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A b s t r a c t - - P a r t i c l e  swarm optimization (PSO) m an optimzzatlon techmque based on population, 
whmh has mmzlaritms to other evolutionary algorithms It is initialized with a population of random 
solutions and searches for optima by updating generations Partmle swarm optimization has become 
the hotspot of evolutionary computation because of Its excellent performance and szmple implemen- 
tation. After introducing the basra principle of the PSO, a particle swarm optimization algorithm 
embedded with constraint fitness priority-based ranking method zs proposed m this paper to solve 
nonlinear programming problem By designmg the fitness function and constraints-handling method, 
the proposed PSO can evolve with a dynamic neighborhood and varied inertia weighted value to find 
the global optzmum The results from thzs prehminary mvestlgatmn are qmte promising and show 
that this algorithm zs reliable and apphcable to almost all of the problems in multiple-dimensional, 
nonhnear and complex constrained programming. It is proved to be efficient and robust by testing 
some example and benchmarks of the constrained nonhnear programming problems. ~) 2005 Elsevier 
Ltd. All rights reserved 

K e y w o r d s - - P a r t m l e  swarm optimization, Nonlmear programming, Global optimization, Evolu- 
tionary algorithm, Priority-based ranking. 

1. I N T R O D U C T I O N  

Nonlinear programming (NLP) is a mathemat ica l  programming technique where the objective 

function is nonlinear, or one or more of the constraints have nonlinear relationship or both. 

It  is paid a t tent ion in past years as an impor tant  branch of operat ions research and has wide 

applications in the areas of military, economics, engineering optimizat ion,  and management  sci- 

ence [1]. There are many tradi t ional  methods in the l i terature for solving nonlinear programming 

problems. However, most of them may solve NLP only on an approximate  basis and assume 
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that goal and constraints are differentiable [2]. Recently, based on strict optimization theory 
and algorithms, many researchers have proposed some new stochastic optimization methods and 
intelligent algorithm, such as the genetic algorithm (GA) [3-5], analog neural networks [6], chaos 
optimization algorithm [7], ant colony algorithm [8], line-up competition algorithm [9], and var- 
ious hybrid methods [10-12]. However, each method has its own suitable application scope and 
constraints condition. So far, there is not a method for determining the global optimal solution 
to the general nonlinear programming problem. 

Recently, a global optimization algorithm of population-based search, called particle swarm 
optimization (PSO) was proposed [13,14]. PSO is a kind of random search algorithm that sim- 
ulates natural evolutionary process and performs good characteristic in solving some difficult 
optimization problems and hence, received many attentions since its origination. The PSO has 
been successfully applied to a wide range of applications, such as optimization problem, traveling 
salesman problem, job scheduling, etc. Because PSO has very deep intelligent background, it is 
suitable for science computation and engineering applications. 

One of the important factors that particle swarm optimization is attractive is simple that 
there are very few parameters to adjust. It can achieve the optimal or near-optimal solutions 
in a rather short time without enormous iterative computations in digital implementation. A 
thorough mathematical foundation for the methodology was not developed so far with the step 
of the algorithm; however, it has been proven to be very effective for application. 

The particle swarm optimization has been found to be robust and fast in solving nonlinear, non- 
differentiable, multimodal problems, but it is still in its infancy, particularly its search rates are 
commonly lower and sometimes bring more computation when solving some difficult optimization 
problems. A lot of work and research are needed. This paper focuses on the application of PSO 
to a type of nonlinear programming problem. When applying PSO to NLP, how to configure 
the fitness function and formulate and evaluate the infeasible particle as well as construct search 
schemes are important issues. By introducing the concept of constraint fitness and objective 
fitness, a constraint fitness priority-based ranking method is developed to evaluate the particles 
during the search. To speed the search processes and overcome the disadvantages of the global 
and local search, a dynamic neighborhood operator is proposed. By embedding the constraint 
fitness priority-based ranking method and dynamic neighborhood operator, a special PSO is 
developed to solve nonlinear programming problems. The superior performance of the proposed 
PSO will be demonstrated by solving several NLP testing problems. 

The rest of this paper is organized as follows. Section 2 explains the basic idea and overall 
procedure of basic PSO. To apply the framework of basic PSO to solve NLP, a constraint fitness 
priority-based ranking method and dynamic neighborhood operator are developed in Section 3. 
The overall scheme of the proposed particle swarm optimization for solving NLP is presented 
in Section 4. Finally, simulation results and analysis of some examples and the conclusions are 
given in Sections 5 and 6, respectively. 

2. P A R T I C L E  S W A R M  O P T I M I Z A T I O N  

Particle swarm optimization (PSO) is an evolutionary computation technique developed by 
Kennedy and Eberhart in 1995 [13,14]. It exhibits common evolutionary computation attributes 
including: 

(1) it is initialized with a population of random solutions, 
(2) it searches for optima by updating generations, and 
(3) potential solutions, called particles, are then "flown" through the problem space by fol- 

lowing the current optimum particles. 

