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Abstract

We investigate Ore extensions of Baer rings and p.p.-rings. Let o be an endomorphism and
0 an oa-derivation of a ring R. Assume that R is an o-rigid ring. Then (1) R is a Baer ring
if and only if the Ore extension R[x;a,d] is a Baer ring if and only if the skew power series
ring R[[x;«]] is a Baer ring, (2) R is a p.p.-ring if and only if the Ore extension R[x;a,d] is a
p.p.-ring. (© 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 16S36; 16E50; secondary 16W60

Throughout this paper R denotes an associative ring with identity. In [13] Kaplansky
introduced Baer rings as rings in which the right (left) annihilator of every nonempty
subset is generated by an idempotent. According to Clark [9], a ring R is called to be
quasi-Baer if the right annihilator of each right ideal of R is generated (as a right ideal)
by an idempotent. Further works on quasi-Baer rings appear in [3-5,15]. Recently,
Birkenmeier et al. [6] called a ring R a right (resp. left) principally quasi-Baer (or
simply right (resp. left) p.q.-Baer) ring if the right (resp. left) annihilator of a principal
right (resp. left) ideal of R is generated by an idempotent. R is called a p.q.-Baer ring
if it is both right and left p.q.-Baer.

Another generalization of Baer rings is a p.p.-ring. A ring R is called a right (resp.
left) p.p.-ring if the right (resp. left) annihilator of an element of R is generated by
an idempotent. R is called a p.p.-ring if it is both a right and left p.p.-ring.
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It is natural to ask if any or all of these properties can be extended from R to R[x]
and R[[x]]. The extensions of Baer, quasi-Baer, right p.q.-Baer and p.p.-rings have been
investigated by many authors [1,6,11-13, etc.].

In this paper, we study Ore extensions of Baer rings and p.p.-rings. In particular,
we show: Let o be an endomorphism and 6 an o-derivation of a ring R. Suppose
that R is an o-rigid ring. Then (1) R is a Baer ring if and only if the Ore extension
R[x; 0] is a Baer ring if and only if the skew power series ring R[[x;«]] is a Baer
ring, (2) R is a p.p.-ring if and only if the Ore extension R[x;o, d] is a p.p.-ring.
Thereby several known results are extended.

For a nonempty subset X of a ring R, we write rg(X) = {c¢c € R|Xc =0} and
/r(X)={c € R|cX =0}, which are called the right annihilator of X in R and the left
annihilator of X in R, respectively.

We begin with the following lemma. Recall that a ring R is reduced if R has no
nonzero nilpotent elements. Observe that reduced rings are abelian (i.e., all idempotent
are central).

Lemma 1. Let R be a reduced ring. Then the following statements are equivalent:
(1) R is a right p.p.-ring.
(ii) R is a p.p.-ring.
(iii) R is a right p.q.-Baer ring.
(iv) R is a p.q.-Baer ring.
(v) For any a € R, rg(a"R) = eR for some e = e* € R, where n is any positive
integer.

Proof. These follow from the fact rz(a) =7/r(a) =rr(aR)={r(Ra)=rr(a"R) for any
a € R and any positive integer n because R is reduced. [

However, the following example shows that there exists an abelian right p.q.-Baer
ring which is neither right nor left p.p. (see also [8, Example 14.17]). Due to Chase
[7], there is a left p.p.-ring which is not right p.q.-Baer.

