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Smooth muscle cell marker, SM22α, was down-regulated in the pathogenesis of arterial diseases including
atherosclerosis, restenosis and abdominal aortic aneurysms. However, the question still exists whether this
down-regulation actively contributes to the pathogenesis of vascular diseases. In an ongoing effort to understand
the role of SM22α, here we explored transcriptome profiling by RNA-Seq from arteries of SM22α−/− and
SM22α+/+ mice. Analysis revealed that the most enriched pathways caused by SM22α-knockout were hemato-
poiesis, inflammation and lipidmetabolism, respectively, and NF-κB, RXRα and PPARαwere themajor upstream
regulators. The candidate genes involved in inflammation and lipidmetabolismwere clustered in atherosclerosis.
Thus we suspected that themolecular basis in SM22α−/−mice was already prepared for the initiation of athero-
sclerosis. Further analysis suggested the up-regulated TNF caused NF-κB pathway activation. Our results showed
loss of SM22α exacerbated TNF-α-mediated NF-κB activation and increased the expression levels of ApoCI
in vitro, while overexpression of SM22α suppressed TNF-α-mediated NF-κB activation. In addition, disruption
of SM22α enhanced injury-induced neointimal hyperplasia, and increased expression levels of molecules related
with cellular adhesion and extracellular matrix degradation. Taken together, these findings not only suggested
down-regulation of SM22α can actively contribute to the pathogenesis of atherosclerosis from the molecular
basis, but also further confirmed that the vascular cells of SM22α−/− mice may become more sensitive to
extracellular stimulation, increasing its tendency to develop vascular diseases. Meanwhile, rescuing SM22α ex-
pression may provide a novel therapeutic strategy for arterial diseases.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Cardiovascular diseases are the leading cause of mortality among
patients throughout the world. Vascular smooth muscle cells (VSMCs)
undergo remarkable phenotypic remodeling during vascular disease,
such as atherosclerosis, diabetic macroangiopathy and restenosis [1,2].
They have a unique repertoire of contractile proteinswhich are required
for their contractile function, and used as markers of differentiated
smooth muscle cells [3]. These markers include SM α-actin [4],
calponin, smooth muscle 22 alpha (SM22α) [5], SM myosin heavy
chain (MHC) [6], and smoothelin [7]. All of these markers have highly
correlation with all the physiological functions and pathological
changes during vascular diseases. For example, loss of SM α-actin
leads to VSMCs hyperplasia in vivo and in vitro [8]; calponin-1 is an
actin-binding protein which is similar with SM22α and its degradation
+86 31186265557.

. This is an open access article under
would result in decreased vascular contractile response [9]; MHCs ex-
pression is decreased in human coronary arteries after the fifth decade
[10] and smoothelin-B deficiency can reduce vascular contractility and
cardiac hypertrophy in mice [11].

SM22α, also named transgelin, is a 22 kDa protein abundant in
contractile SMCs, and physically associates with actin filament bundles.
The expression of SM22α is down-regulated in vascular diseases includ-
ing atherosclerosis [12], abdominal aortic aneurysms [13] and hypoten-
sion [14]. Moreover, decreased expression of SM22α has been widely
reported inmany solid tumors, such as breast cancer [15], prostate cancer
[16] and colorectal cancer [17], whichmay be an important early event of
angiogenesis in tumor progression. Loss of SM22α in apolipoprotein E
knockout (ApoE−/−) mice led to enlarged atherosclerotic lesions [18].
Disruption of SM22α promoted arterial inflammation and chondrogenic
conversion of VSMCs through activation of ROS-mediated NF-κB
pathways [19,20]. Our recent studies revealed that the overexpression
of SM22α inhibited VSMCs proliferation and neointimal formation
induced by balloon injury via blockade of the Ras-ERK1/2 signaling
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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pathway [21]. More recently, we demonstrated that SM22α, as a
PKCδ-regulating and PKCδ-regulated adaptor protein, modulated vascular
oxidative stress in vitro and in vivo through PKCδ-p47phox axis via itself
phosphorylation at Ser 181 site [22]. All of these literatures suggest a strong
correlation betweendecreased expression of SM22α and vascular diseases.
However, the question still exists whether this decreased expression of
SM22α actively contributes to the pathogenesis of vascular diseases.

In this study, we generated the aortic transcriptomes of SM22α−/−

and SM22α+/+ mice by RNA-Seq (RNA-Sequencing) to reveal the func-
tion and regulatory mechanism of SM22α. This whole transcriptome
comparison can provide a starting point for understanding the pathogen-
esis of vascular diseases related to SM22α. Also, blocking the decrease of
SM22αmay supply a novel strategy for dealing with arterial diseases.

2. Material and methods

2.1. Ethics statement

All animal experiments were reviewed and approved by the Institu-
tional Animal Care and Use Committee of Animal Science and Technol-
ogy, Hebei medical University and performed in accordance with the
Regulations for the Administration of Affairs Concerning Experimental
Animals (China, 1988).

