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Abstract

We investigate Ore extensions of Baer rings and p.p.-rings. Let � be an endomorphism and
� an �-derivation of a ring R. Assume that R is an �-rigid ring. Then (1) R is a Baer ring
if and only if the Ore extension R[x; �; �] is a Baer ring if and only if the skew power series
ring R[[x; �]] is a Baer ring, (2) R is a p.p.-ring if and only if the Ore extension R[x; �; �] is a
p.p.-ring. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 16S36; 16E50; secondary 16W60

Throughout this paper R denotes an associative ring with identity. In [13] Kaplansky
introduced Baer rings as rings in which the right (left) annihilator of every nonempty
subset is generated by an idempotent. According to Clark [9], a ring R is called to be
quasi-Baer if the right annihilator of each right ideal of R is generated (as a right ideal)
by an idempotent. Further works on quasi-Baer rings appear in [3–5,15]. Recently,
Birkenmeier et al. [6] called a ring R a right (resp. left) principally quasi-Baer (or
simply right (resp. left) p:q:-Baer) ring if the right (resp. left) annihilator of a principal
right (resp. left) ideal of R is generated by an idempotent. R is called a p:q:-Baer ring
if it is both right and left p.q.-Baer.
Another generalization of Baer rings is a p.p.-ring. A ring R is called a right (resp.

left) p:p:-ring if the right (resp. left) annihilator of an element of R is generated by
an idempotent. R is called a p:p:-ring if it is both a right and left p.p.-ring.
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It is natural to ask if any or all of these properties can be extended from R to R[x]
and R[[x]]. The extensions of Baer, quasi-Baer, right p.q.-Baer and p.p.-rings have been
investigated by many authors [1,6,11–13, etc.].
In this paper, we study Ore extensions of Baer rings and p.p.-rings. In particular,

we show: Let � be an endomorphism and � an �-derivation of a ring R. Suppose
that R is an �-rigid ring. Then (1) R is a Baer ring if and only if the Ore extension
R[x; �; �] is a Baer ring if and only if the skew power series ring R[[x; �]] is a Baer
ring, (2) R is a p.p.-ring if and only if the Ore extension R[x; �; �] is a p.p.-ring.
Thereby several known results are extended.
For a nonempty subset X of a ring R, we write rR(X ) = {c ∈ R |Xc = 0} and

‘R(X )= {c ∈ R | cX =0}, which are called the right annihilator of X in R and the left
annihilator of X in R, respectively.
We begin with the following lemma. Recall that a ring R is reduced if R has no

nonzero nilpotent elements. Observe that reduced rings are abelian (i.e., all idempotent
are central).

Lemma 1. Let R be a reduced ring. Then the following statements are equivalent:
(i) R is a right p.p.-ring.
(ii) R is a p.p.-ring.
(iii) R is a right p.q.-Baer ring.
(iv) R is a p.q.-Baer ring.
(v) For any a ∈ R; rR(anR) = eR for some e = e2 ∈ R; where n is any positive

integer.

Proof. These follow from the fact rR(a) = ‘R(a) = rR(aR) = ‘R(Ra) = rR(anR) for any
a ∈ R and any positive integer n because R is reduced.

However, the following example shows that there exists an abelian right p.q.-Baer
ring which is neither right nor left p.p. (see also [8, Example 14.17]). Due to Chase
[7], there is a left p.p.-ring which is not right p.q.-Baer.

Example 2. (1) Let Z be the ring of integers and Mat2(Z) the 2× 2 full matrix ring
over Z. We consider the ring

R=
{[
a b
c d

]
∈ Mat2(Z) | a ≡ d; b ≡ 0 and c ≡ 0 (mod 2)

}
:

First we claim that R is right p.q.-Baer. Let

u=
[
a b
c d

]

be a nonzero element of R. Then we see that[
2a 0
2c 0

]
;
[
0 2a
0 2c

]
∈ uR
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by multiplying[
2 0
0 0

]
and

[
0 2
0 0

]

to the element u from the right-hand side, respectively. If

v=
[
� �
 �

]
∈ rR(uR);

then [
2a 0
2c 0

] [
� �
 �

]
=
[
2a� 2a�
2c� 2c�

]
=
[
0 0
0 0

]
:

So �= 0 and � = 0 if a 6= 0 or c 6= 0. Also[
0 2a
0 2c

] [
� �
 �

]
=
[
2a 2a�
2c 2c�

]
=
[
0 0
0 0

]
:

So = 0 and �= 0 if a 6= 0 or c 6= 0. Therefore

v=
[
0 0
0 0

]

if a 6= 0 or c 6= 0. Suppose that b 6= 0 or d 6= 0. If we replace[
2 0
0 0

]
and

[
0 2
0 0

]

by [
0 0
0 2

]
and

[
0 0
2 0

]
;

respectively, in the above, then by the same method we see that

v=
[
0 0
0 0

]
:

Hence rR(uR) = 0 for any nonzero element u ∈ R. Therefore R is right p.q.-Baer.
Next we claim that R is neither right p.p. nor left p.p. For[

0 2
0 0

]
∈ R;

we have

rR

([
0 2
0 0

])
=
{[
� �
0 0

]
|� ≡ 0 (mod 2) and � ≡ 0 (mod 2)

}
6= eR;

where e = e2 ∈ R. Note that the only idempotents of R are[
0 0
0 0

]
and

[
1 0
0 1

]
:



218 C.Y. Hong et al. / Journal of Pure and Applied Algebra 151 (2000) 215–226

Therefore R is not right p.p. Using the same method as the above, we can see that R
is not left p.p.
(2) [8, Example 8.2] For a ring

∏∞
n=1 Z2, where Z2 is the ring of integers modulo 2,

let

T = {(an)∞n=1 | an is eventually constant}
and

I = {(an)∞n=1 | an = 0 eventually}:
Then

R=
(
T=I T=I
0 T

)
is a left p.p.-ring which is not right p.q.-Baer.

Recall that for a ring R with a ring endomorphism � : R → R and an �-derivation
� : R → R, the Ore extension R[x; �; �] of R is the ring obtained by giving the
polynomial ring over R with the new multiplication

xr = �(r)x + �(r)

for all r ∈ R. If � = 0, we write R[x; �] for R[x; �; 0] and is called an Ore extension
of endomorphism type (also called a skew polynomial ring). While R[[x; �]] is called
a skew power series ring.

De�nition 3 (Krempa [14]). Let � be an endomorphism of R. � is called a rigid en-
domorphism if r�(r) = 0 implies r = 0 for r ∈ R. A ring R is called to be �-rigid if
there exists a rigid endomorphism � of R.

Clearly, any rigid endomorphism is a monomorphism. Note that �-rigid rings are
reduced rings. In fact, if R is an �-rigid ring and a2=0 for a ∈ R, then a�(a)�(a�(a))=
a�(a2)�2(a) = 0. Thus a�(a) = 0 and so a = 0. Therefore, R is reduced. But there
exists an endomorphism of a reduced ring which is not a rigid endomorphism (see
Example 9). However, if � is an inner automorphism (i.e., there exists an invertible
element u ∈ R such that �(r) = u−1ru for any r ∈ R) of a reduced ring R, then R is
�-rigid.
In this paper, we let � be an endomorphism of R and � an �-derivation of R, unless

especially noted.

Lemma 4. Let R be an �-rigid ring and a; b ∈ R. Then we have the following:
(i) If ab= 0 then a�n(b) = �n(a)b= 0 for any positive integer n.
(ii) If ab= 0 then a�m(b) = �m(a)b= 0 for any positive integer m.
(iii) If a�k(b) = 0 = �k(a)b for some positive integer k; then ab= 0.

Proof. (i) It is enough to show that a�(b)=�(a)b=0. If ab=0, then b�(a)�(b�(a))=
b�(ab)�2(a)=0. Since R is �-rigid, we have b�(a)=0. Since R is reduced, (�(a)b)2=0
implies �(a)b= 0. Similarly, using ba= 0, we obtain a�(b) = 0.
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(ii) It is enough to show that a�(b)=�(a)b=0. If ab=0, then 0=�(ab)=�(a)�(b)+
�(a)b. So {�(a)�(b)}2 = −�(a)b�(a)�(b) = 0 by (i). Hence �(a)�(b) = 0, since R is
reduced. Then �(a�(b))=�(a)�(�(b))=0 by (i). Since � is a monomorphism, we have
a�(b) = 0. Similarly, we obtain �(a)b= 0.
(iii) Suppose that a�k(b) = 0 for some positive integer k. Then, by (i) we obtain

�k(ab) = �k(a)�k(b) = 0. Since � is a monomorphism, we have ab = 0. Similarly,
�k(a)b= 0 for some positive integer k implies ab= 0.

