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Abstract We have constructed cDNA clones covering the entire 
coding region of mouse, human and rabbit preprocathepsin K 
mRNA for studies on bone turnover. The clone pMCatK-1 for 
mouse cathepsin K shares 87% nucleotide homology with the 
corresponding human and rabbit sequences. Analysis of a panel 
of mouse tissues for tissue distribution of cathepsin K mRNA 
revealed the highest levels in musculoskeletal tissues: bone, 
cartilage and skeletal muscle. In situ hybridization of developing 
mouse embryos was performed to identify the cellular source of 
cathepsin K mRNA. The strongest mRNA signal was detected in 
osteoclasts of bone, identified in serial sections by positive TRAP 
staining. Cathepsin K mRNA was also observed in some 
hypertrophic chondrocytes of growth cartilages. Association of 
cathepsin K production with degradation of bone and cartilage 
matrix suggests that this enzyme and its mRNA levels could 
serve as markers for matrix degradation in diseases affecting 
these tissues. 
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1. Introduction 

Continuous remodeling of extracellular matrix by concomi- 
tant resorption and new bone formation is a characteristic 
feature of bone. Normally bone resorption and formation 
are coupled and balanced so that no net change of bone 
mass occurs. The balance is regulated through a complex in- 
terplay of hormones, growth factors and other affector mole- 
cules [1 3]. Osteoporosis is a common disease in which an 
imbalance between bone resorption and bone formation re- 
sults in loss of net bone mass and in bone fragility. Biochemi- 
cally, analysis of bone turnover is challenging as changes in 
the concentrations of bone components are difficult to meas- 
ure. In experimental systems molecular biologic hybridization 
methods have demonstrated that mRNA levels for bone com- 
ponents, e.g. type I collagen, reflect the synthesis rate of new 
bone matrix [4-6]. Molecular biologic analyses of bone re- 
sorption through changes in osteoclast gene expression have 
proceeded more slowly. Active osteoclasts produce an acidic 
extracellular microenvironment (Howship's lacuna) and se- 
crete various proteolytic enzymes responsible for the degrada- 
tion of bone extracellular matrix proteins [7]. These proteases 
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The mouse cathepsin K sequence described in this paper has been 
submitted in GenBank/EMBL Data Library under accession number 
X94444. 

belong to at least two different gene superfamilies, the matrix 
metalloproteinases (MMPs) and the cysteine proteases (cathep- 
sins). Previous immunohistochemical and in situ hybridization 
data have demonstrated expression of cathepsins B, D, E, L, 
OC-2 [8-10] and MMP-9 (92 kDa gelatinase) [11] in osteo- 
clasts. Cathepsins B, D and L, as well as most MMPs, are also 
produced in a variety of other tissues, whereas recent data 
suggest that OC-2, a novel cysteine protease, and MMP-9 
are predominantly expressed in osteoclasts [10,11]. Therefore, 
these enzymes are likely to play a role in osteoclastic bone 
resorption and could serve as markers for bone degradation. 

The cDNA for an osteoclast specific cathepsin was first 
cloned for the rabbit as OC-2 [10], later also for the human 
as cathepsin K [12]. At the same time, another group cloned 
the same cDNA and named it cathepsin O [13]. However, as 
another completely different sequence isolated from human 
breast carcinoma had already been cloned as cathepsin O 
cDNA [14], we decided to use the name cathepsin K for 
this enzyme. Later, this same cDNA has been cloned as hu- 
man cathepsin 02 [15] and human cathepsin X [16]. 

The need for mouse specific cDNA and genomic clones is 
obvious. Characterization of the mouse genome and develop- 
ment of methods for its manipulation have provided research- 
ers with tools to generate mouse models for an increasing 
number of human diseases. Already several transgenic mice 
harboring different mutant transgenes are known where the 
balance between bone formation and resorption is affected. 
Osteoporosis, for example, has been observed in mice over- 
expressing the interleukin-4 [17] and TGF-[~2 genes [18]. Me- 
taphyseal osteopenia has also been discovered in transgenic 
mice harboring a dominant negative mutation in the cartilage 
specific type II collagen gene [5]. On the other hand, knock- 
out mutation of the interleukin-6 gene makes mice resistant to 
ovariectomy-induced osteoporosis [19]. Targeted inactivation 
of the c-fos and c-src genes inhibits bone resorption and shifts 
the balance towards bone formation resulting in osteopetrosis 
[20,21]. These and other models demonstrate the suitability of 
mice for research on bone turnover and osteoporosis. Molec- 
ular biologic characterization of these phenotypes requires 
mouse specific hybridization probes. Therefore, we decided 
to construct a cDNA clone for mouse preprocathepsin K 
for specific detection of the corresponding mRNA in various 
models of skeletal turnover, and for future production of the 
proenzyme under different promoters in transgenic mice. 