2.2. Breeding of transgenic mice

The SM22α−/− mouse line (B6.129S6-Taglntm2(cre)Yec/J) which has a
Cre-recombinase gene inserted into the endogenous transgelin
(SM22α) locus was purchased from The Jackson Laboratory. SM22α-
CreKI heterozygous and homozygous mice are fertile and this mutation
results in a loss of function of the targeted gene. Cre-recombinase activity
is shown in adult smoothmuscle cells (such as arteries, veins, and visceral
organs) and cardiac myocytes. All of the born mice were maintained
under standard animal housing conditions with a 12 h light/dark cycle
(light on 7 a.m.), temperature 22 °C, and given standard chow and
water ad libitum. Mouse tail genotyping was performed before used.
Thoracoabdominal arteries were collected from eight male SM22α−/−

mice and littermate wild controls (12 weeks) after fasted for 8–12 h
respectively. Then, the adventitia and endotheliumwere quickly stripped
and separated from the thoracic aortas in ice cold RNase-free PBS. The
harvested tissues were placed in RNAlater (Ambion®) overnight at 4 °C
and then transferred to−80 °C in preparation for RNA-seq analysis.

2.3. RNA-seq data generation

RNA-seq libraries were prepared in accordance with Illumina's
sample preparation protocol. The libraries were sequenced onto an
Illumina HiSeq2000 instrument and subjected to 100 cycles of paired-
end (2 × 100 bp) sequencing. The processing of fluorescent images
into sequences, base-calling and quality value calculations were
performed using the Illumina data processing pipeline (version 1.8).
Before assembly, high-quality clean reads were generated using FASTX
toolkit pipeline (version 0.0.13), then the resulting high-quality reads
were mapped onto the UCSC (mm10) using Tophat (version: 2.0.6)
[23]. Cufflinks v2.0.2 [24] was used to process the Tophat alignments.
Additionally, the abundance of assembled transcripts was estimated
and reported as fragments per kilobase of exon per million fragments
mapped (FPKM). Finally, the programCuffdiff was used to define differ-
ential expression genes as a gene set for next analysis. All of the above
processes were performed at Shanghai Biotechnology Corporation.

2.4. Functional annotation of differential expression genes by DAVID and
PANTHER

The database for annotation, visualization, and integrated discovery
(DAVID) v6.7 [25] was used to interpret the differential expression
genes data. DAVID is a group ofweb-based tools that identify enriched bi-
ological themes and gene ontology (GO) terms, group functionally related
genes, and cluster annotation terms for large gene lists [26]. The differen-
tial expression genes Entrz Gene IDswere converted to official gene sym-
bols and then used for functional clustering and enrichment analysis. The
functional annotation clustering algorithm was used to generate a clus-
tered, non-redundant report of related annotation terms, and groups of
annotation clusters with EASE scores 0.1 were retained. Finally, DAVID
pathway mapping allows a gene list to be superimposed on static path-
way maps such as BioCarta and KEGG pathways. Differential expression
genes were submitted to the DAVID functional annotation tool to explore
enriched GO terms and pathways of BioCarta and KEGG. Protein classifi-
cation of differentially expressed genes was analyzed by PANTHER (Pro-
tein Analysis Through Evolutionary Relationships) [27].

2.5. Analysis of differential expression genes by IPA software

Differential expression geneswere uploaded in the IPA tool (Ingenu-
ity® Systems, www.ingenuity.com) and subsequently performed
canonical pathway, upstream regulator, and gene network and sub-
network analysis. First, canonical pathway analysis was based on the
IPA library of canonical pathways. The significance of the association
between each list and a canonical pathway was measured by Fisher's
exact test. As a result, a P-valuewas obtained, determining the probability
that the association between the genes in our data set and a canonical
pathway can be explained by chance alone. Second, based on previous
knowledge of expected effects between transcriptional regulators and
their target genes stored in the Ingenuity® Knowledge Base, upstream
regulator analysis of differential expression geneswas performed. Predic-
tion of activation/suppression state for each transcription factor based on
two statistical measures: an overlap P-value and an activation Z-score.
Z-score was calculated using the gene expression patterns of the tran-
scription factor and its downstream genes. An absolute Z-score of ≥|2|
was considered significant. A P-value was also calculated by Fisher's
exact test indicating the statistical significance of genes in the dataset
that are downstream of the transcription factors. We set a threshold of
an overlap P b 0.05 to identify significant upstream regulators. Finally,
we used the network modules in the IPA system to identify the network
and subnetworks of our candidate gene list. These genes were clustered
into several (sub) networks, based on their protein–protein interaction,
regulation, and other relationships.

2.6. Quantitative real-time PCR (qRT-PCR)

Quantitative real-timePCR (qRT-PCR)was used tomeasure themRNA
expression levels of genes. The qRT-PCR was performed on 7300 Real
Time PCR System (Applied Biosystems) using SYBR® Green Real-time
PCR Master Mix (TaKaRa, China) with 18S rRNA as endogenous control
genes. The PCR primer sequences are shown in Supplementary material
(Table S1) and 2−ΔΔCt method was used to determine the relative
mRNA abundance for the surveyed samples.