Example 2. (1) Let Z be the ring of integers and Mat,(Z) the 2 x 2 full matrix ring
over Z. We consider the ring

R= { {g Z} € Maty(Z)|a=d, b=0and ¢ = O(mod2)}.
First we claim that R is right p.q.-Baer. Let

(2]

be a nonzero element of R. Then we see that

2a 0 OzaEuR
2¢ 0’10 2¢c
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by multiplying
20 and 0 2
0 0 00
to the element u from the right-hand side, respectively. If
o f
= R
v L) 8} € rp(uR),

then

[2a 0] [« B [2a00 2af] [0 O
[2¢ 0|y e [2cx 28] |0 O]
Soa=0and f=0if a=# 0 or ¢ # 0. Also

[0 2al[a B| _[2ay 2ac| [0 O
10 2¢] |y e |2 2| |0 0]
So y=0 and ¢ =0 if a # 0 or ¢ # 0. Therefore
,_[0 0
100
if @ # 0 or ¢ # 0. Suppose that b £ 0 or d # 0. If we replace
(2 0] [0 2]
0 0] ™ |0 o]
by
[0 0] [0 0]
o 2] ™ |2 o)

respectively, in the above, then by the same method we see that

b 00
10 0]
Hence rg(uR) = 0 for any nonzero element u € R. Therefore R is right p.q.-Baer.
Next we claim that R is neither right p.p. nor left p.p. For

0 2
{0 0} €&,
we have
rR<|:8 3])2{{5 :)}|uEO(mod2)andv50(mod2)};AeR,

where e = ¢*> € R. Note that the only idempotents of R are

oo] = lov)
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Therefore R is not right p.p. Using the same method as the above, we can see that R
is not left p.p.

(2) [8, Example 8.2] For a ring []°, Z,, where Z, is the ring of integers modulo 2,
let

T ={(a,)X | a, is eventually constant}
and

I ={(an)2, | an =0 eventually}.
Then

(T T
(% 7)

is a left p.p.-ring which is not right p.q.-Baer.

Recall that for a ring R with a ring endomorphism o : R — R and an «-derivation
0 : R — R, the Ore extension R[x;x,0] of R is the ring obtained by giving the
polynomial ring over R with the new multiplication

xr =oa(r)x + o(r)

for all € R. If 6 =0, we write R[x;o] for R[x;o,0] and is called an Ore extension
of endomorphism type (also called a skew polynomial ring). While R[[x;a]] is called
a skew power series ring.

Definition 3 (Krempa [14]). Let o be an endomorphism of R. o is called a rigid en-
domorphism if ra(r) =0 implies »r =0 for » € R. A ring R is called to be a-rigid if
there exists a rigid endomorphism o of R.

Clearly, any rigid endomorphism is a monomorphism. Note that «-rigid rings are
reduced rings. In fact, if R is an o-rigid ring and a>=0 for a € R, then ao(a)x(an(a))=
an(a®)a?(a) = 0. Thus ao(a) =0 and so a = 0. Therefore, R is reduced. But there
exists an endomorphism of a reduced ring which is not a rigid endomorphism (see
Example 9). However, if o is an inner automorphism (i.e., there exists an invertible
element u € R such that a(r) = u~'ru for any r € R) of a reduced ring R, then R is
o-rigid.

In this paper, we let o« be an endomorphism of R and ¢ an a-derivation of R, unless
especially noted.

Lemma 4. Let R be an a-rigid ring and a,b € R. Then we have the following:
(1) If ab=0 then ad"(b) = o"(a)b =0 for any positive integer n.
(i1) If ab =0 then ad™(b) = 0"(a)b =0 for any positive integer m.
(iii) If ao*(b) = 0 = ¥ (a)b for some positive integer k, then ab = 0.

Proof. (i) It is enough to show that au(b)=0o(a)b=0. If ab=0, then ba(a)x(ba(a))=
ba(ab)a?*(a)=0. Since R is a-rigid, we have ba(a)=0. Since R is reduced, (a(a)b)*=0
implies a(a)b = 0. Similarly, using ba =0, we obtain ax(b) = 0.



C.Y. Hong et al. | Journal of Pure and Applied Algebra 151 (2000) 215-226 219

(ii) It is enough to show that ad(b)=0(a)b=0. If ab=0, then 0=0(ab)=o(a)o(b)+
d(a)b. So {u(a)d(bh)}? = —d(a)ba(a)d(h) =0 by (i). Hence a(a)d(h) =0, since R is
reduced. Then a(ad(b))=a(a)u(d(b))=0 by (i). Since o is a monomorphism, we have
ad(b) = 0. Similarly, we obtain d(a)b = 0.