The following proposition extends [10; Lemma 3] and [14; Theorem 3:3].

Proposition 5. A ring R is �-rigid if and only if the Ore extension R[x; �; �] is a
reduced ring and � is a monomorphism of R. In this case; �(e)= e; �(e)=0 for some
e = e2 ∈ R.

Proof. Suppose that R is �-rigid. Assume to the contrary that R[x; �; �] is not reduced.
Then there exists 0 6= f ∈ R[x; �; �] such that f2 =0. Since R is reduced, f 6∈ R. Thus
we put f =

∑m
i=0 aix

i, where ai ∈ R for 0 ≤ i ≤ m and am 6= 0. Since f2 = 0, we
have am�m(am) = 0. By Lemma 4(iii) a2m = 0 and so am = 0, which is a contradiction.
Therefore R[x; �; �] is reduced.
Conversely, suppose that R[x; �; �] is reduced. Clearly, R is reduced as a subring.

If a ∈ R and a�(a) = 0, then (�(a)xa)2 = 0 and so �(a)xa = 0. Thus 0 = (�(a)x)a =
(�(a))2x + �(a)�(a) and so �(a) = 0. Since � is a monomorphism, we have a = 0.
Therefore R is �-rigid.
Next, let e be an idempotent in R. Then e is central and so ex= xe= �(e)x+ �(e).

This implies that �(e) = e and �(e) = 0.

In this Proposition 5, if R[x; �; �] is reduced and ab=0 for a; b ∈ R, then we obtain
axmbxn = 0 in R[x; �; �] for any nonnegative integers m and n.

Proposition 6. Suppose that R is an �-rigid ring. Let p=
∑m

i=0 aix
i and q=

∑n
j=0 bjx

j

in R[x; �; �]. Then pq= 0 if and only if aibj = 0 for all 0 ≤ i ≤ m; 0 ≤ j ≤ n.

Proof. Assume that pq=0. Then (
∑m

i=0 aix
i)(

∑n
j=0 bjx

j)=
∑m+n

k=0 (
∑

i+j=k aix
ibjxj)=

cm+nxm+n+cm+n−1xm+n−1 + · · ·+c1x+c0 =0. We claim that asbt=0 for s+ t ≥ 0. We
proceed by induction on s+ t. It can be easily checked that cm+n=am�m(bn)=0. Then
we obtain ambn=0 by Lemma 4(iii). This proves for s+ t=m+ n. Now suppose that
our claim is true for s+ t ¿ k ≥ 0. Then by Proposition 5, we have ∑i+j=l aix

ibjxj=0
for l=m+ n; m+ n− 1; : : : ; k +1. However, using Lemma 4(i) and (ii) repeatedly, we
see that for i+ j ≥ k + 1, ai�i1�j1�i2�j2 · · · �it � jt (bj) = 0 for each nonnegative integers
i1; : : : ; it ; j1; : : : ; jt . Hence we obtain

ck =
∑
i+j=k

ai�i(bj) = 0: (1)
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By induction hypothesis, we have asbt=0 and so as�s(bt)=0 for s+ t ¿ k by Lemma
4(i). Since R is reduced, we obtain �s(bt)as=0. Hence, multiplying ak to Eq. (1) from
the right-hand side, we obtain


∑
i+j=k

ai�i(bj)


 ak = ak�k(b0)ak = 0:

Then {ak�k(b0)}2 = 0. Since R is reduced, we obtain ak�k(b0) = 0 and hence akb0 = 0
by Lemma 4(iii). Now Eq. (1) becomes∑

i+j=k
0≤i≤k−1

ai�i(bj) = 0: (2)

Multiplying ak−1 to Eq. (2) from the right-hand side, we obtain ak−1�k−1(b1)ak−1 =0.
So by the same way as the above we obtain ak−1�k−1(b1) = 0 and so ak−1b1 = 0.
Continuing this process, we can prove aibj = 0 for all i; j with i + j = k. Therefore
aibj = 0 for all 0 ≤ i ≤ m, 0 ≤ j ≤ n.
The converse follows from Lemma 4.

