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ABSTRACT 

Denote by A,(G) the largest eigenvalue of a real (0, D-adjacency matrix of a graph 
G, and by z(G) the mean degree of G. Collatz and Sinogowitz proposed h,(G)- z(G) 
as a measure of irregularity of G. A second such measure is the variance of the vertex 

degrees of G. The most irregular graphs according to these measures are determined 
for certain classes of graphs, and the two measures are shown to be incompatible for 

some pairs of graphs. 

We consider only finite, undirected graphs without loops or multiple 
edges. The index A,(G) of a graph G is the largest eigenvalue of a real 
(0, l&adjacency matrix of G. If z(G) d enotes the mean of the vertex degrees 
of G, then h,(G) > z(G), with equality if and only if G is regular. (See e.g. 
[8, Theorem 3.81.) This result was proved in the fundamental paper [6] by 
Collatz and Sinogowitz, who proposed E(G) = A,(G) - l(G) as a measure of 
the “irregularity” of G, and asked which n-vertex connected graph (for 
given n) is most irregular according to this measure. An obvious alternative 
measure of irregularity is provided by u(G), the variance of the vertex 
degrees of G. [If the degrees are d,, . . ., d,,, then v(G) = (l/n)C~=, df - 

(1/n2)(Cr_ldi)2: note that G has the same variance as its complement G.] 
In this note we compare E and u as measures of irregularity, and we consider 
the problem of maximizing E and c over the set 9(n) of all n-vertex graphs 
and over its subset Z(n) of connected n-vertex graphs. 

In [6], max(e(G): G E Z(n)} is denoted by S(n). The authors observe 
that S(n)==-2+2/ n when n < 5, this bound being attained uniquely 
by the star Ki,,_i, and they ask whether this holds also when n > 5. (This 
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problem appears also in [B, p. 2661.) Cvetkovid and Rowlinson [lo] show that 
the maximal value of E is not always attained by a star. To demonstrate this 
they consider an example with n = 25, but in fact a similar counterexample 
exists with n as small as 8. Let G be the star K,,,, and G’ the graph 
obtained from the complete graph K, by adding three pendant edges at a 
single vertex. Then G,G’ E A?(B), and E(G) = 0.896, l (G’) = 0.912. (We 
note that G and G’ have the same variance 3.9375.) Rowlinson [ll] consid- 
ers certain maximal outerplanar graphs, and notes an example of two such 
graphs G,,G, for which e(Gr)> e(GZ), v(G,)= n(G,). By deleting the 
edges of the unique Hamiltonian cycles of G,,G, respectively, one clearly 
obtains graphs G:,G,* with the same variance as G, and G,, but it turns out 
that e(G f ) < l (Gz ). Moreover, if isolated vertices are removed from G f, G,*, 

one obtains connected graphs GF *,Gz * such that e(G$*)< l (Gz*) and 
v(G,* *) = z;(G,**). Th ese examples might suggest that as measures of irregu- 
larity s is coarser than E; however, for some pairs of graphs the two 
measures are in fact incompatible. To illustrate this phenomenon, let H = 

K, v&. (Here v denotes the join, or complete product, of two graphs.) We 
find that E(H) = 0.75, v(H) = 4.6875, and therefore, comparing H with the 
graph G’ defined above, we have e(G’) > E(H), v(G’) < v(H). This incom- 
patibility is particularly striking because G’ and H have the same number of 
vertices (8) and the same number of edges (131, and are both connected. 

For given n and e, let 9(n, e) be the set of all graphs with n vertices 
and e edges, and let A?(n, e) be the set of all connected graphs in 9(n, e). 
We use the terminology and notation of Ahlswede and Katona [2] in defining 
the quasicomplete graph Cf and the quasistar SE, both of which belong to 
9(n, e). Let the n vertices be labelled 

by 

e= + t, 

1,2,. . . ) n. For C,:, define integers d, t 

O<t<d; 

connect together each pair of the vertices 1,2,. . . , d, and connect also vertex 
d + 1 with each of 1,2,. . . , t. The quasistar SE can be defined as the 

complement of Cl I > --e. The graph Cz therefore has a stepwise adjacency 
matrix (see [12]) in which the e ones above the principal diagonal occupy the 
minimum number of columns, while Sz has one in which they occupy the 
minimum number of rows. (Thus, for example, SA” = K, v K,.) 

PROPOSITION 1. Let n and e be given, with 
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Then : 

(i) max{e(G): G E &(n, e)) is attained uniquely bz~ Cz; 
(ii) max{v(G): G E &(n, e)} is attained by one of Cz and Sz. 

