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Angiotensin II, nitric oxide, and end-organ damage in hyperten-
sion. The adaptive changes that accompany hypertension and
involve the kidney, heart, and vessels, namely, muscle hypertro-
phy/hyperplasia, endothelial dysfunction and extracellular matrix
increase can, in fact, be maladaptive and eventually lead to end-
organ disease, such as renal failure, heart failure, and coronary
disease. However, these changes vary markedly between individ-
uals with similar levels of hypertension. Nitric oxide (NO), an
endogenous vasodilator and inhibitor of vascular smooth muscle
and mesangial cell growth, is synthesized in the endothelium by a
constitutive NO synthase (NOS). NO antagonizes the effects of
angiotensin II on vascular tone and growth and also down-
regulates the synthesis of angiotensin converting enzyme (ACE)
and angiotensin II type 1 (AT-1) receptors. In hypertension, the
physiologic response to the increased shear stress and cyclic strain
is to upregulate NOS activity in endothelial cells. Upregulation of
vascular NOS activity is a homeostatic adaptation to the increased
hemodynamic workload that may help in preventing end-organ
damage. Indeed, hypertension-prone salt-sensitive rats manifest a
decrease (instead of an increase) in vascular NOS activity when
hypertensive; these rats develop severe vascular hypertrophy, left
ventricular hypertrophy, and renal injury. Studies in hypertensive
humans suggest that, independent of the effects of salt on blood
pressure, salt sensitivity may be a marker for susceptibility to the
development of endothelial dysfunction as well as cardiovascular
and renal injury. We hypothesize that in hypertension, recognition
of markers of cardiovascular susceptibility to injury and the
understanding of the pathophysiological mechanisms involved
may open new opportunities for therapeutic intervention. In this
context, only those antihypertensive agents that lower blood
pressure and concomitantly restore the homeostatic balance of
vasoactive agents such as angiotensin II and NO within the vessel
wall would be effective in preventing or arresting end-organ
disease.

Epidemiological studies have demonstrated that in hy-
pertensive patients, increased serum creatinine [1], protein-
uria [2] and microalbuminuria [3] are independent predic-
tors of an increased cardiovascular morbidity/mortality due
to left ventricular hypertrophy (LVH)/heart failure and

coronary artery disease [1]. This suggests that end-organ
damage in hypertension is diffuse, affecting all organs.
Most studies show that the excess morbidity and mortality
related to hypertension are progressive over the entire
range of systolic and diastolic blood pressures. However,
end organ damage varies markedly between individuals
with similar levels of hypertension [4, 5]. For example,
specific complications like LVH and chronic renal failure
[6], have been shown to be more common in blacks than in
whites, and in salt sensitive hypertensives independent of
ethnicity [7, 8]. In patients with end-stage renal failure who
are receiving hemodialysis, the incidence of myocardial
ischemia/infarction approaches 20 times that in the general
population [9]; in these patients the prevalence of cardiac
death is higher during the first few years of dialysis,
suggesting that cardiac disease is pre-existent and not
acquired during chronic hemodialysis. In the aggregate
these studies suggest that factors may be present that can
both decrease or promote the susceptibility of individuals
to hypertension and its complications. Therefore, the need
to identify these factors and the subsets of patients who are
at higher risk for development of end-organ disease is of
paramount importance.

In this context, recent studies have shown that a deletion
polymorphism of the angiotensin converting enzyme
(ACE) gene is associated with target organ damage in
hypertension. Specifically, the D allele of the ACE gene has
been associated with microalbuminuria, LVH, and coro-
nary artery disease, as well as with renal complications in
insulin-dependent diabetes [10, 11]. Our laboratory has had
a long standing interest in studying the relationship be-
tween endothelium dysfunction and cardiovascular injury
in hypertension [12–14]. The endothelium plays a crucial
role in the regulation of vascular tone by producing vaso-
dilator and vasoconstrictor substances. Nitric oxide (NO) is
one of the most important and well characterized endoge-
nous vasodilators. NO is produced in endothelial cells by
the enzyme nitric oxide synthase (NOS) [15], which can be
activated by neurohumoral substances such as acetylcholine
(Ach) and substance P, as well as by mechanical stimuli
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such as shear stress and cyclic strain [16]. NO has other
important functions in the vessel wall, which include inhi-
bition of platelet aggregation and inhibition of adhesion
molecule expression, as well as prevention of vascular
smooth muscle and mesangial cell proliferation [17]. Stud-
ies comparing endothelial NOS knock-out mice to wild
mice showed that the NOS knock-out mice develop a more
marked increase in vessel wall thickness due to vascular
smooth muscle hyperplasia, in response to hemodynamical-
ly-mediated vascular injury [5]. Hence, NO acts as an
antiatherogenic, antiproliferative, and antithrombotic fac-
tor that modulates vascular as well as glomerular remodel-
ing in response to injury [17].

