
ELSEVIER

An International Joumal
Available online at www.sciencedirect.com computers &

. c , . . o . mathematics
with applications

Computers and Mathematics with Applications 49 (2005) 1655-1668
www elsevier com/locate/camwa

An Application of Swarm Optimization
to Nonlinear Programming

Y I N G D O N G , J I A F U T A N G * , B A O D O N G X U AND D I N G W E I W A N G
Department of Systems Engineering

Key Laboratory of Process Industrial Automation of MOE
School of Informatmn Scmnce and Engineering

Northeastern University
Shenyang 110004, P.R. China

dy_neu©s ina. com j ft ang©mazl, neu. edu. cn

(Recewed March ~00~; rewsed and accepted February 2005)

A b s t r a c t - - P a r t i c l e swarm optimization (PSO) m an optimzzatlon techmque based on population,
whmh has mmzlaritms to other evolutionary algorithms It is initialized with a population of random
solutions and searches for optima by updating generations Partmle swarm optimization has become
the hotspot of evolutionary computation because of Its excellent performance and szmple implemen-
tation. After introducing the basra principle of the PSO, a particle swarm optimization algorithm
embedded with constraint fitness priority-based ranking method zs proposed m this paper to solve
nonlinear programming problem By designmg the fitness function and constraints-handling method,
the proposed PSO can evolve with a dynamic neighborhood and varied inertia weighted value to find
the global optzmum The results from thzs prehminary mvestlgatmn are qmte promising and show
that this algorithm zs reliable and apphcable to almost all of the problems in multiple-dimensional,
nonhnear and complex constrained programming. It is proved to be efficient and robust by testing
some example and benchmarks of the constrained nonhnear programming problems. ~) 2005 Elsevier
Ltd. All rights reserved

K e y w o r d s - - P a r t m l e swarm optimization, Nonlmear programming, Global optimization, Evolu-
tionary algorithm, Priority-based ranking.

1. I N T R O D U C T I O N

Nonlinear programming (NLP) is a mathemat ica l programming technique where the objective

function is nonlinear, or one or more of the constraints have nonlinear relationship or both.

It is paid a t tent ion in past years as an impor tant branch of operat ions research and has wide

applications in the areas of military, economics, engineering optimizat ion, and management sci-

ence [1]. There are many tradi t ional methods in the l i terature for solving nonlinear programming

problems. However, most of them may solve NLP only on an approximate basis and assume

This paper is jointly financial supported by the National Natural Science Foundation (70471028, 70301007,
70431003) of the People's Repubhc of China together with the Excellent Youth Teacher Program of Mimstry
of Education (MOE) (2002-350), Program for New Century Excellent Talents m University (NCET-04-0280) of
MOE, Key Project of Science and Technology of MOE (104064), Key Laboratory of Process Industrial Automation
of MOE m NEU and Liaoning Provincial Natural Scmnce Foundatzon (20022019)

0898-1221/05/$ - see front matter (~) 2005 Elsevmr Ltd. All rights reserved Typeset by AA4S-TEX
doi. 10.1016/j.camwa 2005.02.006

1656 Y DoNe et al.

that goal and constraints are differentiable [2]. Recently, based on strict optimization theory
and algorithms, many researchers have proposed some new stochastic optimization methods and
intelligent algorithm, such as the genetic algorithm (GA) [3-5], analog neural networks [6], chaos
optimization algorithm [7], ant colony algorithm [8], line-up competition algorithm [9], and var-
ious hybrid methods [10-12]. However, each method has its own suitable application scope and
constraints condition. So far, there is not a method for determining the global optimal solution
to the general nonlinear programming problem.

Recently, a global optimization algorithm of population-based search, called particle swarm
optimization (PSO) was proposed [13,14]. PSO is a kind of random search algorithm that sim-
ulates natural evolutionary process and performs good characteristic in solving some difficult
optimization problems and hence, received many attentions since its origination. The PSO has
been successfully applied to a wide range of applications, such as optimization problem, traveling
salesman problem, job scheduling, etc. Because PSO has very deep intelligent background, it is
suitable for science computation and engineering applications.

One of the important factors that particle swarm optimization is attractive is simple that
there are very few parameters to adjust. It can achieve the optimal or near-optimal solutions
in a rather short time without enormous iterative computations in digital implementation. A
thorough mathematical foundation for the methodology was not developed so far with the step
of the algorithm; however, it has been proven to be very effective for application.

The particle swarm optimization has been found to be robust and fast in solving nonlinear, non-
differentiable, multimodal problems, but it is still in its infancy, particularly its search rates are
commonly lower and sometimes bring more computation when solving some difficult optimization
problems. A lot of work and research are needed. This paper focuses on the application of PSO
to a type of nonlinear programming problem. When applying PSO to NLP, how to configure
the fitness function and formulate and evaluate the infeasible particle as well as construct search
schemes are important issues. By introducing the concept of constraint fitness and objective
fitness, a constraint fitness priority-based ranking method is developed to evaluate the particles
during the search. To speed the search processes and overcome the disadvantages of the global
and local search, a dynamic neighborhood operator is proposed. By embedding the constraint
fitness priority-based ranking method and dynamic neighborhood operator, a special PSO is
developed to solve nonlinear programming problems. The superior performance of the proposed
PSO will be demonstrated by solving several NLP testing problems.