(iii) Suppose that aak(h) =0 for some positive integer k. Then, by (i) we obtain
o (ab) = of(a)o*(b) = 0. Since « is a monomorphism, we have ab = 0. Similarly,
a*(a)b = 0 for some positive integer k implies ab =0. [

The following proposition extends [10, Lemma 3] and [14, Theorem 3.3].

Proposition 5. 4 ring R is a-rigid if and only if the Ore extension R[x;u, 0] is a

reduced ring and o is a monomorphism of R. In this case, o(e)=e, 6(e)=0 for some
2

e=e" €R.

Proof. Suppose that R is o-rigid. Assume to the contrary that R[x; o, ] is not reduced.
Then there exists 0 # f € R[x; o, 8] such that f>=0. Since R is reduced, f & R. Thus
we put f =" ax', where a; € R for 0 < i < m and a, # 0. Since f? =0, we
have a,o"(a,)=0. By Lemma 4(iii) ¢, =0 and so a,, = 0, which is a contradiction.
Therefore R[x;a, 0] is reduced.

Conversely, suppose that R[x;o,d] is reduced. Clearly, R is reduced as a subring.
If @ € R and aa(a) = 0, then (a(a)xa)’> =0 and so a(a)xa = 0. Thus 0 = (a(a)x)a =
((a))*x + a(a)d(a) and so a(a) = 0. Since o is a monomorphism, we have a = 0.
Therefore R is a-rigid.

Next, let e be an idempotent in R. Then e is central and so ex = xe = a(e)x + i(e).
This implies that a(e) =e and d(e) =0. [

In this Proposition 5, if R[x;,d] is reduced and ab=0 for a,b € R, then we obtain
ax"bx" =0 in R[x;a,d] for any nonnegative integers m and n.

Proposition 6. Suppose that R is an a-rigid ring. Let p=>"1", aix' and q=3__y b;x’
in R[x;o,6]. Then pq =0 if and only if a;b; =0 for all 0 <i<m, 0 <j<n.

Proof. Assume that pg=0. Then (3_7", ax')(3_7_, bix/ )=S0 (O ok aix'bix))=
Congn X" Cppip—1 X" 4 e1x + 9 =0. We claim that a;b, =0 for s+t > 0. We
proceed by induction on s+ ¢. It can be easily checked that ¢, =a,o™(b,)=0. Then
we obtain a,,b, =0 by Lemma 4(iii). This proves for s+ ¢ =m + n. Now suppose that
our claim is true for s+¢ > k > 0. Then by Proposition 5, we have Zi . ax! b ixj =0
for I=m+n,m+n—1,...,k+ 1. However, using Lemma 4(i) and (ii) repeatedly, we
see that for i+ > k+ 1, a;o" 610272 - - 45/:(b;) = 0 for each nonnegative integers
i1y..-501,J1,---,j:- Hence we obtain

=Y aw(b;)=0. (1)

i+j=k
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By induction hypothesis, we have a;b; =0 and so a,o’(b,)=0 for s+¢ > k by Lemma
4(1). Since R is reduced, we obtain o°(b,)a;=0. Hence, multiplying a; to Eq. (1) from
the right-hand side, we obtain

> ad(by) p aw = ol (bo)ag = 0.

itj=k
Then {a;of(bo)}*> =0. Since R is reduced, we obtain a;af(by) =0 and hence a;by =0
by Lemma 4(iii). Now Eq. (1) becomes

i+j=k
0<i<k—1

Multiplying a;_, to Eq. (2) from the right-hand side, we obtain a;_,0*~'(b;)az_; =0.
So by the same way as the above we obtain a;_;0*~'(h;) =0 and so a;_;b; = 0.
Continuing this process, we can prove a;b; = 0 for all #,j with i + j = k. Therefore
aibj=0forall 0 <i<m, 0<;j<n

The converse follows from Lemma 4. [

Corollary 7. Let R be an a-rigid ring. If €* =e € R[x;a, 8], where e=eg+ejx+-- -+
e, x", then e = ey.