The particle swarm concept originated as a simulation of a simplified sociaI system. The 
original intent was to graphically simulate the graceful but unpredictable choreography of a 
bird flock. The authors use the term s w a r m  in accordance with a paper by Millonas [1I], who 
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developed his models for applications in artificial life, and articulated five basic principles of 
swarm intelligence. The term particle was selected as a compromise. It could be argued that 
the population members are massless and volumeless, and thus could be called "points", it is 
felt that  velocities and accelerations are more appropriately applied to particles, even if each is 
defined to have arbitrarily small mass and volume [13]. 

Each particle keeps track of its coordinates in the problem space, which are associated with 
the best solution (fitness) it has achieved so far. This value is called pBest. Another "best" value 
that is tracked by the global version of the particle swarm optimization is the overall best value, 
and its location obtained so far by any particle in the population. This location is called gBest. 

The particle swarm optimization concept consists of, at each step, changing the velocity (accel- 
erating) each particle toward its pBest and gBest locations (global version of PSO). Acceleration 
is weighted by a random term, with separate random numbers being generated for acceleration 
toward pBest and gBest locations. 

The updates of the particles are accomplished according to the following equations. Equa- 
tion (la) calculates a new velocity for each particle (potential solution) based on its previous 
velocity (V,d), the best location it has been achieved (P,d or pBest) so far, and the global best 
location (Pgd or gBest) the population has been achieved. Equation (lb) updates individual 
particle's position in solution hyperspace. The two random numbers Cl and c2 in (la) are in- 
dependently generated in the range [0,1]. The use of the inertia weight w provides improved 
performance in a number of applications [15], 

V,d -~  W * V ,d  3v C 1 * rand() * (P,d -- X,d) + c~ * Rand() * (Pgd -- X,d), (la) 

X,d = X,d + V,d ( l b )  

The acceleration constants cl and c2 in equation (la) represent the weighting of the stochastic 
acceleration terms that  pull each particle towards pBest and gBest positions. Thus, adjustment 
of these constants changes the amount of "tension" in the system. Low values of them allow 
particles to roam far from target regions before being tugged back, while high value results in 
abrupt movement toward, or past through target regions. 

Particle's velocities on each dimension are confined to a maximum velocity Vm~x which is a 
parameter specified by the user. If the sum of accelerations would cause the velocity on that 
dimension to exceed Vm~x, then the velocity on that dimension is limited to Vmax. 

There are two versions of the PSO: one is local version and another is global version. With 
local version, particles only have information of their own and their neighbors' bests, rather than 
that of the entire group. Instead of moving toward a kind of stochastic average of pBest and 
gBest (the best location of the entire group), particles move toward points defined by pBest and 
IBest which is the mdex of the particle with the best evaluation in the particle's neighborhood, 

Vzd ~--- W * Vzd ~- (21 * r a n d ( )  * (Pzd  - -  X z d )  -~ C2 * Rand() * (Ptd - X , d ) .  ( l c )  

Global version is faster but might easily converge to trap into local optimum. Taking into 
account the characteristic of these two versions, one can use global version to get quick result in 
the first phase of search and use local version to refine the search finally. 

From the above discussion, one can learn that there are two key steps when applying PSO to 
optimization problems, i.e., the representation of the solution and the fitness function configura- 
tion. Unlike GA, PSO doesn't need complex encoding and decoding processes and special genetic 
operators, it take real numbers as particles in the aspects of representation solution. 

From the procedure, one can learn that PSO shares many common points with GA, for example, 
they start with a group of a randomly generated population, evaluate the population with fitness 
values, update the population and search for the optimum with random techniques, and do not 
guarantee optimal. 
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Dmtinguished from GA, PSO does not need genetic operators like crossover and mutation. 
Particles update themselves with internal velocity. They also have memory, which is important 
to the algorithm. Compared with genetic algorithm (GAs), the information sharing mechanism 
in PSO is significantly different. In GAs, chromosomes share information with each other, so the 
whole population moves like a one group towards an optimal area. In PSO, only gBest (or lBest) 
gives out the information to others, hence, it is a one-way information sharing mechanism. The 
evolution only looks for the best solution. Compared with GA, all the particles tend to converge 
to the best solution quickly even in the local version in most cases [16]. 

The main disadvantage of the above basic PSO is that it is difficult to keep the diversity 
of population, and to balance local and global search and hence it may result in local optimal 
solutions. Besides, their search rates are commonly lower and sometimes need more computation 
when solving some difficult optimization problems. A modified method is proposed in this paper 
to deal with the above disadvantages of PSO in solving nonlinear programming problems. 