The rest of this paper is organized as follows. Section 2 explains the basic idea and overall
procedure of basic PSO. To apply the framework of basic PSO to solve NLP, a constraint fitness
priority-based ranking method and dynamic neighborhood operator are developed in Section 3.
The overall scheme of the proposed particle swarm optimization for solving NLP is presented
in Section 4. Finally, simulation results and analysis of some examples and the conclusions are
given in Sections 5 and 6, respectively.

2. P A R T I C L E S W A R M O P T I M I Z A T I O N

Particle swarm optimization (PSO) is an evolutionary computation technique developed by
Kennedy and Eberhart in 1995 [13,14]. It exhibits common evolutionary computation attributes
including:

(1) it is initialized with a population of random solutions,
(2) it searches for optima by updating generations, and
(3) potential solutions, called particles, are then "flown" through the problem space by fol-

lowing the current optimum particles.

The particle swarm concept originated as a simulation of a simplified sociaI system. The
original intent was to graphically simulate the graceful but unpredictable choreography of a
bird flock. The authors use the term s w a r m in accordance with a paper by Millonas [1I], who

Swarm Opt imizat ion 1657

developed his models for applications in artificial life, and articulated five basic principles of
swarm intelligence. The term particle was selected as a compromise. It could be argued that
the population members are massless and volumeless, and thus could be called "points", it is
felt that velocities and accelerations are more appropriately applied to particles, even if each is
defined to have arbitrarily small mass and volume [13].

Each particle keeps track of its coordinates in the problem space, which are associated with
the best solution (fitness) it has achieved so far. This value is called pBest. Another "best" value
that is tracked by the global version of the particle swarm optimization is the overall best value,
and its location obtained so far by any particle in the population. This location is called gBest.

The particle swarm optimization concept consists of, at each step, changing the velocity (accel-
erating) each particle toward its pBest and gBest locations (global version of PSO). Acceleration
is weighted by a random term, with separate random numbers being generated for acceleration
toward pBest and gBest locations.

The updates of the particles are accomplished according to the following equations. Equa-
tion (la) calculates a new velocity for each particle (potential solution) based on its previous
velocity (V,d), the best location it has been achieved (P,d or pBest) so far, and the global best
location (Pgd or gBest) the population has been achieved. Equation (lb) updates individual
particle's position in solution hyperspace. The two random numbers Cl and c2 in (la) are in-
dependently generated in the range [0,1]. The use of the inertia weight w provides improved
performance in a number of applications [15],

V,d -~ W * V ,d 3v C 1 * rand() * (P,d -- X,d) + c~ * Rand() * (Pgd -- X,d), (la)

X,d = X,d + V,d (l b)

The acceleration constants cl and c2 in equation (la) represent the weighting of the stochastic
acceleration terms that pull each particle towards pBest and gBest positions. Thus, adjustment
of these constants changes the amount of "tension" in the system. Low values of them allow
particles to roam far from target regions before being tugged back, while high value results in
abrupt movement toward, or past through target regions.

Particle's velocities on each dimension are confined to a maximum velocity Vm~x which is a
parameter specified by the user. If the sum of accelerations would cause the velocity on that
dimension to exceed Vm~x, then the velocity on that dimension is limited to Vmax.

There are two versions of the PSO: one is local version and another is global version. With
local version, particles only have information of their own and their neighbors' bests, rather than
that of the entire group. Instead of moving toward a kind of stochastic average of pBest and
gBest (the best location of the entire group), particles move toward points defined by pBest and
IBest which is the mdex of the particle with the best evaluation in the particle's neighborhood,

Vzd ~--- W * Vzd ~- (21 * r a n d () * (Pzd - - X z d) -~ C2 * Rand() * (Ptd - X , d) . (l c)

Global version is faster but might easily converge to trap into local optimum. Taking into
account the characteristic of these two versions, one can use global version to get quick result in
the first phase of search and use local version to refine the search finally.

From the above discussion, one can learn that there are two key steps when applying PSO to
optimization problems, i.e., the representation of the solution and the fitness function configura-
tion. Unlike GA, PSO doesn't need complex encoding and decoding processes and special genetic
operators, it take real numbers as particles in the aspects of representation solution.

From the procedure, one can learn that PSO shares many common points with GA, for example,
they start with a group of a randomly generated population, evaluate the population with fitness
values, update the population and search for the optimum with random techniques, and do not
guarantee optimal.

1658 Y DONO et al.

Dmtinguished from GA, PSO does not need genetic operators like crossover and mutation.
Particles update themselves with internal velocity. They also have memory, which is important
to the algorithm. Compared with genetic algorithm (GAs), the information sharing mechanism
in PSO is significantly different. In GAs, chromosomes share information with each other, so the
whole population moves like a one group towards an optimal area. In PSO, only gBest (or lBest)
gives out the information to others, hence, it is a one-way information sharing mechanism. The
evolution only looks for the best solution. Compared with GA, all the particles tend to converge
to the best solution quickly even in the local version in most cases [16].

The main disadvantage of the above basic PSO is that it is difficult to keep the diversity
of population, and to balance local and global search and hence it may result in local optimal
solutions. Besides, their search rates are commonly lower and sometimes need more computation
when solving some difficult optimization problems. A modified method is proposed in this paper
to deal with the above disadvantages of PSO in solving nonlinear programming problems.