2. Materials and methods 

2.1. RNA isolation 
Total RNA was extracted from several mouse tissues. After dissec- 
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tion the samples were immediately frozen in liquid nitrogen, stored at 
-70°C, pulverized under liquid nitrogen and homogenized in guani- 
dinium isothiocyanate followed by ultracentrifugation through a 
CsCI2 gradient as described earlier [22]. 

2.2. cDNA synthesis 
Single stranded cDNA was synthesized for RNAs isolated from 

rabbit articular cartilage, human bone and newborn mouse calvarial 
bone using Moloney murine leukemia virus reverse transcriptase un- 
der conditions suggested by the supplier (Life Technologies, Gaithers- 
burg, MD). Both oligo(dT) and random hexamers were used as pri- 
mers. Aliquots of cDNA were used for amplification by the 
polymerase chain reaction (GeneAmp, Perkin-Elmer, Foster City, 
CA) using two oligonucleotide primers: ATGTGGGG(G/ 
A)CTCAAGGTTCT as the 5'-sense primer, and TCACATCTTIG/ 
A)GGGAAGCTGG as the 3'-antisense primer. The reactions were 
cycled by denaturing at 94°C for 1 min, annealing at 50°C for 2 
min and extension at 72°C for 2 min. After 30 amplification cycles 
aliquots of the reactions were fractionated by electrophoresis on 1.0% 
agarose gels. Specific fragments of expected size were purified and 
cloned into the pGEM-T vector as suggested by the supplier (Prome- 
ga, Madison, WI). Ligation products were transformed into compe- 
tent E. coli JMI09 cells. Plasmids containing appropriate inserts were 
sequenced on both strands using the Sanger dideoxy method (Seque- 
nase kit, USB, Cleveland, OH) and automated sequencer (ABI, Perkin 
Elmer). The sequences were stored and analyzed using Lasergene soft- 
ware (DNAStar, Madison, WI). The new clone for mouse prepro- 
cathepsin K cDNA reported here was named pMCatK-1, 

2.3. Northern hybridizations 
For Northern analyses 10 ~tg aliquots of total RNA were denatured 

with formamide, fractionated on 0.8% agarose gels and transferred by 
blotting onto Pall Biodyne nylon membranes as recommended by the 
supplier (Pall Europe, Portsmouth, UK). Equal loading of the gels 
was ascertained by measurement of the rRNAs fractionated on a 
duplicate gel stained with ethidium bromide, and by hybridization 
of the filters with a probe for 28S rRNA [23]. The filters were pre- 
hybridized at 42°C overnight. After hybridizations with the :~2p_ 
dCTP-labeled probes, the filters were washed and the bound probe 
detected by autoradiography and quantified by laser densitometry. 

2.4. In situ hybridizations and staining for tartrate resistant acid 
phosphatase (TRAP) 

For the preparation of RNA probes the pMCatK-1 cDNA clone 
was digested with AvalI restriction enzyme and the resulting 385 bp 
fragment was cloned into pBS plasmid vector (Stratagene, La Jolla, 
CA) and assigned pMCatK-7. The clone pMCatK-7 was linearized 
with BamHI (antisense) and HindIII (sense) restriction enzymes. The 
[35S]uridine triphosphate (1000 Ci/nmol, Amersham Life Science, 
Amersham, UK) labeled RNA probes were transcribed using a tran- 
scription kit (Promega). The labeled probes were fractionated on Se- 
phadex G-50 columns (Pharmacia, Uppsala, Sweden) and dissolved in 
hybridization buffer, and used at 15 000-20 000 cpm/gl. Details of" the 
technique used have been published earlier [24]. The samples were 
fixed in phosphate buffered formaldehyde and decalcified in 5% 
EDTA for 2 days, dehydrated in graded alcohols, defatted in xylene 
and embedded in paraffin. For in situ hybridization, the sections were 
pretreated with proteinase K and HC1, and acetylated. The hybridiza- 
tions were performed for 18 h at 52°C, followed by high stringency 
washes. Slides were dipped in autoradiographic emulsion (Kodak 
NTB-3, Rochester, NY) and exposed for 5-28 days at 10°C. After 
developing the film the sections were stained with hematoxylin. For 
specific detection of osteoclasts, adjacent serial sections were stained 
for TRAP activity using leukocyte acid phosphatase detection kit 
(Sigma, St. Louis, MO) as recommended by the supplier. 