2.7. Animal model preparation with partial ligation and histopathology
analysis

Weperformed an animal diseasesmodel by partial ligation of the left
carotid artery on both SM22α−/− andwild typemice. The carotid artery
ligation model used in this study was described elsewhere [28]. The
specimen was obtained after ligation for 14 days fixed in 7.5% formalin,
embedded in paraffin, and processed for routine histopathologic
examination. Vertical sections (20 μm thick) were stained with
hematoxylin and eosin (H&E). Immunostaining of sections were
performed with primary antibodies against MCP-1 (1:400, cat. no.
MBS551047, MyBioSource), MMP-2 (1:200, cat. no. sc-13595, Santa
Cru), MMP-9 (1:200, cat. no. sc-6840, Santa Cru), ICAM-1 (1:400, cat.
no. sc-8439, Santa Cru), VCAM-1 (1:400, cat. no. sc-8304, Santa Cru).

http://www.ingenuity.com


Fig. 1. Validation of the ablation of SM22α and comparison between RNA-Seq and qRT-
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2.8. SiRNA transfection and Western blot

The cultured VSMCs were grown to 50–60% confluence, and then
transfected with specific duplex siRNA, SM22α siRNA (siSM22α)
(5′-GCU AGU GGA GUG GAU UGU ATT-3′ and 5′-UAC AAU CCA CUC
CAC UAG CTT-3′), Scrambled siRNA (siCon) (5′-GCU AGA GUA GCG
GUG AAU UCG TT-3′ and 5′-CGA AUU CAC CGC UAC UCU AGC TT-3′)
served as a negative control, using Lipofectamine® RNAiMAX Transfec-
tion Reagent (Invitrogen) according to the manufacturer's protocol.
After 24 h after transfection, VSMCs were treated with TNF-α
(10 ng/ml) for 15 min. RIPA buffer was used to lyse VSMCs (50 mM
Tris–Cl, pH 7.5, 1% NP-40, 0.5% Na-deoxycholate, 150 mM NaCl)
and mice arteries (50 mM Tris–Cl, pH 7.5, 1% NP-40, 0.5%
Na-deoxycholate, 0.05% SDS, 1 mM EDTA, 150 mM NaCl). The nuclear
and cytoplasmic protein separation was performed by NE-PER Nuclear
and Cytoplasmic Extraction Reagents (Thermo). The proteins were
separated by 10% or 12% SDS-PAGE, and electro-transferred onto a
PVDF membrane. Membranes were blocked with 5% non-fat milk in
TBST for 2 h at room temperature, and incubated with primary antibod-
ies against SM22α (1:1000, cat. no. ab14106, Abcam), p-IκBα (Ser32/
36) (1:1000, cat. no. 9246, Cell Signaling), IκBα (1:500, cat. no.
1130-1, Epitomics), NF-κB (1:500, cat.no. 622602, BioLegend), ApoCI
(1:300, cat.no. AB21657b, BBI), β-actin (1:1000, cat.no. sc-47778,
Santa Cruz) at 4 °C overnight, and then incubated with IRDye800®
conjugated secondary antibody (1:20,000, Rockland) for 1 h, following
scanning with the Odyssey Infrared Imaging System (LI-COR Biosci-
ences), then the integrated intensity for each detected band was deter-
mined with the Odyssey Imager software (v3.0). The experiments were
replicated at least three times.
PCR results. A-B, Western blot and qRT-PCR analysis of SM22α expression of vascular tis-
sues fromSM22α−/− and SM22α+/+mice. C, Comparison the fold change (log2) values of
12 selected transcripts using RNA-Seq and qRT-PCR.
2.9. Statistical analysis

Data analysis was performed by using SPSS version 17.0 (SPSS, Inc.,
Chicago, IL). Data were presented as themeans ± s.d. Paired or unpaired
datawere performed by Student's t tests. Differences among groupswere
determined with one-way analysis of variance (ANOVA) with repeated
measures. A P-value b 0.05 was considered significant.
3. Results

3.1. Differentially expressed genes generated by RNA-Seq

This SM22α-knockout mouse linewas generated by knocking in the
Cre-recombinase coding sequence into the endogenous SM22α gene
locus on chromosome 9 via homologous recombination of embryonic
stem cells. The results from Western blot and qRT-PCR demonstrated
the ablation of SM22α (Figs. 1 A–B). Putative differentially expressed
genes generated by RNA-Seq were identified (2 fold change cut-off).
Using these criteria, there were a total of 1398 genes differentially
expressed between SM22α−/− and wild-type mice. Of the 1398 differ-
entially expressed genes, 959 (56.0%) genes were up-regulated while
439 (25.6%) genes were down-regulated. Although the majority of
these significantly altered genes were protein-coding genes, approxi-
mately 315 (18.4%) were unknown/hypothetical function genes. We
randomly selected 12 genes from those with both different expression
patterns and interesting function, for qRT-PCR validation. Fold changes
fromqRT-PCRwere comparedwith RNA-Seq expression analysis results
(Fig. 1C).