3. C O N S T R A I N T F I T N E S S
P R I O R I T Y - B A S E D R A N K I N G M E T H O D

3.1. Canonica l Form of N L P

NLP problems with n variables and m constraints may be written as the following canonical
form,

max / (X) = f (x l , x 2 , . . . , x n) ,

s.t. g, (x) < 0, , = 1, 2 , . . . , ml, (2)

h, (x) = 0, i = ml + 1,ml + 2 , . . . , m .

3.2. Formula t ion and Eva lua t ion of Infeasible Par t ic les

The handling with the system constraints, especially the measurement and evaluation of illegal
particle are key techniques with PSO in solving NLP. In the implementation process, particles
randomly generated at the beginning and/or generated by internal velocity during the evolution-
ary process usually violate the system constraints resulting in infeasible particles. Therefore, the
handling of system constraints, particularly nonlinear equation constraints, and the measurement
and evaluation of infeasible particles are of research interest. Currently, several methods have
been developed to deal with system constraints. These methods mainly consider preserving fea-
sibility of solutions, penalty strategies and searching for feasible solutions, and they have several
drawbacks. To cope with constrained problems with evolutionary computation, four different
approaches can be adopted,

(1) rejection of infeasible individuals,
(2) repair of infeasible individuals,
(3) replacement of individuals by their repaired versions, and
(4) penalty function methods.

Among of them, the penalty function methods are particularly promising, as evidenced by recent
developments [2]. Based on the above analysis in this paper, a constraint fitness priority-based
ranking method is constructed to solve system constraints.

Fitness function stands for particle's fitness level to environment. In this section, two kinds of
fitness function are introduced, one is optimal fitness function Fobj(x) for objective function, and
the other is constraint fitness function Fcon(X) for constraints. Fobj(X) and Fcon(X) are defined
as follows.

DEFINITION 1. The function ih'~obj(X) is defined as objective fitness function at point x,

Fobs (x) = f (x). (3)

Swarm Optimization 1659

DEFINITION 2. The constraint fitness function F~(x) is defined to be the fitness level of point x

to the constrained condition (i).

The following two methods are suggested for evaluating the infeasible particles according to
different forms of constrained condition.

For inequality constraint g~(x) _< 0, {1,
(x) = 1

where gm~x(X) = max{g~(x), i = 1, 2,
For equality constraint h,(x) = 0,

9 (x)
g m a x (X) '

• . , m l .

where hmax(X) -- max {h~(x), ~ -- ml

g. (x) < 0,

g, (x) > 0,
(4)

1, h ~ (x) = 0 ,

Ih~ (x)[h~ (x) ~ 0, (5) F~ (x) = 1 hm~x (x) '

+ l , r n l ÷ 2 , . . ,m}.

DEFINITION 3. The function Fcon(X) Is defined as total constraint fitness function at point x.

Based on the above definition, taking into account the equality constraints, the weighted con-
straint function, denoted by Fcon (x), can be constructed as follows,

rn m

Fcon(X)=~-~w~F,(x) , ~ -~w~=l , 0 _ < w ~ < l , Vi. (6)
~ 1 ~ 1

Each w~, is the weight for constraint z, which can be generated randomly in order to assure the
particle's diversity. The function reveals the relationship between the point x and the feasible
domain Q; if Fcon(X) = 1, it indicates that x e Q. On the contrary, if 0 < Fcon(x) < 1, and the
smaller the F¢on(X) is, the performance of x "belonging to" Q becomes worse, i.e., x is further
away from the feasible domain Q. Hence, the total constraint fitness function represents the
fitness level of point x to the feasible domain Q

3.2.1. C o n s t r a i n e d - c o n d i t i o n ' s hand l ing

In light of the idea of PSO, particle flies through the problem space by following the current
optimum solution with the best fitness value. So, the basic idea for handling constraints may be
described as follows. First, all particles are ranked according to their fitness value. During the
ranking process, the highest constraint fitness value according to (4) is in the first position. If two
particles have the same constraint fitness values then their objective fitness value are compared.
The one with better objective fitness value is in prior to the other one.

In comparison with common penalty function, the advantage of this method is that the fitness
values of the feasible particles are always better than infeasible ones. So, we can obtain the
feasible particles rather easily in the iteration process. Using evolutionary operation, the optimal
feasible particle is achieved based on feasible particles and better infeasible particles. In this way,
feasible area and optimal solution are combined together while the optimal objective function
need not required to be greater than zero. Another advantage of the method is that there is no
need to adjust weighted factor between constraint and objective fitness. So, it is easier to apply
to real world problems.

From the above discussion, one knows that there are two levels of competition in the algorithm.
One is the survival competition inside constraints. The best one survives in every generation. The
other one is the competition between constraints and objective. According to the values of their
objective function and constraint fitness value, all particles are ranked to form a line-up. The
best particle is in the first position in the line-up, while the worst in the final position. The value
of fitness function of the first position is updated continually. As a result, the optimal solution
m approached rapidly during the implementation• So, the algorithm can be called competition
PSO (referred CPSO hereafter) in this paper.

1660 Y. DoNc et al.

3.2.2. D y n a m i c n e i g h b o r h o o d o p e r a t o r

Since both global version and local version have their own advantages and disadvantage re-
spectively, one can use them both in the algorithm while global version is used to get quick result
and local version can refine the search space.