Proof. Since 1 —e=(1—¢y) — > 1, ex’, we get eo(1 —ep) =0 and e? =0 for all
1 <i < n by Proposition 6. Thus e¢; =0 for all 1 <i < n and so e:eo:eé c€R O

The Baerness and quasi-Baerness of a ring R do not inherit the Ore extension of R,
respectively. The following example shows that there exists a Baer ring R but the Ore
extension R[x;a, 0] is not right p.q.-Baer.

Example 8. Let F be a field and consider the polynomial ring R=F[y] over F. Then
R is a commutative domain and so R is Baer. Let 2:R — R be an endomorphism
defined by a(f(»)) = f(0). Then the skew polynomial ring R[x; ] is not reduced. In
fact, for 0 # yx € R[x; ], we have yxyx = ya(y)x> =0. So R[x;a] is not reduced.
Let e =aog(y) + ai(y)x + - -+ + a,(¥)x" € R[x;a] be a nonzero idempotent. Then

(ao(y) + ar(y)x + - + an(y)x"Nao(y) + a1 (y)x + - - - + an(¥)x") = ao(y) + ar(y)x +
o da (¥ So ag(y)? =ag(y). Since R is a domain, ag(y)=0 or ao(y)=1. Assume

that ag(y) = 1. Note that (ao(y)a1(y) + a1(3)(ao(»))x = ar(y)x. So
ao()ar () + a(Mxao()) = ar(y). (3)

Since ao(y)=1, we have a;(y)+ai(y)=ai(y). Hence a;(y)=0. Similarly, we obtain
(ao(y)ax(y) + az(y)o*(ao(¥)))x* = ax(y)x*. So

ag(y)az(y) + ax(y)e*(ao(y)) = ax(y). “)

Then ay(y)+ ax(y)=ax(y). Hence ay(y)=0. Continuing this process, we have e= 1.
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Assume that a¢(y)=0. Then a(ao(y))=0. From Egs. (3) and (4), we obtain a;(y)=0
and a,(y)=0. Continuing this process, we have e =0. Therefore the only idempotents
of R[x;a] are 0 and 1.

Now we claim that R[x;«] is not right p.q.-Baer. Note that rgy.,(XR[x; a]) # R[x; o].
Moreover rreq.j(xR[x;a]) # 0. For, if ag(y) + ai(y)x + -+ + a,(y)x" € R[x; o], then
x(ao(y) +ar(y)x + -+ an(y)x")y = x(ao(y)y + ar(y)a(y)x + - - - + an(y)o" (y)x") =
x(ao(y)y) = alao(y)y)x =0, and so y € rpp(XR[x; o). But the only idempotents of
R[x; ] are 0 and 1. Therefore R[x;«] is not right p.q.-Baer.

The following example shows that there exists R[x;a, ] which is quasi-Baer, but R
is not quasi-Baer.

Example 9. Let Z be the ring of integers and consider the ring Z & Z with the usual
addition and multiplication. Then the subring

R={(a,b) € Z®Z|a=b(mod2)}

of Z& 7 is a commutative reduced ring. Note that the only idempotents of R are (0,0)
and (1,1). In fact, if (a,b)*=(a,b), then (a*,b*)=(a,b) and so a*=a and b*>=b. Since
a=b(mod2), (a,b)=(0,0) or (a,b)=(1,1). Now we claim that R is not quasi-Baer.
For (2,0) € R, we note that r¢((2,0))={(0,2n) |n € Z}. So we can see that r£((2,0))
does not contain a nonzero idempotent of R. Hence R is not quasi-Baer.