Among the differentially expressed genes identified by SM22α-
knockout, we found genes such as hemoglobin (Hb), apolipoprotein
C-I (ApoCI) and G0/G1 switch gene 2 (G0s2) were highly expressed
(Table 1). Specially, ApoCI is one of the most highly expressed (based
on FPKM value) and significantly changed genes caused by SM22α-
knockout.
3.2. Functional analysis of differentially expressed genes

The NCBI web-based functional annotation tool DAVID v 6.7 (Data-
base for Annotation, Visualization and Integrated Discovery) was used
to investigate functional associations of gene expression changes
between SM22α−/− and SM22α+/+. GO annotated differentially
expressed genesmainly belonged to the three functional clusters (biolog-
ical process, cellular component, and molecular function). The differen-
tially expressed genes in the cluster of biological process were found to
bemainly related to signal transduction, developmental processes, trans-
port and cell communication (Fig. 2A). Cellular component GO terms of
differentially expressed genes were related to the plasma membrane,
synapse, extracellular region and cell junction (Table S2). The molecular
function of GO terms were mainly involved of binding, catalytic activity,
receptor activity and structure molecular activity (Fig. 2B).

Protein classification of differentially expressed genes using
PANTHER (Protein Analysis Through Evolutionary Relationships),
ranked receptors to the top, which is very similar to that obtained
frommolecular function GOdatabase (Fig. S1). Subdivision of the recep-
tors class showed “G-protein coupled receptor” and “cytokine receptor”
were the top two class receptors (Fig. 2C). G-protein coupled receptors
(GPCRs) are a large protein family of receptors that sense molecules
outside the cell and activate inside signal transduction pathways and
cellular responses. Important GPCRs found in differentially expressed
genes included C-X-C chemokine receptor type 4 (CXCR4), adrenergic
receptor, cadherin, neuropeptide Y receptor, platelet-activating factor
receptor, probable C-C chemokine receptor type 3 (CCR3) and growth
hormone secretagogue receptor type 1 (GHSR),whichplayed vital func-
tions in proliferation andmigration of VSMCs [29–31]. The differentially
expressed genes included the cytokine receptors related to coordinating
immune and inflammatory responses, such as nerve growth factor
receptor (NGFR), cytokine receptor-like factor 1 (CRLF1), CD48 antigen



Table 1
Top enriched differentially expressed genes identified by SM22α-knockout.

Up regulate genes Down regulate genes

Gene name Description Gene name Description
ApoCI Apolipoprotein C-I Psmg4 Proteasome (prosome, macropain) assembly chaperone 4
Hba-a1 Hemoglobin alpha, adult chain 1 Nnmt Nicotinamide N-methyltransferase
G0s2 G0/G1 switch gene 2 Eln Elastin
Cd36 CD36 antigen Ndufs5 NADH dehydrogenase (ubiquinone) Fe-S protein 5
Egr2 Early growth response 2 Ifit3 Interferon-induced protein with tetratricopeptide repeats 3
Arc Activity regulated cytoskeletal-associated protein Sparc Secreted acidic cysteine rich glycoprotein
Ppbp Pro-platelet basic protein Tcap Titin-cap
Igfbp2 Insulin-like growth factor binding protein 2 Fos FBJ osteosarcoma oncogene
Scd1 Stearoyl-Coenzyme A desaturase 1 Adra1d Adrenergic receptor, alpha 1d
Car3 Carbonic anhydrase 3 Lox Lysyl oxidase
Ucp1 Uncoupling protein 1 (mitochondrial, proton carrier) Hist2h3b Histone cluster 2, H3b
Elovl6 ELOVL family member 6, elongation of long chain fatty acids (yeast) Itih4 Inter alpha-trypsin inhibitor, heavy chain 4
Btnl9 Butyrophilin-like 9 Sgcg Sarcoglycan, gamma (dystrophin-associated glycoprotein)
Srgn Serglycin Sec61g SEC61, gamma subunit
Pnpla3 Patatin-like phospholipase domain containing 3 Lsm7 LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae)
Fasn Fatty acid synthase Ndufa2 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2
Cyp2e1 Cytochrome P450, family 2, subfamily e, polypeptide 1 Dsp Desmoplakin
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(CD48), interleukin-18 receptor (I18RA), I12R2, IL23R, IL9R, throm-
bopoietin receptor (TPOR) and neuronal cell adhesion molecule
(NRCAM). In addition, transporter, hydrolase, signaling molecular and
nucleic acid binding were also found as the major protein classes.
Furthermore, protein classes more than 50 counts were also classified
to enzyme modulators, transcription factors, cell adhesion molecules,
cytoskeletal proteins, defense/immunity proteins, oxidoreductases and
proteases.