From the definition of the fitness function, one can learn that there must have better particles
in the neighbor of the good fitness value. Hence, a dynamic neighborhood is presented. In
each generation, after calculating distances to every other particle, each particle finds its new
neighbors. Among the new neighbors, each particle finds the local best particle as the IBest. At
the beginning of the generation, a particle's neighborhood is defined as its own, i.e., neighborhood
includes only one particle. As the generation increases, neighborhood scope will grow larger and
larger and at the end will contain the whole feasible domain. The problem is how to define the
distance and how to define the local best particle.

DEFINITION 4. distill stands for the distance of the current particle from the I t h particle in the

fitness value space of the constraint function.

The algorithm used to search for local optima in each generation is defined as follows.

(1) Calculate the distances dist[/].
(2) Find the nearest k particles as the neighbors of the current particle based on the distances

calculated above. (k, the neighborhood size.)
(3) Find the local optima among the neighbors in terms of the fitness value of the objective

function.

4. O V E R A L L S C H E M E OF C P S O
F O R N O N L I N E A R P R O G R A M M I N G

The basic idea of CPSO may be described as follows. First, randomly produce an initial
population with the size of pops~ze particles. The information of infeasible particle is embedded
into the fitness function in order to measure the degree to which the infeasible particles are away
from the feasible domain so that they could not be rejected in later generation processes. Hence,
the CPSO ensures the optimum to be obtained from both sides of the feasible and infeasible
domains. In the process of iteration, for a particle x~ ~ Q, give it a less fitness value so that it
may have less chances than others to be selected as the pBest or lBest in the later generations.
As the generation increases, the individuals with less fitness values die out gradually, namely, the
individuals x, E Q with less value and individuals x, ~ Q die out gradually, and the particles
maintained in the population are the particles with a high value of objective function. After a
number of generations, the particle's objective function values reach the optimal or near optimal

from the two sides of feasible domain.

4.1. PSO Setting

Randomly produce an initial population with a definite number m including velocity and
position. This might assure the solution's diversity since it is randomly generalized.

The typical range is 20-40 for the number of particles. Actually, for most of the problems ten
particles is large enough to get good results. For some difficult or special problems, one can try

100 or 200 particles as well.
Dimension of particles and range of particles are all determined by the problem to be optimized.

One should specify different ranges for different dimension of particles.
Inertia weight controls the impact of previous historical values of particle velocity on its current

one. A larger inertia weight pressures towards global exploration (searching new area) while a
smaller inertia weight pressures toward fine-tuning the current search area. Without the first part
m (la), then the "flying" particles' velocities are only determined by their current positions and
their best positions in history. The velocities itself is memoryless. Suitable selection of the inertia

Swarm Optimization 1661

weight provides a balance between global and local exploration and exploitation, and results in
less iteration on average to find an optimal solution. At the beginning of the search process, a
larger inertia weight can be used and decreases step by step as the fitness value increases so as
to improve the local search ability.

Hence, using the method of Shi [20], i.e., inertia weight decreased linearly from about 0.9 to
0.4 during a run,

f lnerWt = ((f lNITWT - 0.4) * (Gmax - Gn)/Cmax) + 0.4, (7)

where Gmax is the maximum generation prespecified by the user and f I N I T W T is defined as
initial weight with the value of 0.9.

The acceleration constants Cl and c2 in equation (la) represent the weighting of the stochastic
acceleration terms that pull each particle toward pBest and gBest positions. Thus, adjustment
of these constants changes the amount of "tension" in the system. Low values allow particles
to roam far from target regions before being tugged back, while high value results in abrupt
movement toward, or past, target regions.

If cl = 0, then the particles have no cognition ability, which represents the private behavior of
the particle itself. It can explore the new search space under the reciprocity within the particles.
If c2 = 0, then there is no social share information, which represents the collaboration among
the particles. It is equivalent to run m particles independently at the same time for population
because of no interaction between the particles. It is very hard to obtain the optimal solution.

In this paper, Cl and c2 are set to equal to 2. However, other settings were also used by many
researchers.

Max-velocity Vmax determines the maximum change one particle can take during a run. There-
fore, Vmax is an important parameter. It determines the resolution, or fineness, with which regions
between the present position and the target (best so far) positions are searched. If Vmax is too
high, particles might fly through good solutions. If Vmax is too small, on the other hand, particles
may not explore sufficiently beyond locally good regions. In fact, in this case, they could easily be
trapped in local optima and unable to move far enough to reach a better position in the problem
space.

In this paper, Vmax is set at about 10% of the dynamic range of the variable to each dimension.
According to the degree of precision required, the maximum number of iterations the PSO

executes and the minimum error reqmrement can be adopted as stop condition

4.2. Overa l l P r o c e d u r e of t h e C P S O

In summary, the overall procedure of the CPSO can be described by pseudo code as follows:
For each particle

Initialize particle
End
Do

For each particle
Calculate constraint fitness value and objective fitness value
Ranking the fitness value according to (4)
If the fitness value is better than the best fitness value (pBest) in history

Set current value as the new pBest
End
Calculate neighborhood size according to the method described in 3.2.2
Choose the particle with the best fitness value of all the particles or neighborhood
as the gBest or 1Best

For each particle
Calculate particle velocity according to equation (la) or (lc)

1662 Y. DONG et al

Update particle position according to equation (lb)

End

While stop criteria is not satisfied

5. N U M E R I C A L E X A M P L E S A N D A N A L Y S I S

To demonstrate the effectiveness of the CPSO, some test examples with linear constraints,
nonlinear constraint, and nonconvex constraint, particularly testing problems with large size are

given in this section. The simulation analyses of the testing problems are conducted in three
parts. Par t 1 tries to take a comparison of the CPSO and GA on variant types of NLP problems.
Parts 2 and 3 aim to demonstrate the sensitivity analysis and the performance of the CPSO on
large size problems, respectively.