Now let a:R — R be defined by a((a, b)) = (b,a). Then « is an automorphism
of R. Note that R is not o-rigid. We claim that R[x;o] is quasi-Baer. Let / be a
nonzero right ideal of R[x;a] and p € I. Put p = (a;, b;)x" + - - + (@, by )X, Where
i is the smallest integer such that (a;,b;) # (0,0), for all 0 < i < m. Then for
some positive integer 2k — i, p(1, 1)x* " = (a;, b )x* 4 - - - + (@, by )X~ € I and
p(L, D= = (i, b)x® 1+ oo 4 (@, by )x? 141 € I Suppose that 0 # g €
rre(1) and put ¢ = (uj,v)x7 + - - + (un, v, )x", where j is the smallest integer such
that (u;,v;) # (0,0), for all 0 < j < n. Then p(1,1)x*~ig=0 and p(1, 1 )x**'~g=0.
So we have

(@i, b )X (uj, vp)x7 + - -+ = (@, by ) g, v 4 -
and

(i, b gy vy 4 - = (@ b)) W
Hence (a;u;, bjv;) =(0,0) and (a;v;, b;u;) = (0,0). This implies that a;u; = b;v; =0 and
a;v;="b;u;=0. Since (a;,b;) # (0,0), a; or b; is nonzero. Then we have (u;,v;)=(0,0),
which is a contradiction. So 7g[y.,(/) = (0,0) and hence R[x;a] is quasi-Baer. Note
that the only idempotents of R[x;a] are (0,0) and (1,1). But rgp.s((2,0)) cannot be

generated by an idempotent since {(0,2n)|n € Z} Crgp((2,0)) # R[x;o]. Hence
R[x; o] is not Baer.

We now provide examples which show that the Baerness of R and R[x; o, ] does
not depend on each other.
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Example 10. (1) Let R = Z,[y]/(»?), where (1?) is a principal ideal generated by y?
of the polynomial ring Z,[y]. Note that the only idempotents of R are 0 + (?) and
1 + (¥?). Since rz(y + (1*)) = (¥ + (¥*))R cannot be generated by an idempotent, R
is not right quasi-Baer and so it is not Baer. Now, let « be the identity map on R and
we define an a-derivation § on R by 8(y + (»*)) = 1 + (»*). Then R is not a-rigid
since R is not reduced. However, by [2, Example 11]

R[x; 0, 0] = R[x; 5] = Maty(Z,[y*]) = Maty(Z,[1]).

Since Z;[t] is a principal integral domain, Z;[¢] is a Priifer domain (i.e., all finitely
generated ideals are invertible). So by [13, Exercise 3, p. 17], Mat,(Z,[t]) is Baer.
Therefore R[x; o, 0] = R[x;d] is Baer.

(2) Let R =Maty(Z). Then R is a Baer ring and so R is right p.p.. But R[x] is not
a right p.p.-ring (see [1] or [11]). Also R[x; o] is not Baer, in case o is the identity
map of R.

Theorem 11. Let R be an o-rigid ring. Then R is a Baer ring if and only if R[x; a, d]
is a Baer ring.

Proof. Assume that R is Baer. Let 4 be a nonempty subset of R[x;o,d] and A*
be the set of all coefficients of elements of 4. Then A* is a nonempty subset of
R and so rg(4*) = eR for some idempotent e € R. Since e € rypyy5(4), we get
eR[x; o, 0] C rrpy0)(A4). Now, we let 0 # g=bo+b1x+- - -+bx" € rgpyq.6(A4). Then Ag=
0 and hence fg=0 for any f € A. Thus by, by,...,b, € rp(4*)=eR by Proposition 6.
Hence there exist cg,ci,...,c; € R such that g = ecy + ecix + -+ + ecx’ =
e(co+cix + -+ -+ ¢x') € eR[x; 0, 0]. Consequently, eR[x; o, 0] = rgpx.x5)(4). Therefore
R[x;a, 0] is Baer.