To identify pathways in which differentially expressed genes were
involved and enriched, pathway analysis was performed using KEGG,
Fig. 2. Functional analyses of differentially expressed genes byDAVID and PANTHER. A, Represe
C, Subdivision of the receptors class by PANTHER showed “G-protein coupled receptor” and “c
BioCarta and IPA, respectively. The most representative terms (higher
level of the pathways) in KEGG included neuroactive ligand–receptor
interaction, hematopoietic cell lineage and cytokine–cytokine receptor
interaction. The most enriched pathways in BioCarta were associated
with hematopoiesis-related cytokines, nuclear receptors involved in
lipid metabolism and toxicity, and cytokines modulating inflammatory
response (Fig. S2). IPA canonical pathway analysis allowed further
insights into the molecular processes and pathways involved as
SM22α-knockout. According to IPA, the specific enrichment pathways
of differentially expressed genes were observed for LXR/RXR activation,
ntative GO terms of biological processes. B, Representative GO terms ofmolecular function.
ytokine receptor”were the top two class receptor.

image of Fig.�2
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atherosclerosis signaling, communication between innate and adaptive
immune cells, dendritic cell maturation, altered T cell and B cell signal-
ing in rheumatoid arthritis, calcium and amyotrophic lateral sclerosis
signaling (Fig. 3). Further analysis of genes involved in these pathways
were mainly G-protein coupled receptors (for example: CCR3, CCR4,
adrenergic receptor) and cytokines (GM-CSF, IL-1α, IL-1β, IL3/6/11/18,
TNF), implying that vascular cells were activated in SM22α−/− mice.
Specifically, LXR/RXR pathway is mainly involved in cholesterol, fatty
acid, and glucose homeostasis, including genes LXR, LPL, ApoCI, UDP
glucuronosyltransferase 1 family polypeptide A3 (UGT1A3), IL-6, IL-1β
and MCP-1. CCR3, CXCR4, collagen, IL-1, IL-6, MMP-13 and TNF-α
were also clustered into atherosclerosis signaling pathway and partici-
pated in VSMC proliferation and foam cells activation. Overall, KEGG,
BioCarta and IPA pathway analysis were all showed that the regulatory
cytokines of hematopoiesis, inflammation and lipid metabolism were
significantly enriched as top ranked pathways.

Upstream regulator analysis by IPA can identify potential regulatory
nodes despite the levels of gene expression. By this analysis, we found 6
upstream regulators caused by SM22α-knockout (Table 2, Fig. S3). It
showed that TNF was respectively the target gene of NF-κB, RXRα,
JUN and KLF2. CXCR4 was activated by NF-κB, KLF2 and NUPR1. HLA-B
was significantly up-regulated by both NF-κB and JUN. Col1a1 and
Col3a1 were suppressed by NF-κB and NUPR1 respectively. These
results suggest that the regulators of inflammation are activated in
SM22α−/− mice.

We used the IPA system to examine the potential functional net-
works of differentially expressed genes, and found that these genes
were clustered into 10 significant functional networks (Table S3). The
main functional roles of these networks involved in cell signaling, lipid
metabolism and cardiovascular disease. Diseases and functions analysis
by IPA revealed that disease processes and biological functions caused
by SM22α-knockoutweremainly related to arteriosclerosis, atheroscle-
rosis, hypotension, disorder of artery, occlusion of artery and vascular
disease (Table S4, Fig. S4).

3.3. SM22α−/− mice showed characteristics of pro-atherosclerosis

A total of 45 geneswere enriched in atherosclerosis predicted by IPA,
indicating molecular changes by SM22α-knockout may have already
initiated the early stage of atherosclerosis (Fig. 4A). Then we selected
the enriched genes which are the markers of early atherosclerosis
involved in inflammation (TNF, IL-18 [32]) and lipid translocation or
Fig. 3. Canonical Pathway an
metabolism (LPL, APOA2, Adiponectin, ApoCI) for further analysis.
Quantitative real-time PCR showed that these gene expressions had a
strong correlation with SM22α-knockout (Fig. 4B).

Atherosclerosis is virtually always accompanied of vascular inflam-
mation during its early stage and the transcription factor NF-κB is a
key regulator of inflammation [33]. Our data showed TNF was signifi-
cantly up-regulated as SM22α-knockout and activated NF-κB pathway
(Fig. 4C). To confirm the relationship between loss of SM22α and
inflammation, we subsequently examined whether disruption/overex-
pression of SM22α affected TNF-α-mediated NF-κB activation in
VSMCs. The results showed that knockdown of SM22α using specific
siRNA increased phosphorylation and degradation of IκBα following
TNF-α treatment (Figs. 5A–B). Disruption of SM22α activated NF-κB
complex to translocate into the nucleus where it initiated gene expres-
sion, while overexpression of SM22α suppressed TNF-α-mediated
NF-κB nucleus translocation (Figs. 5C–D). These results were in
accordance with the above bioinformation analysis by IPA. Another
important event in atherosclerosis is dysfunction of lipid metabolism.
Network analysis revealed that lipoprotein ApoCI was a nodemolecular
in cardiovascular diseases [34]. ApoCI was prominent expressed in the
arteries of SM22α−/− mice compared with that in wild-type (Figs.
5E–F). Further, we found that suppression of SM22α by siRNA increased
ApoCI expression levels in cultured rat VSMCs (Figs. 5G–H). Next,
we performed serum lipid assay between SM22α−/− and SM22α+/+