3. Results 

3.1. Sequence analysis' o f  the cDNA elone Jbr mouse 
cathepsin K 

Existing h u m a n  and  rabb i t  sequences were used to design 
pr imers  for amplif icat ion of  the entire coding region of  mouse 
preproca theps in  K cDNA.  The same primers  were also used 

Fig. 1. Nucleotide and amino acid sequence of cDNA clone 
pMCatK-1 for the entire coding region of mouse preprocathepsin K 
mRNA. The complete nucleotide (line m) and deduced amino acid 
sequence (line M) of the clone are compared with the corresponding 
nucleotide sequences of the human (line h) and rabbit (line r) 
cDNA, and with the deduced amino acid sequences of the rabbit 
(line R) and human (line H) cathepsin K. The mouse sequences cor- 
responding to the oligonucleotide primers are in italics. The dots in 
the human and rat sequences denote nucleotide and amino acid 
identity. The arrows denote the putative cleavage sites of the signal 
peptide and the propeptide of the preprocathepsin K molecule. Con- 
sensus sequences conserved among all cathepsins that code for ami- 
no acids in the active site are underlined. Potential N-glycosylation 
sites are in bold face. 

for amplif icat ion of  the cor responding  h u m a n  and  rabbi t  
cDNA.  Nucleot ide  sequencing of  the latter cDNAs,  named  
p H C a t K - I  and  pKCatK-1 ,  respectively, confirmed their  iden- 
tity. Nucleot ide  sequencing of  the 990 bp  insert in the mouse  
cathepsin  K clone pMCatK-1  demons t ra t ed  87% sequence 
homology  with bo th  the h u m a n  and  the rabb i t  sequences 
(Fig. 1). A t  the amino  acid level the similarities were 87% 
and  90%, respectively. A homology  search against  protein 
sequence da tabase  revealed tha t  mouse  cathepsin K shares 
50% sequence similarity with rat  cathepsin S, 46% with mouse  
cathepsin L, 18% with mouse  cathepsin B and  15% with 
mouse  cathepsin D at the amino  acid level. Sequence homol-  
ogy analysis indicates tha t  the clone p M C a t K - I  is the mouse 
coun te rpar t  to rabb i t  OC-2 and  tha t  it is closely related to 
cathepsins  S and  L. 

3.2. Tis'sue dis'tribution o f  cathepsin K m R N A  
We first analyzed the overall  d is t r ibut ion of  cathepsin K 

m R N A s  in mouse tissues by hybridizing a filter conta in ing  a 
panel  of  total  R N A  isolated f rom 17 mouse  tissues with the 
[:~P]dCTP-labeled pMCatK-1  probe.  The highest  levels of  ca- 
thepsin K m R N A  were observed in skeletal tissues. U p o n  
extended exposure low levels of  cathepsin  K m R N A  were 
also detected in numerous  o ther  tissues (Fig. 2). A panel  of  
R N A s  were harvested f rom the l imbs of  developing mouse  
embryos.  Low levels of  the m R N A  were detected in the l imbs 
of  16.5 day embryos  and  in termediate  levels in 18.5 day em- 
bryos (data  no t  shown). R N A s  were also isolated f rom the 
long bones  of  newborn  and  adult  mice to fur ther  characterize 
the relative abundance  of  the cathepsin  K transcripts  bo th  
temporal ly  and  spatially (Fig. 3). The l imbs of  newborn  
mice were dissected under  a p repara t ion  microscope, all soft 
tissues were removed and  total  R N A  was isolated from bony 
diaphyses and  car t i laginous epiphyses separately. Cartilagi- 
nous  epiphyses of  the newborn  mouse  conta ined  intermediate  
levels of  the cathepsin K m R N A  whereas an extensive signal 
was detected in bony  diaphyses and  calvarial bone  (Fig. 3). 
Total  R N A  from adul t  mouse  long bones  was harvested from 
the epiphyses (conta in ing ar t icular  surface, subchondra l  bone  
and  the growth plate), metaphyseal  cort icocancellous bone,  
diaphyseal  cortical bone,  and  from bone  marrow.  In adul t  
mouse  long bones  the highest  signal for cathepsin K tran-  
scripts was found  in metaphyseal  bone ;  lower levels were 
seen in epiphyses and  in diaphyseal  cortical bone.  In bone  
m a r r o w  R N A  the signal was at background  level (Fig. 3). 