Corollary 7. Let R be an �-rigid ring. If e2 = e ∈ R[x; �; �]; where e= e0 + e1x+ · · ·+
enxn; then e = e0.

Proof. Since 1 − e = (1 − e0) −
∑n

i=1 eix
i, we get e0(1 − e0) = 0 and e2i = 0 for all

1 ≤ i ≤ n by Proposition 6. Thus ei = 0 for all 1 ≤ i ≤ n and so e = e0 = e20 ∈ R.

The Baerness and quasi-Baerness of a ring R do not inherit the Ore extension of R,
respectively. The following example shows that there exists a Baer ring R but the Ore
extension R[x; �; �] is not right p.q.-Baer.

Example 8. Let F be a �eld and consider the polynomial ring R=F[y] over F . Then
R is a commutative domain and so R is Baer. Let � :R → R be an endomorphism
de�ned by �(f(y)) = f(0): Then the skew polynomial ring R[x; �] is not reduced. In
fact, for 0 6= yx ∈ R[x; �], we have yxyx = y�(y)x2 = 0. So R[x; �] is not reduced.
Let e = a0(y) + a1(y)x + · · · + an(y)xn ∈ R[x; �] be a nonzero idempotent. Then

(a0(y) + a1(y)x + · · ·+ an(y)xn)(a0(y) + a1(y)x + · · ·+ an(y)xn) = a0(y) + a1(y)x +
· · ·+an(y)xn. So a0(y)2 =a0(y). Since R is a domain, a0(y)=0 or a0(y)=1. Assume
that a0(y) = 1. Note that (a0(y)a1(y) + a1(y)�(a0(y)))x = a1(y)x. So

a0(y)a1(y) + a1(y)�(a0(y)) = a1(y): (3)

Since a0(y)=1, we have a1(y)+a1(y)=a1(y). Hence a1(y)=0. Similarly, we obtain
(a0(y)a2(y) + a2(y)�2(a0(y)))x2 = a2(y)x2. So

a0(y)a2(y) + a2(y)�2(a0(y)) = a2(y): (4)

Then a2(y)+ a2(y)= a2(y). Hence a2(y)= 0. Continuing this process, we have e=1.
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Assume that a0(y)=0. Then �(a0(y))=0. From Eqs. (3) and (4), we obtain a1(y)=0
and a2(y)=0. Continuing this process, we have e=0. Therefore the only idempotents
of R[x; �] are 0 and 1.
Now we claim that R[x; �] is not right p.q.-Baer. Note that rR[x;�](xR[x; �]) 6= R[x; �].

Moreover rR[x;�](xR[x; �]) 6= 0. For, if a0(y) + a1(y)x + · · · + an(y)xn ∈ R[x; �], then
x(a0(y) + a1(y)x + · · ·+ an(y)xn)y = x(a0(y)y + a1(y)�(y)x + · · ·+ an(y)�n(y)xn) =
x(a0(y)y) = �(a0(y)y)x = 0, and so y ∈ rR[x;�](xR[x; �]). But the only idempotents of
R[x; �] are 0 and 1. Therefore R[x; �] is not right p.q.-Baer.

The following example shows that there exists R[x; �; �] which is quasi-Baer, but R
is not quasi-Baer.

Example 9. Let Z be the ring of integers and consider the ring Z⊕ Z with the usual
addition and multiplication. Then the subring

R= {(a; b) ∈ Z⊕ Z | a ≡ b (mod 2)}
of Z⊕Z is a commutative reduced ring. Note that the only idempotents of R are (0; 0)
and (1; 1). In fact, if (a; b)2=(a; b), then (a2; b2)=(a; b) and so a2=a and b2=b. Since
a ≡ b (mod 2), (a; b)= (0; 0) or (a; b)= (1; 1). Now we claim that R is not quasi-Baer.
For (2; 0) ∈ R, we note that rR((2; 0))={(0; 2n) | n ∈ Z}. So we can see that rR((2; 0))
does not contain a nonzero idempotent of R. Hence R is not quasi-Baer.
Now let � :R → R be de�ned by �((a; b)) = (b; a): Then � is an automorphism