Conversely, assume that R[x; «, 0] is Baer. Let B be a nonempty subset of R. Then
FRxas](B) = eR[x; o, 6] for some idempotent e € R by Corollary 7. Thus rz(B) =
FRxas](B) N R = eR[x; o, 6] N R = eR. Therefore R is Baer. [J

Corollary 12. Let R be an wo-rigid ring. Then R is a quasi-Baer ring if and only if
R[x; o, 0] is a quasi-Baer ring.

Proof. It follows from [3, Lemma 1], Proposition 5 and Theorem 11. [J

Corollary 13 (Armendariz [1, Theorem B]). Let R be a reduced ring. Then R is a
Baer ring if and only if R[x] is a Baer ring.

From Example 10(2), we can see that there exists a right p.p.-ring R such that
R[x; 0] is not a right p.p.-ring. However we have the following.

Theorem 14. Let R be an o-rigid ring. Then R is a p.p.-ring if and only if R[x;a, 0]
is a p.p.-ring.
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Proof. Assume that R is a p.p.-ring. Let p=ag+ a;x+ - - + a,x" € R[x; «, ). There
exists an idempotent e; € R such that rg(a;)=¢;R for i=0,1,...,m. Let e=epe; - - - ey.
Then e =e € R and eR = Mo 7&(a:). So by Proposition 5, pe = age + aja(e)x +
<o ano”(e)x™ = age + ajex + - -+ + ayex™ = 0. Hence eR[x; o, 0] C repvas(p). Let
q=bo+bix+---+b,x" € rpps(p). Since pg=0, by Proposition 6 we obtain a;b;=0
for all 0 <i<m, 0<j<n. Then b; € ege;---e,R=eR for all j=0,1,...,n and so
q € eR[x; o, 6]. Consequently eR[x; o, 0] = rrpvas1(p). Thus R[x;«, d] is a p.p.-ring.

Conversely, assume that R[x;a,d] is a p.p.-ring. Let @ € R. By Corollary 7, there
exists an idempotent e € R such that rg(y., 51(a)=eR[x; «, 6]. Hence rg(a)=eR. Therefore
R is a p.p.-ring. [J

Corollary 15. Let R be an wa-rigid ring. Then R is a p.q.-Baer ring if and only if
R[x; 0, 0] is a p.q.-Baer ring.

Proof. It follows from Proposition 5, Lemma 1 and Theorem 14. [

Corollary 16 (Armendariz [1, Theorem A]). Let R be a reduced ring. Then R is a
p.p.-ring if and only if R[x] is a p.p.-ring.

From Example 10(1), we can see that the condition “R is o-rigid” in Theorem 11 is
not superfluous. On the other hand, Example 9 shows that the condition “R is o-rigid”
in Corollary 12, Theorem 14 and Corollary 15 is not superfluous.

Now we turn our attention to the relationship between the Baerness of a ring R and
the Baerness of the skew power series ring R[[x; o]].

Proposition 17. Suppose that R is an o-rigid ring. Let p = > > aix' and
q=>_7gbx’ in R[[x;e]]. Then pq =0 if and only if a;b; =0 for all i > 0 and
Jj=0.

Proof. Assume that pg = 0. Then

i > ax'bx :i > add (b | =0. (5)
k=0 \ i+j=k k=0 \ i+j=k

We claim that a;b; =0 for all i,j. We proceed by induction on i + j. Then we obtain
apby=0. This proves for i+ j=0. Now suppose that our claim is true for i+j < n—1.
From Eq. (5), we have
Z aiol(b;) = 0. (6)
i+j=n
Multiplying ayp to Eq. (6) from the right-hand side, by Lemma 4(iii) we obtain
aob,ag = 0. Since R is reduced, apb, = 0. Now Eq. (6) becomes
Z a;o'(b;) = 0. (7)

it+j=n
1<i<n
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Multiplying a; to Eq. (7) from the right-hand side, we obtain a;o(b,—;)a; =0 and so
ayb,—1 = 0. Continuing this process, we can prove a;b; = 0 for all i,j with i + j = n.
Therefore a;b; =0 for all i and j.