In (ii), the maximum is attained by C,: $ 

and by Sz if 

In n 
e<z 2 2’ ( 1 

-- 

Part (i) of this proposition follows directly from 1121, because when n and 
e are fixed, the mean degree is fixed, so maximizing e(G) is equivalent to 
maximizing h,(G). For part (ii), we note that since n and e are fixed, 
maximizing o(G) is equivalent to maximizing Cy= ,df and hence to maxi- 
mizing 

the number of walks of length 2 in G. Accordingly (ii) follows from a result of 
Ahlswede and Katona [2, Theorem 21. The same result was obtained indepen- 
dently by Brualdi and Solheid [S, Theorem 3.31. Their paper is concerned 
with maximizing the sum of the entries of A2, which is just E~=,d~. The 
identification of which of Cz and Sz has the larger variance, for arbitrary n 

and e, seems to be difficult; the partial result stated above is proved at some 
length in [2, Theorem 31. 

We remark that in (ii) the maximum variance may be attained also by 
graphs other than Ct and Sz. As an illustration of this, suppose that the 
maximum is attained by Ci, and determine d and t by 

e= + t, O<t<d. 

Suppose further that I < t < n - d. If we move the l’s in column (and row) 
d + 1 of the adjacency matrix of Ci to row (and column) 1 (positions 
d+l , . . . , d + t), then we obtain the adjacency matrix of a graph with the 
same variance as Ci. (Compare the concluding remarks of [l].) 

In the next result we keep n fixed but allow e to vary. 
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PROPOSITION 2. Given n, write 

r = [$(3n +2)], f=(L). 

Then : 

(i) One has 

max{E(G):GE&(n)}= 
+_f (n even), 

&-i-t& (nodd). 

This maximum is attained uniquely by Cr $ n is odd, and by Cf’ and CF’ 

(only) if n is even. 

(ii) One has 

max{v(G):GE&(n)}=s(r-1)‘(n-r), 

and this maximum is attained by C;(. 

Before giving the proof of Proposition 2 we derive an upper bound for 
h,(C,“). We write 

e= + t, 

and it is convenient here to allow the value t = d; this gives the same value 
for e as replacing d by d + 1 and setting t = 0. 

LEMMA 3. lf 

d 
e= ( 1 2 

+t (o < t < d) 

then 

h,(c;)sd-l+;, 

with equality zy and only ay t = 0 or t = d. 
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proof. Write p = t/d, so that 0 < p < 1, and define a polynomial F by 

From [12], A,(C,:) = d - 1 + u, where u E [0, l] is the largest root of F. Now 

F(p)=P”+(d-d”-l)@+(d”-d)P 

=P(l-P)[d(d-1)-p] >O, 

and since F(x) is an increasing function of x for x > 0, we deduce that 
o < /3, as required. For equality we require p = 0 or 1, i.e. t = 0 or d. n 

Proof of Proposition 2. By Proposition l(i), max{e(Gl: G E 9(n)} is 
attained solely by Cz, for some value or values of e. Write 

e= +t (0 < t < d) : 

then, using Lemma 3, 

e(c;)=h,(C,‘)-;<d-l- 
d(d-1) 

n 

If d > in, then 

E(q) <d-l- 
d(d-1) 

n 

with equality if and only if t = 0 or t = d = in. Similarly, if d < in, then 

l (Cn”) <d-l- 
d(d-1) 

n 
cd- d(d+l) +‘(“;‘j), 

n n 

with equality if and only if t = d or t = 0, d = in. We therefore have to 
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maximize 
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E ,M (d-l)(n-d) for O<d<n, 
i 1 = 

n n 

and (i) follows. 

For (ii), we note first that since Sz is the complement of Cnz (“>-e, it 
follows from Proposition I(ii) that max{v(Gj:G E 9(n)} is attained by a 
graph Cz for some e. A simple calculation shows that with 

we have 

For fixed d and fixed n > 4 this quadratic function of t takes its 
maximum value either when t = 0 or when t = d. We therefore have to 
maximize 

=~(d-l)2(n-d) (l<ddn), 

and it is easily shown that the maximum is given by d = [$(3n +22)]. The 
cases in which n < 4 are also simple to deal with. n 

Since a quasistar Sz is connected whenever e > n - 1, an immediate 
consequence of part (ii) of Proposition 2 is the following: 

COROLLARY. max(v(G): G E X(n)} = (r/n”Xr - 1)2(n - r), attained 

by s!:)-(I). 