of R. Note that R is not �-rigid. We claim that R[x; �] is quasi-Baer. Let I be a
nonzero right ideal of R[x; �] and p ∈ I . Put p = (ai; bi)xi + · · · + (am; bm)xm; where
i is the smallest integer such that (ai; bi) 6= (0; 0), for all 0 ≤ i ≤ m. Then for
some positive integer 2k − i, p(1; 1)x2k−i = (ai; bi)x2k + · · ·+ (am; bm)x2k+m−i ∈ I and
p(1; 1)x2k+1−i = (ai; bi)x2k+1 + · · · + (am; bm)x2k+1+m−i ∈ I . Suppose that 0 6= q ∈
rR[x;�](I) and put q = (uj; vj)x j + · · ·+ (un; vn)xn; where j is the smallest integer such
that (uj; vj) 6= (0; 0), for all 0 ≤ j ≤ n. Then p(1; 1)x2k−iq=0 and p(1; 1)x2k+1−iq=0.
So we have

(ai; bi)x2k(uj; vj)x j + · · ·= (ai; bi)(uj; vj)x2k+j + · · ·
and

(ai; bi)x2k+1(uj; vj)x j + · · ·= (ai; bi)(vj; uj)x2k+1+j + · · · :
Hence (aiuj; bivj) = (0; 0) and (aivj; biuj) = (0; 0). This implies that aiuj = bivj = 0 and
aivj=biuj=0. Since (ai; bi) 6= (0; 0), ai or bi is nonzero. Then we have (uj; vj)=(0; 0),
which is a contradiction. So rR[x;�](I) = (0; 0) and hence R[x; �] is quasi-Baer. Note
that the only idempotents of R[x; �] are (0; 0) and (1; 1). But rR[x;�]((2; 0)) cannot be
generated by an idempotent since {(0; 2n) | n ∈ Z}⊆ rR[x;�]((2; 0)) 6= R[x; �]. Hence
R[x; �] is not Baer.

We now provide examples which show that the Baerness of R and R[x; �; �] does
not depend on each other.
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Example 10. (1) Let R= Z2[y]=(y2), where (y2) is a principal ideal generated by y2
of the polynomial ring Z2[y]. Note that the only idempotents of R are 0 + (y2) and
1 + (y2). Since rR(y + (y2)) = (y + (y2))R cannot be generated by an idempotent, R
is not right quasi-Baer and so it is not Baer. Now, let � be the identity map on R and
we de�ne an �-derivation � on R by �(y + (y2)) = 1 + (y2). Then R is not �-rigid
since R is not reduced. However, by [2, Example 11]

R[x; �; �] = R[x; �] ∼= Mat2(Z2[y2]) ∼= Mat2(Z2[t]):

Since Z2[t] is a principal integral domain, Z2[t] is a Pr�ufer domain (i.e., all �nitely
generated ideals are invertible). So by [13, Exercise 3, p. 17], Mat2(Z2[t]) is Baer.
Therefore R[x; �; �] = R[x; �] is Baer.
(2) Let R=Mat2(Z). Then R is a Baer ring and so R is right p.p.. But R[x] is not

a right p.p.-ring (see [1] or [11]). Also R[x; �] is not Baer, in case � is the identity
map of R.

Theorem 11. Let R be an �-rigid ring. Then R is a Baer ring if and only if R[x; �; �]
is a Baer ring.

Proof. Assume that R is Baer. Let A be a nonempty subset of R[x; �; �] and A∗

be the set of all coe�cients of elements of A. Then A∗ is a nonempty subset of
R and so rR(A∗) = eR for some idempotent e ∈ R. Since e ∈ rR[x;�;�](A), we get
eR[x; �; �]⊆ rR[x;�;�](A). Now, we let 0 6= g=b0+b1x+· · ·+btxt ∈ rR[x;�;�](A). Then Ag=
0 and hence fg=0 for any f ∈ A. Thus b0; b1; : : : ; bt ∈ rR(A∗)= eR by Proposition 6.
Hence there exist c0; c1; : : : ; ct ∈ R such that g = ec0 + ec1x + · · · + ectxt =
e(c0 + c1x + · · · + ctxt) ∈ eR[x; �; �]. Consequently, eR[x; �; �] = rR[x;�;�](A). Therefore
R[x; �; �] is Baer.
Conversely, assume that R[x; �; �] is Baer. Let B be a nonempty subset of R. Then

rR[x;�;�](B) = eR[x; �; �] for some idempotent e ∈ R by Corollary 7. Thus rR(B) =
rR[x;�;�](B) ∩ R= eR[x; �; �] ∩ R= eR. Therefore R is Baer.