3. C O N S T R A I N T  F I T N E S S  
P R I O R I T Y - B A S E D  R A N K I N G  M E T H O D  

3.1. Canonica l  Form of  N L P  

NLP problems with n variables and m constraints may be written as the following canonical 
form, 

max / ( X )  = f ( x l , x 2 , . . .  , x  n ) ,  

s.t. g, (x) < 0, , = 1, 2 , . . . ,  ml,  (2) 

h, (x) = 0, i = ml + 1,ml + 2 , . . . , m .  

3.2. Formula t ion  and  Eva lua t ion  of Infeasible Par t ic les  

The handling with the system constraints, especially the measurement and evaluation of illegal 
particle are key techniques with PSO in solving NLP. In the implementation process, particles 
randomly generated at the beginning and/or generated by internal velocity during the evolution- 
ary process usually violate the system constraints resulting in infeasible particles. Therefore, the 
handling of system constraints, particularly nonlinear equation constraints, and the measurement 
and evaluation of infeasible particles are of research interest. Currently, several methods have 
been developed to deal with system constraints. These methods mainly consider preserving fea- 
sibility of solutions, penalty strategies and searching for feasible solutions, and they have several 
drawbacks. To cope with constrained problems with evolutionary computation, four different 
approaches can be adopted, 

(1) rejection of infeasible individuals, 
(2) repair of infeasible individuals, 
(3) replacement of individuals by their repaired versions, and 
(4) penalty function methods. 

Among of them, the penalty function methods are particularly promising, as evidenced by recent 
developments [2]. Based on the above analysis in this paper, a constraint fitness priority-based 
ranking method is constructed to solve system constraints. 

Fitness function stands for particle's fitness level to environment. In this section, two kinds of 
fitness function are introduced, one is optimal fitness function Fobj(x) for objective function, and 
the other is constraint fitness function Fcon(X) for constraints. Fobj(X) and Fcon(X) are defined 
as follows. 

DEFINITION 1. The function ih'~obj(X) is defined as objective fitness function at point x, 

Fobs (x) = f (x). (3) 
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DEFINITION 2. The constraint fitness function F~(x) is defined to be the fitness level of point x 

to the constrained condition (i). 

The following two methods are suggested for evaluating the infeasible particles according to 
different forms of constrained condition. 

For inequality constraint g~(x) _< 0, {1, 
(x )  = 1 

where gm~x(X) = max{g~(x), i = 1, 2, 
For equality constraint h,(x) = 0, 

9 (x) 
g m a x ( X ) '  

• .  , m l .  

where hmax(X) -- max {h~(x), ~ -- ml 

g. (x) < 0, 

g, (x) > 0, 
(4) 

1, h ~ ( x ) = 0 ,  

Ih~ (x)[ h~ (x) ~ 0, (5) F~ (x) = 1 hm~x (x) '  

+ l , r n l ÷ 2 ,  . . ,m}.  

DEFINITION 3. The function Fcon(X) Is defined as total constraint fitness function at point x. 

Based on the above definition, taking into account the equality constraints, the weighted con- 
straint function, denoted by Fcon (x), can be constructed as follows, 

rn m 

Fcon(X)=~-~w~F,(x) ,  ~ -~w~=l ,  0 _ < w ~ < l ,  Vi. (6) 
~ 1  ~ 1  

Each w~, is the weight for constraint z, which can be generated randomly in order to assure the 
particle's diversity. The function reveals the relationship between the point x and the feasible 
domain Q; if Fcon(X) = 1, it indicates that x e Q. On the contrary, if 0 < Fcon(x) < 1, and the 
smaller the F¢on(X) is, the performance of x "belonging to" Q becomes worse, i.e., x is further 
away from the feasible domain Q. Hence, the total constraint fitness function represents the 
fitness level of point x to the feasible domain Q 

3.2.1.  C o n s t r a i n e d - c o n d i t i o n ' s  hand l ing  

In light of the idea of PSO, particle flies through the problem space by following the current 
optimum solution with the best fitness value. So, the basic idea for handling constraints may be 
described as follows. First, all particles are ranked according to their fitness value. During the 
ranking process, the highest constraint fitness value according to (4) is in the first position. If two 
particles have the same constraint fitness values then their objective fitness value are compared. 
The one with better objective fitness value is in prior to the other one. 

In comparison with common penalty function, the advantage of this method is that the fitness 
values of the feasible particles are always better than infeasible ones. So, we can obtain the 
feasible particles rather easily in the iteration process. Using evolutionary operation, the optimal 
feasible particle is achieved based on feasible particles and better infeasible particles. In this way, 
feasible area and optimal solution are combined together while the optimal objective function 
need not required to be greater than zero. Another advantage of the method is that there is no 
need to adjust weighted factor between constraint and objective fitness. So, it is easier to apply 
to real world problems. 