The analogue of Proposition l(ii) for the variance of connected graphs 
(when n and e are both fixed) follows from [5, Theorem 4.21 and Proposition 
I(ii). In stating the result it is convenient to write k = e - n, as in [lo, 31, and 
to denote the graph K, v C,“‘: by G,,,. 
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PROPOSITION 4. lfnande(=n-kjaresuchthat 

n-l<e< 
n ( 1 2 ’ 

then max{u(G>: G E Z(n, e)] is attained either by G,,, or by Sz. The 

maximum is attained by G,,, if 

1 n 
e>: 2 ( 1 

+n-I, 

and by Sz if 

To identity the graph(s) G in A?(n, e) for which e(G) is a maximum, we 
need to know which graphs in this set have maximal index. This is known 
when 

because c:, the graph of maximal index in 9(n, e), is then connected. Aside 
from this, it is known only for certain values of k ( = e - n): namely 

-1 foreach d>5. 

For k E { - I, 0,1,2), the unique graph of maximal index is found in [4] to be 
is also the graph of maximal index in the case 

, because for such e it coincides with Cz.] For k < n -3, let 

from the star K, “_ 1 by joining a vertex of 
degree 1 to k + 1 other vertices of degree I. It is shown in [3] that when 

a graph of maximal index in 2?(n, e> is G,,, or H,,, according as n < g(d) 

or n 2 g(d), where g(d) = id(d + 5) + i’+ 32/(d - 4) + 16/(d - 4)‘. We 
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therefore have: 

PI~oPo~~TIoN 5. LA 

5id<n, e=n+k. 

Then max{e(G): G E X(n, e)) is attained uniyuely by G,,, if n < g(d) and 
uniquely by H,,,k if n > g(d). When n = g(d), we ham E(G,,,~) = E(H,,~), 

and these are the only graphs G for which e(G) is maximal. 

NOTE. For n = g(d) we require g(d) to be an integer, so that d = 5, 6, 

or 8. 

It is interesting to compare Propositions 4 and 5. The maximal graphs 
obtained in both cases are G, k and SE, though in Proposition 5 the nonzero 
entries of the adjacency matrix of Sz above the diagonal are restricted to the 
first two rows. The conditions determining which of the two graphs is 
maximal are quite different. For example, v(St) is maximal whenever 
e < $(n - I), whereas for e(SL) to be maximal in Proposition 5 it is 
necessary that e < 2 n. 

A straightforward calculation shows that when 

(d>5), 

we have 

I:(H,,J-o(G,,)=&(d-l)(d-2)(d-@(d-4). 

Thus H,,,, has greater variance then G,,,, for each k. We can deduce from 
Proposition 5 an infinite family of pairs of connected graphs for which E and 
o are incompatible as measures of irregularity: if 

d>5 and 2+ dil <n<g(d) 
( i 

then 

+L,d < dG,,d~ while O( Hn,k) > O( Gn,k). 
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It seems likely that a result similar to Proposition 5 holds for arbitrary 
k > 3, but all that has so far been proved in this direction is the following: 

k), 

PROPOSITION 6. For fixed k 2 3, and n sufficiently large (depending on 

max{e(G):G E A?(n,n + k)} is attained uniquely by H,,,. 

This is an immediate consequence of the main result of [lo]. 
We now return to the function 

S(n)=max(e(G):GE2?(n)} 

defined by Col!atz and Sinogowitz [6], and establish the following inequali- 
tics. 

PUOPOSITION 7. For any n > 3, 

1 
;n-~+~<S(n)<~n-l+l. 

n 

Proof. For the lower bound, consider the graphs G,,, where 

S<d<n. 

If e = n + k then 

+,,!J = *I(%!%) -2- 
d(d-3) 

n 

Since G, k has K, as a proper subgraph, we have A,(G,,, k) > d - 1, so that 

G,,J > 
(d-3)(n-d) 

n 

If n is odd, we can take d = (n +3)/2, giving E(G,,~) > $n - i + 9/4n; 

while if n is even, we can take d = (n +2)/2, giving l (G+) > fn - i +2/n. 
It was proved by Yuan [13] that the index of a graph G E Z(n, e) 

satisfies A,(G) < J!, with equality if and only if G is complete or a 
star. Regarding e as a continuous variable, we find that the function 
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\lze-n+l-2 / t k e n a es its maximum value when e = $(sz” +4n -4), and 

this gives the stated upper bound. q 

We conclude with the remark that the maximal value S(n) is attained by 

the star K, n_l if and only if n < 7. That the star is maximal when n < 5 has 

already been mentioned, and it may be checked when n = 6,7 by using the 

tables of graph spectra in [9, 71. For n = 8, we have l (G,,,) > l (Kt,?); and 

for n = 9, E(G& > E(K~,~). Finally, if n > 10 the result follows from Propo- 

sition 7 above, because we then have m-2 +2/n < $n - i +2/n. 

The author is indebted to Dr. P. Rowlinson for helpful comments and 

suggestions. 
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