5.1. C o m p a r i s o n o f t h e C P S O a n d G A o n S o m e B e n c h m a r k i n g P r o b l e m s

The test problems P1 -P5 are selected as benchmarking examples for comparison [17]. Among
of them, test P1 is an interval optimization problem~ P2 includes inequality constraints, P3
is a multimodal problem, P4 and P5 are nonconvex linear problem and penalty hard problem
respectively, while P6 is an exponential function and search process is rather complex [18]. These

testing problems represent variant types of NLP problems.

rain

s . t .

P I :

P 2 :

s . t .
p 3 .

5.3578547x~ ÷ 0.8356891xlx5 + 37.293239xl - 40792.141,

0 < 85.334407 + 0.0056858x2x5 + 0.0006262xlx4 - 0.0022053x3x5 _< 92,

90 < 80.51249 + 0.0071371x2x5 ÷ 0.0029955xlx2 + 0.0021813x32 < 110,

20 _< 9.300961 ÷ 0.0047026x3x5 + 0.0012547xlx3 + 0.0019085x3x4 < 25,

78 _< xl _ 102,

33 _< x2 <_ 45,

27 < x~ < 45, i = 3, 4, 5,

x~ + x 2 + x l x 2 - 14xl - 16x2 + (x3 - 10) 2 + 4 (x4 - 5) 2

+ (x5 - 3) 2 + 1 (x6 - 1) 2 + 5 ~ + 7 (~8 - 11) 2 + 2 (x9 - 10) 2 + (x l0 - 7) + as ,

105 - 4xl - 5x2 + 3x7 - 4xs >_ 0,

- 3 (x l - 2) 2 - 4(x2 - 3) 2 - 2x~ ÷ 7x4 ÷ 120 _> 0,

- 10Xl -}- 8x2 ÷ 17x7 - 2x8 ~ 0,

- 2x 2 - 2 (x2 - 1) 2 + 2xlx2 - 14x5 ÷ 6x6 ~ 0,

8Xl - 2x2 - 5x9 ÷ 2x10 + 12 >_ 0,

- 5x~ - 8x2 - (x3 - 6) 2 + 2x4 ÷ 40 > 0,

3xl - 6x2 - 12 (x9 - 8) 2 + 7x10 >_ 0,

- 0.5 (zl - 8) 2 - 2 (x 2 - 4) 2 - 3 x ~ + x ~ + 3 0 > 0 ,

- 10 < x~ < 10, i = 1 , . . . , 1 0 ,

sin 3 (27rxl) sin 3 (27rx2),

x 2 - x2 + 1 _< 0,

l - x 1 + (x 2 - 4) 2 < 0,

0 < x l < _ 1 0 , 0 < x 2 _ < 1 0 ,

P4 :

P5 :

P6 : {

Swarm Optimization

min (x1--10) 2 + 5 (x 2 - 1 2) 2 + x 4 + 3 (x 4 - 1 1) 2 + 1 0 x 6 + 7 x 2 + x ¢

- - 4 x 6 x ~ - - 10x6 -- 8x~,

s.t. 127 - - - x3 - - > 0,

282 - 7xl - 3x2 - 10x~ - x4 + x5 >_ 0,

196 - 23Xl - x~ - 6x62 + 8x7 _> 0,

- 4 x ~ - x ~ + 3 x l x 2 - 2 x ~ - 5x6 + 11x7 >_ 0,

- 10 < x~ _< 10 ~ = 1 , . . . , 7 ,

min xl + x 2 +x3 ,

s.t. 1 - 0 . 0 0 2 5 (x 4 + x 6) > _ 0 ,

1 - 0.0025 (x5 + x7 - x4) k 0,

1 - 0.01 (xs - as) k 0,

x l x 6 - 833.33252x4 - 100Xl + 83333.333 > 0,

x 2 x 7 - 1250x5 - x 2 x 4 Jr- 1250x4 > 0,

X 3 X s - 1250000 - x 3 x 5 + 2500x5 > 0,

1 0 0 < x 1 _ 1 0 0 0 0 , 1000 < x, <10000, ~ = 2, 3,10 < x, <1000,

min - al exp - a 2 n x - exp E cos (a 3 x g) -4- a l -]- e ,

= 3-=1

s.t. - 5 < x 3 < 5 2 = 1 , 2 .

1663

z = 4 , . . . , 8,

P6 is Ackley function [19] and the optimum is 0. Constants are set as follows,

a 1 --'~ 2 0 , a 2 ---- 0 . 2 , a 3 = 2 7 r , e = 2 . 7 1 2 8 2 .

The comparison results of the worst, the mean and the best solutions for the testing problems
by GA and the CPSO are given in Table 1. Due to the CPU times the algorithms GAs run are
neglected in literature [17-19], the last column presents the CPU time when the algorithm CPSO
terminated at the best solution using IBM T42 with Pentium-M 1.5 GHz processor and 512 M
memory.