mice. The results showed the levels of triglycerides were up-regulated
but a down-regulation of serum total cholesterol (Fig. S5). Meanwhile,
genes enriched in fatty acid metabolismwere clustered by IPA software
analysis (Fig. S6).
3.4. SM22α−/− mice revealed increased tendency to develop vascular
disease

Although SM22α−/− mice showed histologically indistinguishable
from the tissues of their control littermates, pathway analysis were
activated for hematopoiesis, inflammation and lipid metabolism from
the above analysis. As inflammation and lipid metabolism are major
risk incidents of atherosclerosis, we suspected that the molecular basis
in SM22α−/−mice is already prepared for the initiation of atherosclero-
sis. Thus we next validated some candidate genes which expressed at
the initiation stage of atherosclerosis. We also hypothesized that
SM22α−/− mice may have an increased tendency to develop vascular
alysis by IPA software.

image of Fig.�3


Table 2
Upstream transcription regulator analysis by IPA.

Upstream regulator Molecule type Predicted activation Activation Z-score

RELA Transcription regulator Activated 2.811
RXRA Ligand-dependent nuclear receptors Activated 2.720
PPARA Ligand-dependent nuclear receptors Activated 2.195
JUN Transcription regulator Activated 2.046
NUPR1 Transcription regulator Activated 2.106
KLF2 Transcription regulator Inhibited −2.000
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disease compared to the wild type based on the above molecular infor-
mation analyzed by us.

The expression of molecules related with cellular adhesion and
extracellular matrix degradation is the initiation step of vascular
diseases such as atherosclerosis, neointimal thickening and aneurysm.
We detected several molecules of differentially expressed genes based
on GO analysis, which included monocyte chemoattractant protein-1
(MCP-1), intracellular cell adhesion molecule 1 (ICAM-1), vascular cell
adhesion molecule 1 (VCAM-1) and matrix metalloproteinases (MMP-
2, MMP-9) in SM22α−/− and SM22α+/+ mice arteries by immunohis-
tochemical staining. The results demonstrated that the expression of
ICAM-1, MMP-2, MMP-9 and VCAM-1 were significantly elevated,
Fig. 4.Genes enriched in atherosclerosis predicted by IPA software and predicted NF-κB pathwa
atherosclerosis as SM22α-knockout. B, Enriched genes were verified by qRT-PCR. Data are prese
value. *P b 0.05. C, TNF was significantly up-regulated as SM22α-knockout and activated NF-κ
while MCP-1 showed no obvious expression change both in SM22α−/−

and SM22α+/+ arteries (Figs. 6A–B).
Next, we established the model of neointimal formation using partial

ligation of the left carotid arteries of both SM22α−/− and SM22α+/+

mice. The intimal thickness in SM22α−/− mice was more than that of
wild type mice after ligation for 14 days (Figs. 6C–D). The expressions
of MCP-1, VCAM-1, ICAM-1, MMP-2 and MMP-9 were all exacerbated
in the partial ligation model of SM22α−/− compared with SM22α+/+

mice by immunohistochemistry staining (data not shown). ApoCI was
up-regulated during carotid neointimal formation comparedwith normal
arteries and loss of SM22α increased ApoCl expression, especially in the
injured arteries by partial ligation (Fig. S7). These results may imply
y activation. A, Diseases& functions analysis by IPA revealed that 45 geneswere enriched in
nted as themean± s.d. n= 3mice per group. Student's t test was used to calculate the P-
B pathway.

image of Fig.�4


Fig. 5. SM22α−/−mice showed characteristics of pro-atherosclerosis. A-B,Western blots showed increased phosphorylation of IκB (Ser32/36) in siSM22α compared to siCon after treated
with TNF-α (10 ng/ml) for 15min. Data are presented as themean± s.d. ANOVAwas applied to calculate the P-value. **P b 0.01. C–D,Western blot showed disruption/overexpression of
SM22α affectedTNF-α-mediatednucleus translocations ofNF-κB inVSMCs. Data are presented as themean± s.d. ANOVAwas applied to calculate theP-value. *P b 0.05. E–F,Western blot
showed ApoCI expression in SM22α−/− and SM22α+/+ mice arteries. Student's t test was used to calculate the P-value. *P b 0.05. G–H,Western blot showed ApoCI expression in VSMCs
transfected by siCon or siSM22. Student's t test was used to calculate the P-value. *P b 0.05.
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that disruption of SM22α influenced cellular adhesion and extracellular
matrix degradation, enhanced the phenotype change of VSMCs and
increased vascular response to injury.
4. Discussion