From the above discussion, one knows that there are two levels of competition in the algorithm. 
One is the survival competition inside constraints. The best one survives in every generation. The 
other one is the competition between constraints and objective. According to the values of their 
objective function and constraint fitness value, all particles are ranked to form a line-up. The 
best particle is in the first position in the line-up, while the worst in the final position. The value 
of fitness function of the first position is updated continually. As a result, the optimal solution 
m approached rapidly during the implementation• So, the algorithm can be called competition 
PSO (referred CPSO hereafter) in this paper. 
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3.2.2. D y n a m i c  n e i g h b o r h o o d  o p e r a t o r  

Since both global version and local version have their own advantages and disadvantage re- 
spectively, one can use them both in the algorithm while global version is used to get quick result 
and local version can refine the search space. 

From the definition of the fitness function, one can learn that there must have better particles 
in the neighbor of the good fitness value. Hence, a dynamic neighborhood is presented. In 
each generation, after calculating distances to every other particle, each particle finds its new 
neighbors. Among the new neighbors, each particle finds the local best particle as the IBest. At 
the beginning of the generation, a particle's neighborhood is defined as its own, i.e., neighborhood 
includes only one particle. As the generation increases, neighborhood scope will grow larger and 
larger and at the end will contain the whole feasible domain. The problem is how to define the 
distance and how to define the local best particle. 

DEFINITION 4. distill stands for the distance of the current particle from the I t h  particle in the 

fitness value space of the constraint function. 

The algorithm used to search for local optima in each generation is defined as follows. 

(1) Calculate the distances dist[/]. 
(2) Find the nearest k particles as the neighbors of the current particle based on the distances 

calculated above. (k, the neighborhood size.) 
(3) Find the local optima among the neighbors in terms of the fitness value of the objective 

function. 

4. O V E R A L L  S C H E M E  OF C P S O  
F O R  N O N L I N E A R  P R O G R A M M I N G  

The basic idea of CPSO may be described as follows. First, randomly produce an initial 
population with the size of pops~ze particles. The information of infeasible particle is embedded 
into the fitness function in order to measure the degree to which the infeasible particles are away 
from the feasible domain so that they could not be rejected in later generation processes. Hence, 
the CPSO ensures the optimum to be obtained from both sides of the feasible and infeasible 
domains. In the process of iteration, for a particle x~ ~ Q, give it a less fitness value so that it 
may have less chances than others to be selected as the pBest or lBest in the later generations. 
As the generation increases, the individuals with less fitness values die out gradually, namely, the 
individuals x, E Q with less value and individuals x, ~ Q die out gradually, and the particles 
maintained in the population are the particles with a high value of objective function. After a 
number of generations, the particle's objective function values reach the optimal or near optimal 

from the two sides of feasible domain. 

4.1. PSO Setting 

Randomly produce an initial population with a definite number m including velocity and 
position. This might assure the solution's diversity since it is randomly generalized. 

The typical range is 20-40 for the number of particles. Actually, for most of the problems ten 
particles is large enough to get good results. For some difficult or special problems, one can try 

100 or 200 particles as well. 
Dimension of particles and range of particles are all determined by the problem to be optimized. 

One should specify different ranges for different dimension of particles. 
Inertia weight controls the impact of previous historical values of particle velocity on its current 

one. A larger inertia weight pressures towards global exploration (searching new area) while a 
smaller inertia weight pressures toward fine-tuning the current search area. Without the first part 
m (la), then the "flying" particles' velocities are only determined by their current positions and 
their best positions in history. The velocities itself is memoryless. Suitable selection of the inertia 
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weight provides a balance between global and local exploration and exploitation, and results in 
less iteration on average to find an optimal solution. At the beginning of the search process, a 
larger inertia weight can be used and decreases step by step as the fitness value increases so as 
to improve the local search ability. 

Hence, using the method of Shi [20], i.e., inertia weight decreased linearly from about 0.9 to 
0.4 during a run, 

f lnerWt  = ( ( f lNITWT - 0.4) * (Gmax - Gn)/Cmax) + 0.4, (7) 

where Gmax is the maximum generation prespecified by the user and f I N I T W T  is defined as 
initial weight with the value of 0.9. 

The acceleration constants Cl and c2 in equation (la) represent the weighting of the stochastic 
acceleration terms that pull each particle toward pBest and gBest positions. Thus, adjustment 
of these constants changes the amount of "tension" in the system. Low values allow particles 
to roam far from target regions before being tugged back, while high value results in abrupt 
movement toward, or past, target regions. 

If cl = 0, then the particles have no cognition ability, which represents the private behavior of 
the particle itself. It can explore the new search space under the reciprocity within the particles. 
If c2 = 0, then there is no social share information, which represents the collaboration among 
the particles. It is equivalent to run m particles independently at the same time for population 
because of no interaction between the particles. It is very hard to obtain the optimal solution. 

In this paper, Cl and c2 are set to equal to 2. However, other settings were also used by many 
researchers. 