3.3. Localization o f  cathepsin K m R N A  in the developing 
mouse skeleton 

To identify the cell types responsible for cathepsin K pro- 
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duction in cartilage and bone the corresponding m R N A  was 
localized by in situ hybridization of  histologic sections of  de- 
veloping mouse embryos. The strongest signal was detected in 
multinuclear, apparently osteoclastic and chondroclastic cells 
of  various calcified tissues, e.g. calvaria, mandible, ribs, ver- 
tebrae and long bones of  16.5 and 18.5 day embryos and of  
newborn mice (Fig. 4). No  signal was detected in the limbs of  
14.5 day embryos (data not shown). T R A P  staining was per- 
formed on adjacent serial sections to identify osteoclasts: pos- 
itive T R A P  staining co-localized with the hybridization sig- 
nals on histologic sections (Fig. 5A,B). Specificity of  the 
hybridization was verified by hybridizations performed with 
the sense control probe of  adjacent sections (Fig. 4F). 

Analysis of  the growth plates of  newborn mouse long bones 
revealed the presence of  cathepsin K m R N A  in some hyper- 
trophic chondrocytes close to the osteochondral junction (Fig. 
5E). On some occasions using extended exposures for 28 days, 
distinct hybridization signals were also detected over individ- 
ual hypertrophying chondrocytes in central regions of  the epi- 
physeal heads of  the long bones of  newborn mice (Fig. 5E). 
The signal was also detected in some chondrocytes which had 
recently undergone mitosis (Fig. 5D). 

4. Discussion 

Previous analyses of  rabbit and human tissues have shown 
the expression of  the cathepsin K (OC-2) gene to occur pre- 
dominantly in osteoclasts and some other cells of  the mono-  
cyte/macrophage lineage [10,12,13]. By Northern analysis, ca- 
thepsin K transcripts have been detected at low levels in 
several other human and rabbit tissues but the exact cellular 
source of  these m R N A s  is not  known. The results of  our 
Northern analyses of  17 different mouse tissues for cathepsin 
K m R N A  agree mostly with the earlier observations in human 
and rabbit tissues [10,12,13]. Al though the highest levels of  the 
m R N A  in the mouse were clearly seen in the skeletal tissues 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7  
A 

Fig. 2. Northern analysis of mouse tissues for cathepsin K mRNA. 
Total RNA was isolated from the following mouse tissues: calvarial 
bone (lane 1), articular cartilage (2), auricular cartilage (3), nasal 
cartilage (4), pancreas (5), thymus (6), spleen (7), liver (8), kidney 
(9), brain (10), testis (11), heart (12), intestine (13), skin (14), lung 
(15), muscle (16), and eye (17). Denatured RNAs were electrophor- 
esed, transferred by blotting onto the hybridization membrane and 
hybridized with the pMCatK-I probe (A) and with a probe for 28S 
rRNA (B). The levels of the 28S rRNA (B) demonstrate that some 
variation also existed in the amount of total RNA loaded in each 
lane. 

~newborq; adult ; 

1 2 3 4 5 6 7  
S28 

Cath K 

Fig. 3. Northern analysis of mouse skeletal tissues for cathepsin K 
mRNA. Total RNA was isolated from newborn (lanes 1 3) and 
adult mouse (4-7) long bones. The samples are as follows: cartilagi- 
nous epiphysis (1), diaphysis (2), calvarial bone (3), epiphysis (4), 
metaphysis (5), diaphysis (6), and bone marrow (7). Denatured 
RNAs were electrophoresed, transferred by blotting onto the hybri- 
dization membrane and hybridized with the pMCatK-I probe and 
with a probe for 28S rRNA. 