Corollary 12. Let R be an �-rigid ring. Then R is a quasi-Baer ring if and only if
R[x; �; �] is a quasi-Baer ring.

Proof. It follows from [3, Lemma 1], Proposition 5 and Theorem 11.

Corollary 13 (Armendariz [1, Theorem B]). Let R be a reduced ring. Then R is a
Baer ring if and only if R[x] is a Baer ring.

From Example 10(2), we can see that there exists a right p.p.-ring R such that
R[x; �; �] is not a right p.p.-ring. However we have the following.

Theorem 14. Let R be an �-rigid ring. Then R is a p.p.-ring if and only if R[x; �; �]
is a p.p.-ring.
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Proof. Assume that R is a p.p.-ring. Let p= a0 + a1x+ · · ·+ amxm ∈ R[x; �; �]. There
exists an idempotent ei ∈ R such that rR(ai)= eiR for i=0; 1; : : : ; m. Let e= e0e1 · · · em.
Then e2 = e ∈ R and eR =

⋂m
i=0 rR(ai). So by Proposition 5, pe = a0e + a1�(e)x +

· · · + am�m(e)xm = a0e + a1ex + · · · + amexm = 0. Hence eR[x; �; �]⊆ rR[x;�;�](p). Let
q=b0+b1x+ · · ·+bnxn ∈ rR[x;�;�](p). Since pq=0, by Proposition 6 we obtain aibj=0
for all 0 ≤ i ≤ m, 0 ≤ j ≤ n. Then bj ∈ e0e1 · · · emR= eR for all j = 0; 1; : : : ; n and so
q ∈ eR[x; �; �]. Consequently eR[x; �; �] = rR[x;�;�](p). Thus R[x; �; �] is a p.p.-ring.
Conversely, assume that R[x; �; �] is a p.p.-ring. Let a ∈ R. By Corollary 7, there

exists an idempotent e ∈ R such that rR[x;�;�](a)=eR[x; �; �]. Hence rR(a)=eR. Therefore
R is a p.p.-ring.

Corollary 15. Let R be an �-rigid ring. Then R is a p.q.-Baer ring if and only if
R[x; �; �] is a p.q.-Baer ring.

Proof. It follows from Proposition 5, Lemma 1 and Theorem 14.

Corollary 16 (Armendariz [1, Theorem A]). Let R be a reduced ring. Then R is a
p.p.-ring if and only if R[x] is a p.p.-ring.

From Example 10(1), we can see that the condition “R is �-rigid” in Theorem 11 is
not superuous. On the other hand, Example 9 shows that the condition “R is �-rigid”
in Corollary 12, Theorem 14 and Corollary 15 is not superuous.
Now we turn our attention to the relationship between the Baerness of a ring R and

the Baerness of the skew power series ring R[[x; �]].

Proposition 17. Suppose that R is an �-rigid ring. Let p =
∑∞

i=0 aix
i and

q =
∑∞

j=0 bjx
j in R[[x; �]]. Then pq = 0 if and only if aibj = 0 for all i ≥ 0 and

j ≥ 0.

Proof. Assume that pq= 0. Then

∞∑
k=0


 ∑
i+j=k

aixibjx j


=

∞∑
k=0


 ∑
i+j=k

ai�i(bj)xi+j


= 0: (5)

We claim that aibj = 0 for all i; j. We proceed by induction on i+ j. Then we obtain
a0b0=0. This proves for i+j=0. Now suppose that our claim is true for i+j ≤ n−1.
From Eq. (5), we have∑

i+j=n

ai�i(bj) = 0: (6)

Multiplying a0 to Eq. (6) from the right-hand side, by Lemma 4(iii) we obtain
a0bna0 = 0. Since R is reduced, a0bn = 0. Now Eq. (6) becomes∑

i+j=n
1≤i≤n

ai�i(bj) = 0: (7)
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Multiplying a1 to Eq. (7) from the right-hand side, we obtain a1�(bn−1)a1 = 0 and so
a1bn−1 = 0. Continuing this process, we can prove aibj = 0 for all i; j with i + j = n.
Therefore aibj = 0 for all i and j.
The converse follows from Lemma 4.