Max-velocity Vmax determines the maximum change one particle can take during a run. There- 
fore, Vmax is an important parameter. It determines the resolution, or fineness, with which regions 
between the present position and the target (best so far) positions are searched. If Vmax is too 
high, particles might fly through good solutions. If Vmax is too small, on the other hand, particles 
may not explore sufficiently beyond locally good regions. In fact, in this case, they could easily be 
trapped in local optima and unable to move far enough to reach a better position in the problem 
space. 

In this paper, Vmax is set at about 10% of the dynamic range of the variable to each dimension. 
According to the degree of precision required, the maximum number of iterations the PSO 

executes and the minimum error reqmrement can be adopted as stop condition 

4.2. Overa l l  P r o c e d u r e  of  t h e  C P S O  

In summary, the overall procedure of the CPSO can be described by pseudo code as follows: 
For each particle 

Initialize particle 
End 
Do 

For each particle 
Calculate constraint fitness value and objective fitness value 
Ranking the fitness value according to (4) 
If the fitness value is better than the best fitness value (pBest) in history 

Set current value as the new pBest 
End 
Calculate neighborhood size according to the method described in 3.2.2 
Choose the particle with the best fitness value of all the particles or neighborhood 
as the gBest or 1Best 

For each particle 
Calculate particle velocity according to equation (la) or (lc) 
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Update  particle position according to equation (lb) 

End 

While stop criteria is not satisfied 

5.  N U M E R I C A L  E X A M P L E S  A N D  A N A L Y S I S  

To demonstrate  the effectiveness of the CPSO, some test examples with linear constraints, 
nonlinear constraint, and nonconvex constraint, particularly testing problems with large size are 

given in this section. The simulation analyses of the testing problems are conducted in three 
parts. Par t  1 tries to take a comparison of the CPSO and GA on variant types of NLP problems. 
Parts  2 and 3 aim to demonstrate the sensitivity analysis and the performance of the CPSO on 
large size problems, respectively. 

5.1. C o m p a r i s o n  o f  t h e  C P S O  a n d  G A  o n  S o m e  B e n c h m a r k i n g  P r o b l e m s  

The test problems P1 -P5  are selected as benchmarking examples for comparison [17]. Among 
of them, test P1 is an interval optimization problem~ P2 includes inequality constraints, P3 
is a multimodal problem, P4 and P5 are nonconvex linear problem and penalty hard problem 
respectively, while P6 is an exponential function and search process is rather complex [18]. These 

testing problems represent variant types of NLP problems. 

rain 

s . t .  

P I :  

P 2 :  

s . t .  
p 3 .  

5.3578547x~ ÷ 0.8356891xlx5 + 37.293239xl - 40792.141, 

0 < 85.334407 + 0.0056858x2x5 + 0.0006262xlx4 - 0.0022053x3x5 _< 92, 

90 < 80.51249 + 0.0071371x2x5 ÷ 0.0029955xlx2 + 0.0021813x32 < 110, 

20 _< 9.300961 ÷ 0.0047026x3x5 + 0.0012547xlx3 + 0.0019085x3x4 < 25, 

78 _< xl  _ 102, 

33 _< x2 <_ 45, 

27 < x~ < 45, i = 3, 4, 5, 

x~ + x 2 + x l x 2  - 14xl - 16x2 + (x3 - 10) 2 + 4 (x4 - 5) 2 

+ (x5 - 3) 2 + 1 (x6 - 1) 2 + 5 ~  + 7 (~8 - 11) 2 + 2 (x9 - 10) 2 + (x l0  - 7) + as ,  

105 - 4xl - 5x2 + 3x7 - 4xs >_ 0, 

- 3 (x l  - 2) 2 - 4(x2 - 3) 2 -  2x~ ÷ 7x4 ÷ 120 _> 0, 

- 10Xl -}- 8x2 ÷ 17x7 - 2x8 ~ 0, 

- 2x 2 - 2 (x2 - 1) 2 + 2xlx2 - 14x5 ÷ 6x6 ~ 0, 

8Xl - 2x2 - 5x9 ÷ 2x10 + 12 >_ 0, 

- 5x~ - 8x2 - (x3 - 6) 2 + 2x4 ÷ 40 > 0, 

3xl - 6x2 - 12 (x9 - 8) 2 + 7x10 >_ 0, 

- 0.5 (zl - 8)  2 - 2 ( x 2  - 4 )  2 - 3 x ~  + x ~  + 3 0  > 0 ,  

- 10 < x~ < 10, i = 1 , . . . , 1 0 ,  

sin 3 (27rxl) sin 3 (27rx2), 

x 2 - x2 + 1 _< 0, 

l - x 1  + ( x 2 - 4 )  2 < 0, 

0 < x l < _ 1 0 ,  0 < x 2 _ < 1 0 ,  



P4 :  

P5 :  