Superoxide anion is produced by the endothelium in
response to various stimuli including oxidized lipoproteins,
hyperglycemia [18] and ischemia [19]. This small molecule
rapidly reacts and inactivates NO to form the highly
reactive intermediate peroxynitrite (ONOO).

In hypercholesterolemia, measurements of superoxide
anion levels in aortic segments of cholesterol-fed rabbits
revealed that the production of superoxide anion is in-
creased approximately threefold compared to vascular tis-
sue obtained from normocholesterolemic animals [20]. This
is also associated with impaired NO-dependent vascular
relaxation, despite suggestive evidence of an increased
production of NO. These finding suggest the possibility
that, at least in earlier stages of hypercholesterolemia, the
production of nitric oxide is unaltered, but is destroyed by
superoxide anion. Furthermore, chronic NOS inhibition
using subpressor doses of L-NAME in cholesterol-fed
rabbits results in a dramatic increase in neointima forma-
tion in the thoracic aorta when compared with rabbits that
consumed the cholesterol diet alone [21]. This supports the
notion that the loss of NO and more important imbalance
between NO and superoxide anion production may con-
tribute to the development of atherosclerosis.

Studies done in our laboratory showed that hypertension
prone, Dahl salt sensitive (DS) rats fed high cholesterol/
vitamin E and selenium deficient diet do not develop
hypertension; however, they exhibit significantly impaired
endothelium dependent relaxation [22]. In the aggregate
these studies suggest that NO has a more important role in
modulating vascular remodeling in response to injury than
in regulating blood pressure.

INTERACTION BETWEEN NITRIC OXIDE AND
ANGIOTENSIN II

Angiotensin II has multiple effects on the cardiovascular
system. These include vasoconstriction, promotion of renal
sodium and water retention and therefore expansion of the
plasma volume, induction of vascular smooth muscle
growth, and modulation of myocardial hypertrophy and
fibrosis [23]. Angiotensin II also plays an important role in
the regulation of glomerular filtration rate (GFR) and
renal blood flow by predominantly constricting the efferent

and the afferent glomerular arterioles [24]. Angiotensin II
has been found to modulate growth factors such as PDGF
and TGF-b, which have been implicated in the pathological
remodeling of the glomerulus in response to injury [25, 26].
It also has been reported that angiotensin II activates
NADH/NADPH oxidase in vascular smooth muscle [27]
and, according to more recent reports, in mesangial cells
[28], and leads to the cells’ protracted synthesis of super-
oxide anion NO, which has been shown to inhibit the
response of mesangial cells to growth stimulating signals
that are driven by angiotensin II that result in mesangial
cell hypertrophy and/or hyperplasia as well as in increased
matrix production [17].

It is now clear that angiotensin II can be synthesized at a
variety of sites [29], including the kidney, vascular endothe-
lium, adrenal gland and brain. In this context a concept of
paracrine-autocrine functions of the renin-angiotensin sys-
tem (RAS) in the regulation of cardiovascular and renal
function has been developed. Since both angiotensin II and
NO are synthesized and released locally, the antagonistic
interaction of these two agents is important in the regula-
tion of renal physiology and renal pathology. NO down-
regulates the synthesis of ACE [30] and of angiotensin II
type-1 receptors (AT-1) in vascular tissue [31]. Chronic NO
synthesis inhibition results in glomerular and tubulointer-
stitial injury [12] as well as coronary vascular remodeling,
LVH and hypertension. This suggests that decreased vas-
cular NO bioactivity due to endothelial dysfunction, as seen
in hypertension, may promote vascular remodeling due to
the combined deficit of NO and the local excess (absolute
or relative) of angiotensin II.

NITRIC OXIDE AND RENAL HEMODYNAMICS

The pressures and flow that determine single nephron
GFR (SNGFR) are controlled by the tone of afferent and
efferent arterioles [17]. The ratio of the tone of these
resistances determines the glomerular blood pressure and
the overall level of tone in these vessels controls glomerular
plasma flow. The glomerular capillary ultrafiltration coef-
ficient, Kf, is another variable that can directly influence
SNGFR. Changes in ultrafiltration may occur via alter-
ations in tone of glomerular mesangial cells which result in
alterations in glomerular filtration surface [17]. NO inhibits
mesangial contraction induced by angiotensin II [17].

Intrarenal NO synthesis blockade at levels that do not
change systemic arterial blood pressure results in a small
rise in afferent arteriolar resistance, a small decrease in the
glomerular ultrafiltration coefficient, and in single nephron
GFR [32]. However, glomerular capillary pressure and
efferent arteriolar resistance do not change unless the
systemic administration of higher doses of NOS inhibitors
results in a significant increase in systemic arterial blood
pressure. In juxtamedullary nephrons, both afferent and
efferent arterioles are under the tonic control of NO [33],
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whereas in cortical nephrons, the afferent arteriole is
predominantly under the tonic control of NO [32].