Previous studies showed that the dynamic expression levels of
VSMCs marker, SM22α, had a high correlation with phenotypic remod-
eling of VSMCs and vascular injury, such as restenosis, atherosclerosis
and hypertension. However, the question still exists whether disruption
of SM22α actively contributes to the pathogenesis of vascular diseases.
In order to gain comprehensive insight into the function of SM22α
involved in vascular diseases, the present study investigated the
different gene expression patterns in SM22α−/− mice using RNA-Seq.
The up-regulated genes caused by SM22α-knockout were more than
the down-regulated genes. This suggests that highly expressed genes
in SM22α-knockout mice play relatively greater roles in determining
VSMC phenotypes during vascular injury.
Themost highly differentially expressed and changed gene is ApoCI.
ApoCI is expressed in the liver, lung, skin, spleen, adipose tissue, central
nervous system, kidney, brain, and has several roles in lipid metabolism
[35]. ApoCI improved the presentation of LPS to macrophages in vitro
and in vivo, thereby accelerated atherosclerosis after treatment with
LPS [36]. Furthermore, ApoCI is themajor plasma inhibitor of cholesteryl
ester transfer protein (CETP) via inhibiting lipoprotein binding to the
LDL and VLDL receptors. Nineteen pathways related to ApoCI enriched
in ‘phospholipid efflux’ which is strongly associated with the athero-
sclerotic process [34,35,37]. Reports showed that mice with transgenic
expression of humanApoCI in the liver and skin have strongly increased
serum levels of cholesterol, triglycerides, and free fatty acids, indicative
of a disturbed lipid metabolism [38]. Studies in humans and mice have
also shown that increased expression of ApoCI results in combined
hyperlipidemia with a more pronounced effect on triglycerides (TG)
comparedwith total cholesterol (TC) [39]. ApoCIwas found prominent-
ly elevated in the atheroma of the carotid and femoral arteries
compared to non-atherosclerotic arteries [40]. ApoCI may contribute
to the pathogenesis of atherosclerosis [41]. The elevated levels of
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Fig. 6. SM22α−/−mice revealed increased tendency to develop vascular disease. A–B, Immunohistochemical staining of enrichedmolecules relatedwith cellular adhesion (MCP-1, ICAM-
1, and VCAM-1) and extracellular matrix degradation (MMP-2 andMMP-9) in SM22α−/− and SM22α+/+ mice arteries. Student's t test was used to calculate the P-value. *P b 0.05. C–D,
Characterization the neointimal formation by partial ligation of the left carotid arteries in SM22α−/− and SM22α+/+ mice by H&E staining.
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triglycerides in SM22α−/− mice may have associations with increased
levels of ApoCI. We anticipated that ApoCI affected by SM22α-
knockout may contribute to accelerated atherosclerosis development,
especially for the existence of injury and chronic inflammation.

Pathways and gene network analysis revealed inflammation and
lipid metabolism, which are key characteristics of atherosclerosis [42,
43], were significantly enriched as SM22α-knockout. Moreover, the
validation of enriched genes of atherosclerosis indicated strong correla-
tion between atherosclerosis and SM22α ablation. Cytokine tumor
necrosis factor-α (TNF-α) acts as a pro-atherogenic role through the
regulation of inflammatory response and lipid balance [44]. The expres-
sion levels of TNF-α in arterial walls have high correlation with the
progression of atherosclerosis [45]. It promotes chemokine and
adhesion molecule expression and induces VSMCs' proliferation and
migration [46]. Our study showed that TNF-α was up-regulated in
SM22α−/− mice and it may activate NF-κB nucleus translocation by
PI3k-Akt pathway. IL-18 is also a potent pro-inflammatory cytokine in
atherosclerosis and up-regulated in SM22α−/− mice [47]. Catalytic
action of LPL induces the formation of atherogenic lipoprotein remnants
[48]. ApoA2 is one of the most abundant proteins in HDL particles, and
its overexpression induced enhanced development of aortic fatty streak
lesions [49]. Both up-regulation of LPL and ApoA2 promoted the
initiation of atherosclerosis. Adiponectin has protection effect from
atherosclerosis [50] and its down-regulation in SM22α−/− mice may
indicate the impaired protection function. Thus, we presumed that
disruption of SM22α can accelerate vascular inflammation and disorder
lipid homeostasis. NF-κB is predicted as a major upstream regulator
caused by SM22α-knockout and also a key transcriptional regulator of
inflammatory genes in cardiovascular diseases [51,52]. LXR-α has
been recognized its crucial protective role in the initiation of a cross-
talk between lipid metabolism and inflammation regarded as a prereq-
uisite for the development of atherosclerotic lesions [53]. Critical muta-
tions of LXR gene can dysfunction of its targeted genes that are
functioned in the cross-talk between lipid peroxidation and inflamma-
tion [54]. Based on the central roles of NF-κB in inflammation and
ApoCI as a node molecular of lipid metabolism in cardiovascular
diseases, we selected NF-κB and LXR targeted gene ApoCI for further
analysis in cultured rat VSMCs. The results showed loss of SM22α exac-
erbated TNF-α-mediated NF-κB activation and increased the expression
levels of ApoCI in VSMCs in vitro, while overexpression of SM22α sup-
pressed TNF-α-mediated NF-κB activation. As inhibition of NF-κB can
be used to target atherosclerosis, SM22αmay be used as a new inhibitor
for NF-κB. The precise mechanisms of NF-κB and ApoCI in SM22α-
mediated vascular diseases are still need to be investigated. Conse-
quently, these characteristics not only suggest that SM22α−/− mice
have an increased tendency to develop atherosclerosis, but also indicate
SM22α actively participated in various vascular diseases. However, the
atherosclerosis-susceptibility in SM22α-knockout mice in vivo needs to
be further validated in models such as ApoE-KO or LDLR-KOmice in the
future research.