P6 :  { 
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min (x1--10) 2 + 5 ( x 2 - 1 2 )  2 + x  4 + 3 ( x 4 - 1 1 )  2 + 1 0 x  6 + 7 x  2 + x ¢  

- -  4 x 6 x ~  - -  10x6 -- 8x~, 

s.t. 127 - - - x3 - - > 0, 

282 - 7xl - 3x2 - 10x~ - x4 + x5 >_ 0, 

196 - 23Xl - x~ - 6x62 + 8x7 _> 0, 

- 4 x ~  - x ~  + 3 x l x 2  - 2 x ~  - 5x6 + 11x7 >_ 0, 

- 10 < x~ _< 10 ~ = 1 , . . . , 7 ,  

min xl + x 2  +x3 ,  

s.t. 1 - 0 . 0 0 2 5 ( x 4 + x 6 ) > _ 0 ,  

1 - 0.0025 (x5 + x7 - x4) k 0, 

1 - 0.01 (xs - as) k 0, 

x l x 6  - 833.33252x4 - 100Xl + 83333.333 > 0, 

x 2 x 7  - 1250x5 - x 2 x  4 Jr- 1250x4 > 0, 

X 3 X s  - 1250000 - x 3 x 5  + 2500x5 > 0, 

1 0 0 < x 1 _ 1 0 0 0 0 ,  1000 < x, <10000, ~ = 2, 3,10 < x, <1000, 

min - al exp - a  2 n x - exp E cos ( a 3 x g )  -4- a l  -]- e ,  

= 3-=1 

s.t. - 5 < x 3 < 5  2 = 1 , 2 .  

1663 

z = 4 , . . . ,  8, 

P6 is Ackley function [19] and the optimum is 0. Constants are set as follows, 

a 1 --'~ 2 0 ,  a 2 ---- 0 . 2 ,  a 3 = 2 7 r ,  e = 2 . 7 1 2 8 2 .  

The comparison results of the worst, the mean and the best solutions for the testing problems 
by GA and the CPSO are given in Table 1. Due to the CPU times the algorithms GAs run are 
neglected in literature [17-19], the last column presents the CPU time when the algorithm CPSO 
terminated at the best solution using IBM T42 with Pentium-M 1.5 GHz processor and 512 M 
memory. 

CPSO-- the  results as Gmax=1000, popsize=50, cl -- c2 = 2; GA- - the  results in Xie [17] 
except P6. 

The results shown in Table 1 that  the CPSO is always superior to GA except for Test P1 from 
the best solution perspective and for the Test P2 from the worst and mean solution perspective 

as marked in bold style. That  is to say, there are five out of six testing problems that  show the 
CPSO is better  than GA either from the best solution, mean solution or the worst solution. From 
the perspective of CPU time the algorithm runs, one can also find that  the algorithm CPSO is 
effective. I t  can be concluded from the simulation of benchmarking problems that  the CPSO is 
more effective at least not worse than GA. 

5.2. Sens i t i v i t y  Ana lys i s  of  t h e  C P S O  

In this section, two testing examples are selected from the literatures [5,19] to demonstrate the 
CPSO is effective from the sensitivity perspective The testing P7 [5] and P8 [19] are given as 
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Table 1 

Test ing problems Type  

P 1 Min 

P2 Min 

P3 Max 

P4 Mln 

P5 Mln 

P6 Min 

Compamson results  of test  )roblems using CPSO and GA 

Algor i thm Best  solution Worst  solution Mean  solution CPU time(s) 

CPSO -30664  7 -30656  1 -30662.8  1 

GA -30665  5 -30236  6 -30533.8  

CPSO 24.80818 26.18273 25.40852 1.5 

GA 25.237 26 110 25 237 

CPSO 0.9999 0 9999 0 9999 0.8 

GA 0.95825 0.95825 0 95825 

CPSO 680 667 680 9047 680 7867 1 

GA 680.67 683.74 681.62 

CPSO 7114.84 7225 979 7222.389 0.5 

GA 7115 00 7384.29 7795.93 

CPSO 0 005451 0 005451 0.005451 0.1 

GA 0 005456 

m a x  

s . t .  
P7:  

m a x  

P8 : s.t. 

f (x) = - 2 x ~  + 2x lx2  - 2x~ + 4x l  + 6x2, 

2x~ - x2 _< 0, 

Xl + 5x2 _ 5, 

Xl,  X2 ~ O, 

2 2 2  
XlX2X3 

f (x )  = + + 2 3 2 2 ,  
23~2X 3 -~- XlX2X 3 

< 4, 

X l , X 2 , X  3 ~" O. 

Tang [5] solved the above problem using hybrid genetic algorithm combining the penalty func- 
tion and gradient direction search with the best solution being (0.658,0.868) and the best objective 
being 6.61305 (optimal solution is 6.613086). 

For testing PS, Liu [19] got a better solution using real number coding after 50 iterations. The 
best solution is (.8692552, .5345225, 1.313627) with objective function being 0.15373. 