CPSO-- the results as Gmax=1000, popsize=50, cl -- c2 = 2; GA- - the results in Xie [17]
except P6.

The results shown in Table 1 that the CPSO is always superior to GA except for Test P1 from
the best solution perspective and for the Test P2 from the worst and mean solution perspective

as marked in bold style. That is to say, there are five out of six testing problems that show the
CPSO is better than GA either from the best solution, mean solution or the worst solution. From
the perspective of CPU time the algorithm runs, one can also find that the algorithm CPSO is
effective. I t can be concluded from the simulation of benchmarking problems that the CPSO is
more effective at least not worse than GA.

5.2. Sens i t i v i t y Ana lys i s of t h e C P S O

In this section, two testing examples are selected from the literatures [5,19] to demonstrate the
CPSO is effective from the sensitivity perspective The testing P7 [5] and P8 [19] are given as

1664 Y DONG et al.

Table 1

Test ing problems Type

P 1 Min

P2 Min

P3 Max

P4 Mln

P5 Mln

P6 Min

Compamson results of test)roblems using CPSO and GA

Algor i thm Best solution Worst solution Mean solution CPU time(s)

CPSO -30664 7 -30656 1 -30662.8 1

GA -30665 5 -30236 6 -30533.8

CPSO 24.80818 26.18273 25.40852 1.5

GA 25.237 26 110 25 237

CPSO 0.9999 0 9999 0 9999 0.8

GA 0.95825 0.95825 0 95825

CPSO 680 667 680 9047 680 7867 1

GA 680.67 683.74 681.62

CPSO 7114.84 7225 979 7222.389 0.5

GA 7115 00 7384.29 7795.93

CPSO 0 005451 0 005451 0.005451 0.1

GA 0 005456

m a x

s . t .
P7:

m a x

P8 : s.t.

f (x) = - 2 x ~ + 2x lx2 - 2x~ + 4x l + 6x2,

2x~ - x2 _< 0,

Xl + 5x2 _ 5,

Xl, X2 ~ O,

2 2 2
XlX2X3

f (x) = + + 2 3 2 2 ,
23~2X 3 -~- XlX2X 3

< 4,

X l , X 2 , X 3 ~" O.

Tang [5] solved the above problem using hybrid genetic algorithm combining the penalty func-
tion and gradient direction search with the best solution being (0.658,0.868) and the best objective
being 6.61305 (optimal solution is 6.613086).

For testing PS, Liu [19] got a better solution using real number coding after 50 iterations. The
best solution is (.8692552, .5345225, 1.313627) with objective function being 0.15373.

There are several parameters in the CPSO, among which the population size and maximum
number of generations are important ones to affect the effectiveness when the algorithm is imple-
mented. To show sensitivity of the CPSO with parameters, the simulations are conducted when
the population size pops,ze are set as 10, 20, 30, and 40, and maximum number of generation
N G as 20, 50, and 1000, respectively. Table 2 presents the simulation results of the CPSO for
the testing P7 and P8 under all 12 combinatorial cases of the population size and maximum
generations.

It can be seen from Table 2 that the best solution is slightly affected by the population size
and is greatly affected by the maximum generation N G until it reaches a suitable level, such as
NC = 50. At the same Ume compared with GA, CPSO can achieve the global optimization very
rapidly. From Table 2, one can also observe that the solution is almost satisfied when pops,ze

is 30, and the best solution can be obtained when iteration reaches 50 in most of the cases.
It can be observed from the simulation experiences with other values of population sizes and

number of generations that, given a specified population size, the value of the best objective
function is becoming better as the number of the iterations increases, and wce versa, given a
specified generation number the objective function will be improved also, however slightly with
the increase of the population sizes. The computation experiences show that, in general, 500
iterations would be enough for the testing problem since an insignificant improvement of the
objective function is observed when the iteration number increases from 500 to 1000.

Swarm Optlmizatlon

Table 2 The best solutlon under different populatlon szzes and maximum generatlons
of CPSO

1665

Popsize NG

20

10 50

1000

20

20 50

1000

20

30 50

1000

20

40 50

1000

Test P7 Test P8

Best solution Best objective Best solutlon Best objective

6550682,.8663893 6 60344714 .865603,.5098256, 1.265862 .15372290

.6588718, 8682256 6 61308426 .8692601, 5344981, 1 3 1 4 0 9 15372999

.6588723, 8682255 6 .61308528 8692552, 5345225,.313627 .15373001

.6587232, 8681039 6.61266253 .8776503, 544467, 1 318814 15372804

.6588687,.8682261 6 .61307538 869847,.5351846, 1 314006 15373000

6588723,.8682255 6.61308528 .8692552, .5345225, 1.313627 15373001

6587971, .868145 6 .61265623 8591962, 5379595, 1 323435 15372619

.6588702,.8682253 6 .61307982 8708594, 5354301, 1.314003 15372989

6588723,.8682255 6 61308528 8692552, 5345225, 1 313627 15373001

.6576564,.8681041 6 61103395 .8778075, 5398821, 1.320782 1537285

6588691, 8682251 6 61307918 8692278, 5345769, 1 313367 .1537300

.6588723,.8682255 6 61308528 8692552, 5345225, 1 313627 .1537300

To reflect the convergence of a lgor i thm CPSO to the op t imal solut ion with the generations, the

left pa r t of the Table 3 presents the best solutions of the tes t ing P7 varying with the i terat ions

numbered from 1 to 20. I t can be observed t ha t the best object ive is becoming improved great ly

in the beginning i tera t ions and then sl ightly wi th the increase number of i tera t ions and gradual ly

reaches a near op t imal solution.