Corollary 18. A ring R is �-rigid if and only if R[[x; �]] is a reduced ring and � is
a monomorphism.

Proof. Suppose that R is �-rigid. Assume to the contrary that R[[x; �]] is not reduced.
Then there exists 0 6= f ∈ R[[x; �]] such that f2 = 0. Since R is reduced, f 6∈ R. Thus
we put f =

∑∞
i=s aix

i with ai ∈ R for all i and as 6= 0. Then f2 = 0 implies a2s = 0
by Proposition 17 and Lemma 4(iii). Thus as = 0, which is a contradiction. Therefore
R[[x; �]] is reduced.
Conversely, let R[[x; �]] be reduced. Clearly R[x; �] is reduced as a subring. If

a�(a) = 0 for a ∈ R, then (ax)2 = a�(a)x2 = 0. Thus ax = 0 and so a = 0. There-
fore R is �-rigid.

Corollary 19. Let R be an �-rigid ring. If e2 = e ∈ R[[x; �]]; where e = e0 + e1x +
· · ·+ enxn + · · · ; then e = e0.

Proof. Since 1− e=(1− e0)−
∑∞

i=1 eix
i, we get e0(1− e0)=0 and e2i =0 for all i ≥ 1

by Proposition 17 and Corollary 18. Thus ei = 0 for all i ≥ 1 and so e= e0 = e20 ∈ R.

The following example shows that there exists a Baer ring R but the formal power
series ring R[[x]] is not Baer.

Example 20. Let R=Mat2(Z). Then R is a Baer ring. Note that R[[x]] ∼= Mat2(Z[[x]])
and Z[[x]] is a commutative domain. Let S =Mat2(Z[[x]]). If[

2 x
0 0

] [
f g
h k

]
=
[
0 0
0 0

]
;

where f; g; h; k ∈ Z[[x]], then 2f + xh= 0 and 2g+ xk = 0. So

rS

([
2 x
0 0

])
=
{[−xu −xv

2u 2v

]
|u; v ∈ Z[[x]]

}
:

Now if[−xu −xv
2u 2v

] [−xu −xv
2u 2v

]
=
[−xu −xv
2u 2v

]
;

then x(xu− 2v+1)u=0 and x(xu− 2v+1)v=0. But x(xu− 2v+1) 6= 0 and so u=0
and v= 0. Hence[−xu −xv

2u 2v

]
=
[
0 0
0 0

]
:
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Since

rS

([
2 x
0 0

])
6=

[
0 0
0 0

]
;

we see that

rS

([
2 x
0 0

])

cannot be generated by an idempotent. Thus S is not Baer and therefore R[[x]] is not
Baer.

Moreover, this example shows that the condition “R is �-rigid” in the following
Theorem 21 and Corollary 22 is not superuous.

Theorem 21. Let R be an �-rigid ring. Then R is a Baer ring if and only if R[[x; �]]
is a Baer ring.

Proof. It is proved by the similar method in the proof of Theorem 11.

Corollary 22. Let R be an �-rigid ring. Then R is a quasi-Baer ring if and only if
R[[x; �]] is a quasi-Baer ring.

From [6, Example 2.5], we can see that there is a reduced right p.q.-Baer ring R
such that R[[x; �]] is not a right p.q.-Baer ring. For a given �eld F; let

R=

{
(an) ∈

∞∏
n=1

Fn|an is eventually constant
}
;

which is the subring of
∏∞
n=1 Fn, where Fn=F for n=1; 2; : : : : Then R is a commutative

von Neumann regular ring and hence it is right p.q.-Bear. Let � be the identity map
on R. Then R is an �-rigid ring since R is reduced. But R[[x; �]] is not right p.q.-Bear.
Furthermore, R[[x; �]] is neither right p.p. nor left p.p. by Corollary 18 and Lemma 1.

Corollary 23. Let R be a reduced ring. Then R is a Baer ring if and only if R[[x]]
is a Baer ring.
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