There are several parameters in the CPSO, among which the population size and maximum 
number of generations are important ones to affect the effectiveness when the algorithm is imple- 
mented. To show sensitivity of the CPSO with parameters, the simulations are conducted when 
the population size pops,ze are set as 10, 20, 30, and 40, and maximum number of generation 
N G  as 20, 50, and 1000, respectively. Table 2 presents the simulation results of the CPSO for 
the testing P7 and P8 under all 12 combinatorial cases of the population size and maximum 
generations. 

It can be seen from Table 2 that the best solution is slightly affected by the population size 
and is greatly affected by the maximum generation N G  until it reaches a suitable level, such as 
NC = 50. At the same Ume compared with GA, CPSO can achieve the global optimization very 
rapidly. From Table 2, one can also observe that the solution is almost satisfied when pops,ze 

is 30, and the best solution can be obtained when iteration reaches 50 in most of the cases. 
It can be observed from the simulation experiences with other values of population sizes and 

number of generations that, given a specified population size, the value of the best objective 
function is becoming better as the number of the iterations increases, and wce versa, given a 
specified generation number the objective function will be improved also, however slightly with 
the increase of the population sizes. The computation experiences show that, in general, 500 
iterations would be enough for the testing problem since an insignificant improvement of the 
objective function is observed when the iteration number increases from 500 to 1000. 
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Table 2 The best solutlon under different populatlon szzes and maximum generatlons 
of CPSO 
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Popsize NG 

20 

10 50 

1000 

20 

20 50 

1000 

20 

30 50 

1000 

20 

40 50 

1000 

Test P7 Test P8 

Best solution Best objective Best solutlon Best objective 

6550682,.8663893 6 60344714 .865603,.5098256, 1.265862 .15372290 

.6588718, 8682256 6 61308426 .8692601, 5344981, 1 3 1 4 0 9  15372999 

.6588723, 8682255 6 .61308528 8692552, 5345225,.313627 .15373001 

.6587232, 8681039 6.61266253 .8776503, 544467, 1 318814 15372804 

.6588687,.8682261 6 .61307538 869847,.5351846, 1 314006 15373000 

6588723,.8682255 6.61308528 .8692552, .5345225, 1.313627 15373001 

6587971, .868145 6 .61265623 8591962, 5379595, 1 323435 15372619 

.6588702,.8682253 6 .61307982 8708594, 5354301, 1.314003 15372989 

6588723,.8682255 6 61308528 8692552, 5345225, 1 313627 15373001 

.6576564,.8681041 6 61103395 .8778075, 5398821, 1.320782 1537285 

6588691, 8682251 6 61307918 8692278, 5345769, 1 313367 .1537300 

.6588723,.8682255 6 61308528 8692552, 5345225, 1 313627 .1537300 

To reflect the  convergence of a lgor i thm CPSO to the  op t imal  solut ion with  the  generations,  the  

left pa r t  of the  Table 3 presents  the best  solutions of the  tes t ing P7 varying with the  i terat ions 

numbered  from 1 to  20. I t  can be observed t ha t  the  best  object ive  is becoming improved great ly  

in the  beginning i tera t ions  and then sl ightly wi th  the  increase number  of i tera t ions  and gradual ly  

reaches a near op t imal  solution. 

Par t icular ly ,  to i l lus t ra te  effectiveness of constraint  fitness pr ior i ty  based ranking method  in 

the  PSO,  a pena l ty-based  evaluat ion is embedded  as fitness in the  PSO (referred as pena l ty -PSO 

in this paper)  is in t roduced as comparison counter.  Pena l ty  function used in the  pena l ty -PSO is 

6 75 
6.5 

6. 25 
6 

5 75 
5.5 

5.25 
5 

4.75 
4 5  

4. 25 
4 

f~ . . . . . . . . . . .  Penalty 
PSO 

CPSO 

q I I l I I I I I I I I I + I I I I I I 

Figure 1 Relation between generation and objective of P7 

defined as in [18]. Their  comparison results  of the tes t ing P7 are shown in Table 3 and Figure  1, 

from which one can see t ha t  CPSO is more effective and superior  t han  pena l ty -PSO.  

5.3. Per for manc e  of  the  C P S O  on  Large Size P r o b l e m  

In order  to tes t  the  performance of the CPSO on large size problem, an in tegra ted  logistics 

decision problem selected from [20] is in t roduced as a tes t ing example  and the two layer decom- 

posi t ion method  (TLD) [20] is given as comparison counter.  