From GO and PANTHER analysis of the cellular component revealed
that the differentially expressed genes were chiefly G-protein coupled
receptors located in plasmamembrane. SM22α can bundle and stabilize
actin filaments. Disruption of SM22α changed actin cytoskeletal remod-
eling dynamics and resulted in increased cell migration and invasion
[55]. The dynamics of actin cytoskeleton is involved in the integration
of multiple signaling pathways activated by both receptor tyrosine
kinases (RTKs) and G protein-coupled receptors [56]. Loss of SM22α
may result in prominent signal transduction alternation mediated by
receptors located in membrane through cytoskeletal remodeling.
Indeed, recent studies have shown that disruption of SM22α developed
enhanced inflammatory responses and prominent medial chondrogen-
esis after carotid balloon injury [19,20]. Although the SM22α−/− mice
didn't exhibit obvious histologically or physiological differences from
the tissues of their control littermates, we presumed that someunderly-
ing molecular changes already existed. GO cellular component terms of
differentially expressed genes were also related to extracellular region
and cell junction. The extracellular matrix is involved in cell–cell inter-
actions, proliferation andmigration. Turnover and synthesis of extracel-
lular matrix components play an important role in cardiovascular
function [57,58]. Expression of adhesion and extracellular matrix
degradation molecules is one early phase of atherosclerosis [59,60].
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ICAM-1 and VCAM-1, are major adhesion molecules and play vital roles
in recruiting of leukocytes to atherosclerotic lesion position [61,62].
MMP-2 and MMP-9 are prominent matrix metalloproteinases in the
pathogenesis of atherosclerosis [63]. Their increased expressions in
SM22α−/− mice may suggest the initiation of early vascular diseases
such as atherosclerosis. Therefore, it is easy to understand that intimal
thickness in SM22α−/− mice is more than that of wild type mice in
the neointimal formation model. The expressions of these molecules
were exacerbated in the partial ligation model of SM22α−/− mice
(data not shown). Moreover, We have looked for evidence of SM22α
involvement in vascular inflammation of human, and found that the
expression of SM22α significantly decreased in the renal neointima
and the carotid artery atherosclerotic plaques, accompanied by
increased expression of these inflammatory molecules, compared with
that of normal arteries (data not been published). These findings
suggest a correlation between decreased SM22α expression and arterial
diseases. These data further suggested that disruption of SM22α influ-
enced the interaction between vascular cells and extracellular matrix,
determining the phenotypic switching of VSMCs.

Other candidate genes identified by our analysis remain to be tested
in the future. For example, chemokine receptors CCR3 and CXCR4 are
up-regulated in the aorta of SM22α−/− mice. They are G-protein
coupled receptors located at membrane of VSMCs and up-regulated in
vascular diseases such as atherosclerosis [29,30]. Mitochondria proteins
cytochrome P450 and cytochrome C oxidase were also up-regulated in
SM22α−/− mice. Cytochrome P450 is involved in Angiotensin
II-induced VSMC migration and growth [64], mitochondrial ROS gener-
ation [65] and cardiovascular inflammation [66].We also found that the
changes of some mRNA levels were not consistent with their protein
levels (for example, MMP-9) and there might have other mechanisms
such as protein modifications occurred. Taken together, all these infor-
mation may provide novel clues for further research.

In conclusion, we used RNA-Seq to systematically investigate the
global transcriptomes of the aortas in SM22α−/− and SM22α+/+ mice,
generating a useful resource for understanding the molecular function
of SM22α. Function analysis indicated that SM22α−/− mice may be
more sensitive to extracellular stimulation such as mechanical stimulus,
hormones or growth factors. Meanwhile, our results provided evidences
for the molecular basis of SM22α-related pathogenesis, and presumed
that SM22α−/−micemay be amodel of pro-atherosclerosis. Ourfindings
suggest that SM22α can actively participate in vascular diseases, and
point out somedirections for our future study on SM22α functions in vas-
cular homeostasis. Also, rescuing SM22α expressionmay provide a novel
therapeutic strategy for arterial diseases.
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