Par t icular ly , to i l lus t ra te effectiveness of constraint fitness pr ior i ty based ranking method in

the PSO, a pena l ty-based evaluat ion is embedded as fitness in the PSO (referred as pena l ty -PSO

in this paper) is in t roduced as comparison counter. Pena l ty function used in the pena l ty -PSO is

6 75
6.5

6. 25
6

5 75
5.5

5.25
5

4.75
4 5

4. 25
4

f~ Penalty
PSO

CPSO

q I I l I I I I I I I I I + I I I I I I

Figure 1 Relation between generation and objective of P7

defined as in [18]. Their comparison results of the tes t ing P7 are shown in Table 3 and Figure 1,

from which one can see t ha t CPSO is more effective and superior t han pena l ty -PSO.

5.3. Per for manc e of the C P S O on Large Size P r o b l e m

In order to tes t the performance of the CPSO on large size problem, an in tegra ted logistics

decision problem selected from [20] is in t roduced as a tes t ing example and the two layer decom-

posi t ion method (TLD) [20] is given as comparison counter.

The in tegra ted logistic decision problem (IDM-M) is to determine s imul taneously the assign-

ment of annual product ion quant i ty and lot size at the suppliers and the annual shipment amounts

and order quan t i ty from the suppliers to the dest inat ions to meet the demands with min imum to-

ta l costs in a product ion and dis t r ibut ion network with mul t ip le suppliers, mul t ip le dest inat ions,

and mult ip le products . I t is formula ted as a large scale NLP tha t is nei ther convex nor concave
with number of 2mL(1-4-n) decision variables and of (nL + 2mL-4-m + L] inequal i ty and equal i ty

1666 Y. DONG et al.
Table 3. The best solutions of the testing P7 varying with generation number using
CPSO and penalty-PSO

Gn

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

c P s o PenMty-PSO

Best Solution Best Objective Be~ Solution Best Objectxve

(.5005807, .833949) 5 8 7 5 5 4 (.1527652, 8667169) 4.795114

(515465, .8359336) 5.94883 (.3787496, .571216) 5 515699

(.5277445, 837571) 6 . 0 1 0 2 7 2 (.3128578, 7889293) 6 195228

(.5499627, 8806564) 6 . 3 1 2 9 6 3 (.0455868, .495745) 6.436533

(547456, 8187297) 6 312963 (.3585616, .4849982) 6 436533

(6162313, 8259138) 6 373346 (.2041051, .1326934) 6.436533

(5665962, .786211) 6 . 4 9 0 5 2 1 (.3759846, 9222181) 6 436533

(6093932, 8157683) 6.512958 (3242176, 8928556) 6 436533

(.6066412, 8475772) 6 . 5 1 2 9 5 8 (.5849726, 830576) 6 436533

(.6001881, 8761123) 6 576381 (3825417, .8651791) 6 532469

(5794246, 8664396) 6 . 5 7 6 3 8 1 (.5018676, 8389922) 6.532469

(.6430827, 8623704) 6 576381 (.579161, .8313762) 6.532469

(.6327764, .8685131) 6 576381 (.548866, .8366776) 6 532469

(.6390524, 8710732) 6 576381 (526365, .8729435) 6 532469

(6472884, .8700998) 6 . 5 7 6 3 8 1 (.5365801, .8576724) 6.532469

(6514064, 8696131) 6 584051 (.6367062, 8612269) 6 565932

(.6498362, .8699648) 6.595132 (6228947, 8707712) 6.598411

(.6491703, 8694377) 6 595132 (.655944, .8660849) 6.598411

(.6504188, 8696761) 6.595132 (6523901, 8601647) 6 598411

(656019, 8687224) 6 603044 (.6568159, .8682291) 6.601675

constraints , where m, n, and L are numbers of suppliers, dest inat ions, and products involved.

For example, for 10 suppliers, 10 dest inat ions, and 50 products , the model has 11000 decision

variables. Due to being a large scale NLP problem, an effective heurist ics TLD is developed

in [20] to solve it.

The comparison results of the IDM-M with different sizes using the CPSO and TLD are show

in Table 4. I t can be shown from the Table 4 tha t the CPSO is s l ightly more effective than the

TLD from the perspect ive of the best solutions and the C P U t ime required.

Table 4. Comparison Results between TLD and CPSO for different size of examples
(Popsize = 30, Gmax = 50).

Problem size
(m*n* L) CP$O

Cost

TLD [20] Diff(%)

5*5*5 672,716 674,670 0.28

5"5"10 1,292,585 1,304,090 0.89

5"10"10 1.34 2,0481,25 2,075,570

5"10"20 4,406,440 4,488,400

5"10"50 9,743,172 9,988,700

10"10"10 2,154,144 2,190,550

4,376,652 10"10"20 4,469,000

1 86

2 52

1 69

2.11

2.87

CPU Time (see)

CPSO TLD [20]

5 5

49 51

116 121

204 216

365 398

175 189

293 312

746 829 10"10"50 9,622,824 9~899,000

Swarm Optlmizatmn 1667

6. C O N C L U S I O N S

In this paper, a new CPSO algorithm with embedding constraint fitness priority-based ranking

method and dynamic neighborhood operator is proposed for the nonl inear programming problem.