(bone, cartilage and skeletal muscle), some differences were 
also seen between the three species in the distribution and 
relative abundance of  cathepsin K m R N A .  In our Northern 
analyses calvarial bone and long bones of  the newborn mice 
exhibited the highest cathepsin K m R N A  levels while in the 
rabbit the signal in calvaria appeared low [10]. We do not 
know at present whether these discrepancies reflect differences 
between the species studied or the developmental stages of  the 
tissues analyzed. 

Remodeling of  extracellular matrix is an essential part of  
bone and cartilage metabolism. Bone remodeling is essentially 
a surface-based phenomenon and in the skeleton there are 
several types of  bone surfaces available. It has been estimated 
that in humans cortical bone comprises three quarters of  the 
total bone mass. However, there is approximately 10 times 
more surface per mass ratio available for bone remodeling 
in the cancellous bone than in the cortical bone surfaces [1]. 
Our results on the quantification of  the relative abundance of  
cathepsin K m R N A  levels in adult mouse long bones reflect 
the amounts  of  available surface for bone remodeling. In the 
adult mouse long bones, the m R N A  levels for cathepsin K 
m R N A  were highest in metaphyseal corticocancellous bone 
where most of  the remodeling surfaces are located. Conveni- 
ent and sensitive molecular biologic hybridization methods 
are currently available for determination of  bone specific 
m R N A s  which reflect the synthesis rates of  these proteins in 
different experimental systems and species [4-6]. Demonstra-  
tion of  cathepsin K m R N A  in cells at sites of  bone and car- 
tilage degradation suggests that determination of  the m R N A  
levels might provide a similar molecular biologic tool for stud- 
ies on bone and cartilage resorption. Osteoclasts have been 
found to contain several proteolytic enzymes, but many of 
these are also found in other tissues [7 9]. In addition to 
tartrate resistant acid phosphatase, the 92 kDa  gelatinase 
(MMP-9) has also been shown to be highly enriched in mouse 
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Fig. 4. Expression of cathepsin K mRNA during endochondral ossification. Histological sections of mouse limbs were hybridized with antlsense 
(panels A-E) and sense (panel F) 35S-labeled RNA probes of clone pMCatK-7. The bound probe was detected with autoradiography. As an 
example of the initial stage of ossification a metatarsal bone of an 18.5 day embryo was sectioned for in situ hybridization (A C). A dark field 
view (in A) shows the positive hybridization signal for cathepsin K mRNA in central parts of the primary ossification center. B shows a low 
power view of the same section stained with hematoxylin, and C a magnification of the area boxed in B illustrating the autoradiographic grains 
in primitive multinuclear cells of bone. As an example of ongoing endochondral ossification femoral bones of 16.5 day embryos (D) and new- 
born mice (E and F) were used. Low power dark field view of 16.5 day femoral bones shows positive hybridization signals on trabecular bone 
surfaces and in calcifying growth cartilage (D); in newborn mouse femurs the signal is seen on endosteal and trabecular bone surfaces (E). Sec- 
tions hybridized with the sense probe showed no positive hybridization signal (F). The bar in C (for C-E) corresponds to 25 ~tm. The same dis- 
tance in panels A and B corresponds to 40 gm. 

osteoclasts  [11] and  it could also serve as a marke r  for bone  
degradat ion .  

As we were par t icular ly  interested in the cellular origin of  
cathepsin  K in skeleton, we per formed in situ hybr id iza t ions  
and  focused our  a t ten t ion  on l imbs of  the developing mouse  
embryos.  A l though  l imbs of  14.5 day embryos  are actively 
produc ing  carti lage componen t s  (Savontaus  et al., unpub-  
lished), no  sign of  calcified carti lage or bone  was detected in 
the sections analyzed;  nei ther  did we detect any positive signal 
for cathepsin  K m R N A .  In the l imbs of  16.5 day old embryos,  
p r imary  ossification centers were well developed and  extensive 

posit ive signal for cathepsin  K m R N A  was seen in the center  
of  the bone  mar row within the cells lining cancellous bone  
surfaces. This  is also the t ime by which b lood forming cells 
have  invaded the pr imary  bone  marrow.  As b lood fo rmat ion  
in the bone  m a r r o w  requires a lot of  space, the primit ive bone 
and  previously formed calcified carti lage need to be removed.  
The associat ion of  cathepsin K m R N A  with mul t inuclear  
bone  lining cells and  its co-locat ion with the positive T R A P  
sta ining confirms tha t  this enzyme plays a role in osteoclastic 
bone  and  carti lage degradat ion.  