The converse follows from Lemma 4. [

Corollary 18. A4 ring R is a-rigid if and only if R[[x;a]] is a reduced ring and o is
a monomorphism.

Proof. Suppose that R is o-rigid. Assume to the contrary that R[[x; «]] is not reduced.
Then there exists 0 # f € R[[x; «]] such that f>=0. Since R is reduced, f & R. Thus
we put f=> 7 a;x' with a; € R for all i and a; # 0. Then f? =0 implies a? =0
by Proposition 17 and Lemma 4(iii). Thus a;, = 0, which is a contradiction. Therefore
R[[x; «]] is reduced.

Conversely, let R[[x;«]] be reduced. Clearly R[x;o] is reduced as a subring. If
ao(a) =0 for a € R, then (ax)* = ao(a)x* = 0. Thus ax =0 and so a = 0. There-
fore R is o-rigid. [OJ

Corollary 19. Let R be an a-rigid ring. If e* = e € R[[x;a]], where e = ey + ejx +
oot ex"+ -, then e = ey.

Proof. Since 1 —e=(1—e9)— ) .~ exx’, we get eg(1 —e9)=0 and e? =0 for all i > 1
by Proposition 17 and Corollary 18. Thus ¢; =0 for all i > 1 and so e=¢y =€} € R.
[

The following example shows that there exists a Baer ring R but the formal power
series ring R[[x]] is not Baer.

Example 20. Let R=Mat,(Z). Then R is a Baer ring. Note that R[[x]] = Mat,(Z[[x]])
and Z[[x]] is a commutative domain. Let S = Mat,(Z[[x]]). If

2 x||f g] [0 O

0 O||h k| |0 0]
where f,g,h,k € Z[[x]], then 2 f 4+ xh =0 and 2g + xk =0. So

2 x —Xu  —Xv
s([o o)) -{lar w]weezmap

Now if

—XU —XU —Xu —XU _ —XU —XU

2u 2v 2u 20 | | 2u 2v |’
then x(xu —2v+ 1)u=0 and x(xu —2v+ 1)v=0. But x(xu —2v+1) # 0 and so u=0
and v = 0. Hence

—xu —xv| [0 0
2u 20| |0 0o
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(2 x] 0 0
#(lo o)) #lo o)
we see that
. (2 x]
S\|o o]

cannot be generated by an idempotent. Thus S is not Baer and therefore R[[x]] is not
Baer.

Since

Moreover, this example shows that the condition “R is a-rigid” in the following
Theorem 21 and Corollary 22 is not superfluous.

Theorem 21. Let R be an w-rigid ring. Then R is a Baer ring if and only if R[[x;a]]
is a Baer ring.

Proof. It is proved by the similar method in the proof of Theorem 11. [

Corollary 22. Let R be an a-rigid ring. Then R is a quasi-Baer ring if and only if
R[[x;o]] is a quasi-Baer ring.

From [6, Example 2.5], we can see that there is a reduced right p.q.-Baer ring R
such that R[[x;]] is not a right p.q.-Baer ring. For a given field F, let

oo
R= {(an) € HFn|an is eventually constant} ,

n=1

which is the subring of H;’il F,, where F,=F for n=1,2,... . Then R is a commutative
von Neumann regular ring and hence it is right p.q.-Bear. Let « be the identity map
on R. Then R is an «-rigid ring since R is reduced. But R[[x; «]] is not right p.q.-Bear.
Furthermore, R[[x; «]] is neither right p.p. nor left p.p. by Corollary 18 and Lemma 1.

Corollary 23. Let R be a reduced ring. Then R is a Baer ring if and only if R[[x]]
is a Baer ring.
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