52 0.91 34.63 0.88 35.09 0.78 37.69 0.59

∆ = 40 SPTA2 34.18 1.20 33.64 0.91 34.58 0.88 35.19 0.79 37.75 0.59
SPTLL 1.85 0.46 1.53 0.29 1.16 0.28 1.22 0.24 1.13 0.21
SPTUU 1.74 0.42 1.32 0.31 1.27 0.32 1.32 0.27 1.17 0.20
SPTLU 2.55 0.47 2.31 0.39 2.24 0.39 1.61 0.29 1.72 0.26
SPTUL 1.36 0.42 0.88 0.22 0.58 0.17 0.62 0.16 0.37 0.11
SPTAA 1.63 0.40 1.35 0.30 1.29 0.29 1.07 0.22 0.89 0.20

of heuristics based on Std were almost the same as the comparison based on the average percentage errors. Therefore, for
the sake of brevity, the results for Std will not be reported and comparison will be made only on the percentage errors.
From Figs. 1–4, it can be seen that the heuristics SPTUL and SPTAA, in general, perform better than the other three

heuristics of SPTLL, SPTUU, and SPTLU. The good performance of SPTAA is not surprising since the sequence of jobs is
determined based on the average of both lower and upper bounds of job processing times on both machines. Of the five
considered heuristics (SPTLL, SPTUU, SPTLU, SPTUL, SPTAA), SPTUL is the best performing heuristic, in general, for all the
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(a)∆ = 5. (b)∆ = 10.

(c)∆ = 15. (d)∆ = 20.

(e)∆ = 40. (f) Average over∆.

Fig. 1. Average percentage error for uniform distribution.

considered distributions. The overall average percentage error of SPTUL is less than one percent. Since this is the best
performing heuristic for all distributions, it can be safely used in finding out a solution for the problem. The second best
heuristic is SPTAA for all distributions except for negative exponential distribution for which SPTLL is next best heuristic.
This is not surprising since it is more likely that processing times will be closer to the lower bounds.
The difference between the performance of the heuristics of SPTLL, SPTUU, SPTLU, SPTUL, SPTAA gets larger as ∆ gets

larger. This is expected since as∆ approaches to zero, then the lower and upper bounds of job processing times approach to
one another in which case all heuristics will yield the same solution. On the other hand, when∆ is large, then the difference
between the lower and upper bounds will be large, and hence, each of the heuristic will give different solution in which case
heuristic performances will be far from each other.
Figs. 1–4 indicate that the performance of heuristics does not changemuch as the number of jobs, n, changes. Even though

it seems that for n up to 100, the percentage errors of heuristics seems to be decreasing but it should be noted that the errors
are relative errors and not the absolute errors. In general, the differences between the percentage of errors of the considered
heuristics do not change much. Hence, it can be concluded that the number of jobs does not affect the performance of the
proposed heuristics.
In summary, the heuristics taking into account the lower and upper bounds of job processing times on both machines

perform much better than those which take into account the lower and upper bounds on one machine only. Furthermore,
among those taking into account both bounds on both machines, SPTUL performs as the best heuristic with an overall
percentage error of less than one.
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(a)∆ = 5. (b)∆ = 10.

(c)∆ = 15. (d)∆ = 20.

(e)∆ = 40. (f) Average over∆.

Fig. 2. Average percentage error for normal distribution.

5. Conclusion

The two-machine flowshop scheduling problem to minimize total completion time was addressed. Processing times
were modeled as random variables with generic distributions, i.e., no specific distributions were assumed. The only known
information about processing times is the lower and upper bounds. Given the deterministic version of the problem is NP-
hard, different heuristics were proposed, where the heuristics are constructed by taking into account the lower and upper
bounds of job processing times since this is the only known information. The performance of the heuristics was evaluated
through an extensive computational experimentation. The computational experiments indicate that the heuristics using the
information on the bounds of job processing times on bothmachines performmuch better than those using the information
on one of the two machines. It has also shown that one of the proposed heuristics performs as the best for different
distributions with an overall average percentage error of less than one.
There are different possible extensions to the problem addressed in this paper. One possible extension is to address the

problem with respect to maximum lateness criterion. Another possible extension would be to consider no-idle flowshops,
e.g., [32].
The importance of setup times has been addressed by Allahverdi et al. [33,34]. In this paper, setup times are ignored or

assumed to be included in the processing times. This assumption is valid for some scheduling environments. However, the
assumption may not be valid for some other scheduling environments, e.g., see [35]. Therefore, another possible extension
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(a)∆ = 5. (b)∆ = 10.

(c)∆ = 15. (d)∆ = 20.

(e)∆ = 40. (f) Average over∆.

Fig. 3. Average percentage error for negative exponential distribution.

is to consider the problem addressed in this paper with setup times. Moreover, it is assumed that there is an infinite buffer
space between the two machines. This assumption may not necessarily be realistic for some scheduling problems, e.g., see
[36–38]. Therefore, another possible research area is to address the problem with a limited buffer space between the two
machines.
Scheduling problems with random and bounded processing times have been addressed in flowshop and jobshop

environment but not in single or parallel machine environments, e.g., [39–41]. Therefore, single or parallel machine
problems can be addressed with random and bounded processing times.
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Appendix

In this Appendix, we describe the distributions that have been used in Section 4 to evaluate the performances of the
proposed heuristics. We considered three distributions; Uniform, Exponential (negative and positive), and Normal. The
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(a)∆ = 5. (b)∆ = 10.

(c)∆ = 15. (d)∆ = 20.

(e)∆ = 40. (f) Average over∆.

Fig. 4. Average percentage error for positive exponential distribution.

considered uniform distribution is the same as regular uniform distribution. However, exponential and normal distributions
that have been considered in this paper are truncated, the definitions of which are given in this Appendix.
1. Exponential distribution
The pdf for the truncated exponential distribution is f (x) = αeλx

eαUti,j−eαLti,j
for x ∈ (Lti,j,Uti,j) and zero otherwise. α is taken

as 0.1 for positive exponential, and−0.1 for negative exponential.
2. Normal distribution
We considered the truncated normal distribution with a mean of µ = Lti,j+Uti,j

2 and a standard deviation of σ = Uti,j−Lti,j
6 .
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