Studies of the relationship between angiotensin II and
NO on renal blood flow shows that NOS inhibition de-
creases both cortical and papillary blood flow, and that
AT-1 receptor blockade abolishes the effect of NOS inhi-
bition on the cortical circulation, but has minor effects on
the medullary blood flow [34]. These results suggest that
NO is an important modulator of the vasoconstrictor
influence of angiotensin II in the renal cortical circulation,
but not in the medullary region.

Nitric oxide also contributes to the regulation of renal
hemodynamics by participating in the control of the tubu-
loglomerular feedback (TGF) response and by modulating
renin release from the juxtaglomerular cells [35].

INTERACTION OF NITRIC OXIDE WITH
ENDOTHELIN

The endothelin (ET) family comprises three 21-amino
acid peptides (ET-1, ET-2 and ET-3) [36]. ET-1 is the
major renal ET isoform. ET receptors comprises two types
of receptors, ET-A and ET-B [37, 38].

Most endothelial cells express only ET-B receptors, and
activation of these receptors induces production of PGI2
and NO, which counteract the vasoconstrictor effect of
ET-1 [39]. Stimulation of the ET-A receptor, which is
widely distributed in vascular smooth muscle cells, medi-
ates most of the vasoconstrictor response to endothelins
[40]. ET-1 causes mesangial cell contraction and induces
mesangial cell mitogenesis [41].

The vast majority of ET-1 is derived from endothelial
cells where many agents including thrombin, angiotensin II,
inflammatory cytokines like IL-1 and TNF stimulate the
endothelial cell to synthesize and release ET-1 [42]. On the
other hand NO, bradykinin, PGE2, PGI2, atrial natriuretic
peptide and high levels of shear stress are known to inhibit
endothelial cell ET-1 production [42]. These factors appear
to inhibit ET-1 release through stimulation of endothelial
cell NO and/or cGMP production.

In porcine aorta, NO synthesis inhibition augments the
release of ET-1, while 8-bromo cGMP has an inhibitory
effect, suggesting that NO inhibits ET production via
cGMP dependent mechanism [43]. Furthermore, the ET-A
and ET-B receptor antagonist bosentan has recently been
shown to attenuate the pressor response to NOS inhibition
[44]. Human and animal studies have suggested that there
is a feedback mechanism between ET-1 and NO synthesis
that acts reciprocally to regulate vascular tone [44].

In hypertensive DS rats, NOS is down-regulated in the
aorta and kidney [12]. In these rats, contraction of aorta to
ET-1 is attenuated, suggesting that vascular ET-1 receptors
are down-regulated, due to an increased local ET-1 synthe-
sis linked to decreased NO production [12]. Moreover,
urinary excretion of ET-1 is markedly increased in hyper-
tensive DS rats given high dietary salt but not in Dahl

salt-resistant rats [13]. This finding supports the notion that
hypertension when accompanied by decreased NO synthe-
sis promotes up-regulation of vascular and renal ET-1
synthesis.

NITRIC OXIDE AND HYPERTENSION

The pivotal role of the kidney in the development of
arterial hypertension was noted through the connection
between hypertension and renal disease, in which the rise in
blood pressure is in part due to the kidney’s impaired
ability to excrete salt and water [45]. In hypertensive strains
of rats, renal cross transplantation experiments between
hypertensive and normotensive counterparts demonstrated
that hypertension “follows the kidney” [46].

NO plays an important role in the regulation of medul-
lary blood flow, and changes in the medullary flow can reset
the pressure-natriuresis relationship, promote sodium re-
tention and contribute to the development of hypertension
[47]. The pressure natriuresis relationship plays a role in
opposing incremental increases in blood pressure, where an
increase in blood pressure is compensated by an increase in
renal excretion of water and salt. Therefore, impaired NO
synthesis, resulting in abnormal regulation of renal blood
flow and sodium handling, may aggravate salt sensitive
hypertension.

Abnormal endothelial function has been reported in
several experimental models of hypertension, including
spontaneous hypertensive rats (SHR) [48], DS rats [49],
and deoxycorticosterone acetate (DOCA) salt hypertensive
rats [51]. In SHR, the impaired endothelium-dependent
relaxation to Ach is normalized by indomethacin, and this
suggests that in the SHR synthesis of vasoconstrictor(s)
derived from cycloxygenase plays an important role in
modulating abnormal vascular tone [51]. In DS and
DOCA-salt rats, indomethacin is ineffective, suggesting
that in DS and DOCA-salt rats, impaired endothelial
function is secondary to decreased production of NO.