It is the first t ime that , have been proposed for formulating and measuring the infeasible point.

In comparison with the basic particle swarm optimization, the CPSO performers the following

characteristics,

(1) embedding the information of illegal particle into the evaluation process to develop new

kinds of evaluation function,

(2) it can converge to the opt imum from both sides of the feasible domain and the infeasible

domain.

The theoretical analysis and the comparison results obtained by using GA and CPSO and

sensitivity analysis of the CPSO as well as performance of the CPSO on largest size problems

show tha t the CPSO is proved to be an effective one for solving NLP, especially where a significant

degree of nonl ineari ty is present.

R E F E R E N C E S
1 M.S. Bazarra and L M Shetty, Nonlinear Programming" Theory and Algomthms, pp 124-159, 373-378,

John Wiley and Sons, New York, (1979).
2 R Y K Fung, J.F Tang and D. Wang, Extension of a hybrid genetic algorithm for nonhnear programming

problems with equality and inequality constraints, Computers and Operatwns Research 29, 261-274, (2002)
3 Y. L1 and M. Gen, Non-linear mixed integer programming problems using genetic algorithm and penalty

function, In Proceedzngs of 1996 IEEE Int Conf. on SMC, 2677-2682, (1996)
4 Y. Takao, M. Gen, T Takeaki and Y. Li, A method for interval 0-1 number non-hnear programming problems

using genetic algorithm, Computers and Industmal Engmeemng 29, 531-535, (1995).
5. J F. Tang, D Wang et al., A hybrid genetic algorlthm for a type of nonlinear programming problem, Com-

puters Math. Apphe. 36 (5), 11-21, (1998)
6. J Su, A Hu and Z He, Solving a kind of nonhnear programming problems via analog neural networks,

Neurocomputzng 18, 1-9~ (1998).
7 Z.L Wang, L Qm, Q Fu and C. Llang, Apphcatlon of chaos optimization algorithm to nonlinear constrained

programmmg (in Chinese), Journal of North China Institute of Water Conservancy and Hydroelectmc Power
2a (2), 1-3, (2002)

8 M Dongo, V. Maniezzo and A. Colori, Ant system Optlmlzatlon by a colony of cooperating agents, IEEE
Trans On System, Man, and Cybernetzcs 26 (1), 28-41, (1996).

9 L.X. Yan and D. Ma, Global optimization of non-convex nonlinear programs using line-up competition algo-
rithm, Computers and Chemzcal Engmeemng 25, 1601-1610, (2001)

10. F. Glover et al, Genetic algorithm and tabu search' Hybrid for optimizations, Computers and Operatzons
Research 22, 111-134, (1995).

11 T C Linet al., Applying the genetic approach to simulated annealing in solving some NP-hard problems,
IEEE Trans On SMC 23, 1752-1766, (1993).

12 R. Ostermark, Solving a nonlinear non-convex trim loss problem with a genetm hybrid algorithm, Computers
and Operatzons Research 26, 623-635, (1999)

13. J Kennedy and R Eberhart, Partmle swarm optimization, In Proc. IEEE Int Conf. on Neural Networks,
1942-1948, Piscataway, N J, (1995)

14 R Eberhart and J Kennedy, A new optimizer using particle swarm theory, In Proe. 6th Int Symposzum on
Mzcro Machine and Human Science, 39-43, Nagoya, Japan, (1995)

15 Y Shi and it. Eberhart, A modffied particle swarm optimizer, Proc IEEE Int Con/ on Evolutzonary
Computatwn, 69-73, (1998).

16. J. Kennedy and W.M. Spears, Matching algorithms to problems An experimental tests of the particle swarm
and some genetm algorithms on the multlmodal problem generator, In Proe IEEE Int Con/on Evolutzonary
Computatwn, pp 78-83, Anchorage, AK, (1998).

17 X.F Xm, W J Zhang, J Ruan and Z.L Yang, Genetic algorithm for constrained nonlinear programming
problems (in Chinese), Computer Engmeemng and Apphcatzon 21, 64-67, (2002).

18 T Back, Evolutzonary Algomthms ~n Theory and Practzce, Oxford University Press, New York, (1996)
19 B D Lm and R. Zhao, Stochastze Programmzng and Fuzzy Programming (in Chinese), pp 26-33, Tsmghua,

Beljmg, (2001).
20 J F Tang, K L. Yung and A.W.H. Ip, Heurmtms-based integrated decmion for logistm networks systems,

Journal of Manufactumng Systems 23 (1), 1-13, (2004).
21 M M Mlllonas, Swarms, phase transition, and collective mtelhgence, In Artzfiezal Lzfe III, (Edited by C G

Langton), Addison Wesley, Massachusetts, (1994)

1668 Y DONG et al

22 P N Suganthan, Partmle swarm optimizer with nelghbourhood operator [A], In Proc of the Congress on
Evolutwnary Computation [C], pp 1958-1962, Washington, DC, (1999)

23 Y.F. Shl and R. Eberhart, Parameter selection m particle swarm optimization, In Proc. of the 7 ~u Annual
Conf on Evolutwnary Programming, pp 591-600, (1998)