Demons t r a t i on  of  cathepsin  K m R N A  in hyper t rophic  
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Fig. 5. TRAP staining and in situ hybridization of newborn mouse skeletal tissues for cathepsin K transcripts. A low power view of positive 
TRAP staining on an endosteal surface of newborn mouse femur counterstained with hematoxylin (A). The arrowheads in A demonstrate a po- 
sitive reaction for TRAP activity. A dark field view of an adjacent serial section shows the autoradiographic grains in the same locations (B). 
High power view of osteochondral junction stained with hematoxylin demonstrates autoradiographic signal for cathepsin K in a hypertrophic 
chondrocyte at the interface between bone and cartilage (C). High power views of proliferating (D) and hypertrophying (E) chondrocytes from 
the epiphyseal heads of newborn mice demonstrate positive hybridization signal for cathepsin K mRNA after extended exposure for 28 days. 
The bar in C corresponds to 25 gm. The same distance in A and B corresponds to 100 pm, in D to 500 pro, and in E and F to 250 pm. 

chondrocytes of  epiphyseal and growth cartilages is a novel 
observation and clearly demonstrates that the expression of  
the gene is not  unique to osteoclasts and other cells of  the 
monocyte /macrophage lineage. In a previous study on meta- 
carpal bones of  newborn rabbits no cathepsin K/OC-2 m R N A  
was observed in the hypertrophic chondrocytes in the growth 
cartilages [10]. Human  osteoarthritic hip bones have been re- 
ported to contain variable levels of  cathepsin K m R N A ,  but 
the report made no mention about  the possible presence of  
articular cartilage in the samples analyzed [12]. Further  stud- 
ies are needed to determine if the cathepsin K m R N A  in 
osteoarthritic samples is merely of  osteoclastic origin or 
whether chondrocytes play a role in local production of  ca- 
thepsin K in osteoarthritic cartilage. 

Chondrocytes within epiphyseal heads and growth plates 
are surrounded by a rigid cartilaginous matrix rich in col- 
lagens. During the time that chondrocytes are hypertrophying, 
the cells enlarge to about  five times their previous size. Before 
cell division or hypertrophy the chondrocytes must create 
space for the increase in cell size. In growth plates the dividing 
and hypertrophying cells create space by concomitantly 
synthesizing new matrix in the longitudinal direction resulting 
in long bone growth [25]. Thus the increase in cellular volume 
is not  solely dependent on matrix removal since space is also 
created by longitudinal growth. Actual reduction of  the 
amount  of  cartilaginous matrix is predominantly seen at the 
lowermost zones of  hypertrophic chondrocytes when the car- 

tilaginous septa are resorbed [26]. For  chondrocytes within 
epiphyseal cartilage any increase in their volume, whether by 
hypertrophy or division, is dependent on prior removal of  the 
surrounding matrix by production and secretion of  proteolytic 
enzymes. Other proteolytic enzymes have also been detected 
in hypertrophying chondrocytes [27]. We therefore interpret 
the results to indicate that local production and activation of  
cathepsin K by hypertrophying chondrocytes is related to deg- 
radation of  the cartilaginous extracellular matrix analogous 
to degradation to bone matrix by the osteoclast derived en- 
zyme. 

The degradation rates of  cartilage and bone matrices are 
clearly dependent of  the developmental stage of  the skeleton. 
With the c D N A  probe constructed here these possibilities can 
now be tested not only by a systematic analysis of  normal 
mouse development and growth but by analyzing the different 
mouse models of  osteoporosis, osteopetrosis and osteoarthro- 
sis. The availability of  the entire preprocathepsin K coding 
sequence also makes it possible to modulate  cathepsin K pro- 
duction in transgenic animals by expressing the c D N A  under 
different tissue specific promoters.  
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