Clinical and experimental data have demonstrated that
the physiologic response to an increase in cyclic strain, as
that imposed by hypertension, is to up-regulate vascular
constitutive NOS activity [16]. Hayakawa and Raij have
recently used age-matched SHR and DS rats with hyper-
tension of similar severity and duration to investigate the
relationship between hypertension and vascular NOS activ-
ity [12]. Aortic calcium dependent NOS activity measured
by the conversion of [14C] L-arginine to [14C] L-citrulline
was increased 106% in SHR but reduced by 73% in DS rats
compared with their normotensive counterparts (Fig. 1).
Hence, increased NOS activity in SHR suggests that SHR
but not DS rats are able to mount a normal physiologic
response to increased blood pressure, namely, an increase
in NOS activity.

In DS rats, antihypertensive therapy consisting of ACE
inhibitor and a diuretic concomitantly prevented hyperten-
sion, as well as the fall in NOS [13]. These studies support
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the notion that in DS rats, the fall in NOS activity is a
consequence and not a cause of hypertension.

LINK BETWEEN NITRIC OXIDE SYNTHASE
ACTIVITY AND RENAL, VASCULAR AND CARDIAC
INJURY

Comparative studies of SHR and hypertensive DS rats
suggest a link between NOS activity, vascular remodeling,
and end-organ injury (Fig. 2). In these studies, aortic
hypertrophy did not occur and LVH increased only 15% in
SHR [12], whereas in hypertensive DS rats the aorta and
left ventricle hypertrophied 36% and 88%, respectively. A
significantly negative correlation between NOS activity and
aortic and LVH was also noted [12–14]. Furthermore, in
the kidney, increased NOS activity in SHR was accompa-
nied by minimal glomerular and tubulointerstitial disease
as well as minimal urinary protein excretion. In hyperten-
sive DS rats, however, renal NOS activity fell markedly, and

severe glomerular injury, heavy proteinuria, and marked
tubulointerstitial disease occurred [14].

In conclusion, recent animal studies suggest that in
hypertension, NOS activity is linked with end-organ disease
and that impaired NOS activity may be more commonly
seen in salt-sensitive models of hypertension [12–14]. Stud-
ies in humans have suggested a similar scenario: salt
sensitive hypertensive patients are more prone to the
development of hypertensive end-organ disease, particu-
larly LVH and renal disease [7, 8]. Aging is characterized
by increased prevalence of hypertension, salt sensitivity [52]
and decreased endothelium-dependent relaxation medi-
ated by NO [53].

In view of these associations and the finding described, it
is tempting to speculate that 1) vascular NOS activity
(upregulation or downregulation) in response to hyperten-
sion may be genetically determined and 2) abnormalities in
vascular NOS responses may at least partially explain the

Fig. 1. Constitutive nitric oxide synthase
(cNOS) in aortas and kidneys from
normotensive Dahl salt-sensitive (DS) and
Wistar-Kyoto (WKY) rats and hypertensive DS
and spontaneous hypertensive rats (SHR).
Systolic blood pressure (SBP) mm Hg was: DS,
0.5%, 133 6 3; DS, 4.0%, 211 6 7; WKY,
137 6 3; and SHR, 219 6 12. *P , 0.5 vs. DS
0.5%; **P , 0.05 vs. WKY. Values are mean 6
SE (From [12]). Dahl rats were from the
Brookhaven strain.

Fig. 2. Urinary protein excretion (UproV),
glomerular injury score (GIS), tubular injury
score (TIS), and left ventricular hypertrophy
(LVH) in hypertensive DS 4.0% (SBP 211 6 7
mm Hg) and SHR (SBP 219 6 12 mm Hg),
matched for SBP and duration of hypertension.
*P , 0.05 versus SHR. Values are mean 6 SE.
(From [12–14]). Dahl rats were from the
Brookhaven strain.
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different rates of occurrence of end-organ disease in hu-
mans with hypertension of similar severity [2, 54, 55]. We
further speculate that in elderly patients the increased
susceptibility to the development of hypertensive end-
organ damage may be linked, at least in part, to the
“physiologic” decrease in endothelial NO bioactivity that
occurs with aging.
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APPENDIX

Abbreviations are: ACE, angiotensin converting enzyme; Ach, acetyl-
choline; AT-1, angiotensin II type 1; DOCA, deoxycorticosterone acetate;
DS, Dahl salt sensitive; ET, endothelin; ET-A, endothelin type A; ET-B,
endothelin type B; GFR, glomerular filtration rate; LVH, left ventricular
hypertrophy; NO, nitric oxide; NOS, nitric oxide synthase; PDGF, plate-
let-derived growth factor; SHR, spontaneous hypertensive rats; SNGFR,
single nephron glomerular filtration rate; TGF-b, transforming growth
factor b.
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