The  in tegra ted  logistic decision problem (IDM-M) is to determine  s imul taneously  the  assign- 

ment  of annual  product ion  quant i ty  and lot size at  the  suppliers  and the  annual  shipment  amounts  

and order  quan t i ty  from the suppliers  to the  dest inat ions  to  meet  the  demands  with  min imum to- 

ta l  costs in a product ion  and dis t r ibut ion  network with  mul t ip le  suppliers,  mul t ip le  dest inat ions,  

and mult ip le  products .  I t  is formula ted  as a large scale NLP tha t  is nei ther  convex nor concave 
with number  of 2mL(1-4-n) decision variables and of (nL + 2mL-4-m + L] inequal i ty  and equal i ty  
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Table 3. The best solutions of the testing P7 varying with generation number using 
CPSO and penalty-PSO 

Gn 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

c P s o  PenMty-PSO 

Best Solution Best Objective Be~ Solution Best Objectxve 

(.5005807, .833949) 5 8 7 5 5 4  (.1527652, 8667169) 4.795114 

( 515465, .8359336) 5.94883 (.3787496, .571216) 5 515699 

(.5277445, 837571)  6 . 0 1 0 2 7 2  (.3128578, 7889293) 6 195228 

(.5499627, 8806564) 6 . 3 1 2 9 6 3  (.0455868, .495745) 6.436533 

( 547456, 8187297) 6 312963 (.3585616, .4849982) 6 436533 

( 6162313, 8259138) 6 373346 (.2041051, .1326934) 6.436533 

( 5665962, .786211) 6 . 4 9 0 5 2 1  (.3759846, 9222181) 6 436533 

( 6093932, 8157683) 6.512958 ( 3242176, 8928556) 6 436533 

(.6066412, 8475772) 6 . 5 1 2 9 5 8  (.5849726, 830576) 6 436533 

(.6001881, 8761123) 6 576381 ( 3825417, .8651791) 6 532469 

( 5794246, 8664396) 6 . 5 7 6 3 8 1  (.5018676, 8389922) 6.532469 

(.6430827, 8623704) 6 576381 (.579161, .8313762) 6.532469 

(.6327764, .8685131) 6 576381 (.548866, .8366776) 6 532469 

(.6390524, 8710732) 6 576381 ( 526365, .8729435) 6 532469 

( 6472884, .8700998) 6 . 5 7 6 3 8 1  (.5365801, .8576724) 6.532469 

( 6514064, 8696131) 6 584051 (.6367062, 8612269) 6 565932 

(.6498362, .8699648) 6.595132 ( 6228947, 8707712) 6.598411 

(.6491703, 8694377) 6 595132 (.655944, .8660849) 6.598411 

(.6504188, 8696761) 6.595132 ( 6523901, 8601647) 6 598411 

( 656019, 8687224) 6 603044 (.6568159, .8682291) 6.601675 

constraints ,  where m, n, and L are numbers of suppliers,  dest inat ions,  and products  involved. 

For example,  for 10 suppliers,  10 dest inat ions,  and 50 products ,  the  model  has 11000 decision 

variables. Due to being a large scale NLP problem, an effective heurist ics TLD is developed 

in [20] to  solve it. 

The  comparison results  of the  IDM-M with  different sizes using the  CPSO and TLD are show 

in Table 4. I t  can be shown from the Table 4 tha t  the  CPSO is s l ightly more effective than  the 

TLD from the perspect ive of the  best  solutions and the C P U  t ime required. 

Table 4. Comparison Results between TLD and CPSO for different size of examples 
(Popsize = 30, Gmax = 50). 

Problem size 
(m*n*  L) CP$O 

Cost 

TLD [20] Diff(%) 

5*5*5 672,716 674,670 0.28 

5"5"10 1,292,585 1,304,090 0.89 

5"10"10 1.34 2,0481,25 2,075,570 

5"10"20 4,406,440 4,488,400 

5"10"50 9,743,172 9,988,700 

10"10"10 2,154,144 2,190,550 

4,376,652 10"10"20 4,469,000 

1 86 

2 52 

1 69 

2.11 

2.87 

CPU Time (see) 

CPSO TLD [20] 

5 5 

49 51 

116 121 

204 216 

365 398 

175 189 

293 312 

746 829 10"10"50 9,622,824 9~899,000 
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6. C O N C L U S I O N S  

In  this paper, a new CPSO algorithm with embedding constraint  fitness priority-based ranking 

method and dynamic neighborhood operator is proposed for the nonl inear  programming problem. 

It is the first t ime that ,  have been proposed for formulating and measuring the infeasible point. 

In  comparison with the basic particle swarm optimization, the CPSO performers the following 

characteristics, 

(1) embedding the information of illegal particle into the evaluation process to develop new 

kinds of evaluation function, 

(2) it can converge to the opt imum from both sides of the feasible domain and the infeasible 

domain.  

The theoretical analysis and the comparison results obtained by using GA and CPSO and 

sensitivity analysis of the CPSO as well as performance of the CPSO on largest size problems 

show tha t  the CPSO is proved to be an effective one for solving NLP, especially where a significant 

degree of nonl ineari ty  is present. 
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