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Abstract

A small world is obtained from the d-dimensional torus of size 2L adding randomly chosen connections
between sites, in a way such that each site has exactly one random neighbour in addition to its deterministic
neighbours. We study the asymptotic behaviour of the meeting time TL of two random walks moving on
this small world and compare it with the result on the torus. On the torus, in order to have convergence, we
have to rescale TL by a factor C1L2 if d = 1, by C2L2 log L if d = 2 and Cd Ld if d ≥ 3. We prove that
on the small world the rescaling factor is C ′

d Ld and identify the constant C ′
d , proving that the walks always

meet faster on the small world than on the torus if d ≤ 2, while if d ≥ 3 this depends on the probability of
moving along the random connection. As an application, we obtain results on the hitting time to the origin
of a single walk and on the convergence of coalescing random walk systems on the small world.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Graphs provide a mathematical model in many scientific areas, from physics (magnetization
properties of metals and evolution of gases) to biology (neural networks and disease spreading)
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and sociology (social networks and opinion spreading). Individuals (atoms, molecules, neurons
and animals) are identified with vertices and an edge drawn between two vertices identifies a
relation as proximity or existence of some sort of contact. When a part or the totality of the
edges are subject to some randomness, it is natural to deal with random graphs (see [5] for a
survey). One can construct a random graph starting from a deterministic graph either by adding
random connections, or by removing some connections randomly, as in percolation. A particular
class of random graphs of the first type are small world graphs, constructed starting from a
d-dimensional (discrete) torus, whose edges are called short range connections, adding some
random connections, called long range connections.

Bollobas and Chung [4] first noted that by the addition of a random matching in a cycle
(i.e. d = 1), the average distance between sites is considerably smaller than that on the
deterministic graph. Watts and Strogatz [15] introduced, as a model for biological applications,
the random graph obtained in d = 1 with each site connected to the ones at Euclidean distance
smaller than m and long range connections constructed by taking the deterministic ones and by
moving with probability p one of the end sites to a new one chosen at random. Another possible
construction was introduced by Newmann and Watts [12]: they took the same deterministic short
range connections of Watts and Strogatz, but they added a density p of long range connections
between randomly chosen sites. Average distance between sites and clustering coefficient of
small world graphs have been well investigated [1,2,15]. See [9] for a historical introduction of
small world graphs and main results.

Recently some authors have been focusing on processes taking place on random graphs.
Durrett and Jung [10] have studied the contact process on the small world. Their version of
the small world (which is also the one we study in the present work) is a generalization of the
Bollobas–Chung model: they take the d-dimensional torus Λd(L) = Zd mod 2L with short
range connections between each pair of vertices at Euclidean distance smaller than m. The long
range connections are drawn choosing at random a partition of the (2L)d vertices in pairs and
connecting each pair of the partition (see Section 2.1 for more details about the construction).
Note that all sites have exactly one long range neighbour, which may coincide with a short range
one. Nevertheless with large probability most of the sites have a true long range neighbour, and
we choose a random walk which makes the small world “stochastically homogeneous” (see the
definition of the transition matrix PS in Section 2.1). The main advantage of such a construction
is that we can associate to the random graph a non-random translation invariant graph B, called
big world. To get an idea of how the big world looks like, see Fig. 1. One starts with a copy of
Zd and then attaches to each site an edge joining this site to another copy of Zd and proceeds by
(infinite) iteration. This edge represents the long range connection (thus for instance in dimension
1, if the long range neighbour of 0 is 3, then 3 is represented in the big world by the site three
steps away from 0 in the first copy of Z, but also by the site at the endpoint of the “long range”
edge attached to 0, and indeed by many other sites). For more details on this deterministic graph
and on its relationship with the small world, see [10] where the big world was first introduced
and Section 2.2.

One expects that if the distance between sites plays an important role (as for random walks,
coalescing random walk or the contact process), a process taking place on a small world will
behave differently from the same one on the torus. We consider random walks on the small world
and, under some assumptions on the starting sites, we study the asymptotic behaviour of three
sequences of random times: the time WL after which a single random walk first hits the origin,
the time TL after which two random walks first meet and the coalescing time τL of a coalescing
random walk starting from a fixed number of particles. Recall that the coalescing random walk
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on a graph is a Markov process in which n particles perform independent random walks subject
to the rule that when one particle jumps onto an already occupied site, the two particles coalesce
to one. The time when we first have only one particle left is called coalescing time.

It is natural to compare our results with the corresponding results on the torus: for the simple
symmetric continuous time random walk on the d-dimensional torus, Cox [6, Theorem 4] proved
(under some assumptions on the initial position) that for d = 2WL/C2(2L)2 log(2L), with
C2 = 2/π , and for d ≥ 3, WL/Cd(2L)d , with Cd equal to the expected number of visits to the
origin of a discrete time simple symmetric random walk, converge to an exponential of mean 1.
One can also get the same result for the random walk starting from the stationary distribution
(this was proved in [11, Theorem 6.1] in discrete time) as a corollary.

Cox and Durrett (see [7, Theorem 2]) proved a result in the two-dimensional case under more
general conditions on the starting point and on the transition matrix for a discrete time random
walk. The case d = 1 is slightly different: Flatto et al. [11, Theorem 6.1] proved that for the
discrete time random walk starting from the uniform distribution WL/L2 converges to a certain
law. It is possible to show that these results also hold in continuous time.

Note that, by the symmetry of the walks on the torus, it is easy to show that the meeting
time TL of two independent random walks X t and Yt on the torus, conditioned to X0 = x
and Y0 = y, coincides with the law of 2WL conditioned to the starting point x − y. Therefore
from Theorems [6, Theorem 4], [7, Theorem 2], and [11, Theorem 6.1] one easily deduces the
asymptotic behaviors of the meeting time of two particles.

Since a small world is a random graph, studying random walks on it we have two sources of
randomness: the graph and the walk. We denote by S L the random variable whose possible values
are the small worlds of size L and by S (or SL if we need to stress the dependence on L) one of
the possible realizations of S L . If ∆ is the transition matrix of an adapted (i.e. transition from x to
y may occur only if they are connected by an edge) and translation invariant symmetric random
walk on Λd(L) and β ∈ (0, 1), once a small world S is fixed, the random walk we consider on
it moves according to ∆ with probability 1 − β and moves along the long range connection with
probability β. We denote by P the uniform probability on all the small worlds; given a small
world S, we denote by Pµ,ν

S the joint law of two independent continuous time random walks
starting from the probability distributions µ and ν. By P (with no pedex) we denote the average
over all small worlds (see Section 2.1 for the formal definitions).

We look for results for each graph S in a set of large P-probability (“quenched” point of view
– note that it is not possible to have almost sure results) and average results (i.e. with respect to
P – “annealed” point of view).

Durrett [9, Chapter 6] proved, for a large class of random graphs with N vertices, that for each
sequence {SN

}N≥0 of small worlds chosen in sets of large P-probability, if TN is the meeting
time of two particles starting from the stationary distribution, then TN /C N (for some C > 0)
converges to the exponential distribution. In particular such a result holds for the small worlds
we consider in dimension one (clearly with N = 2L).

With different techniques we prove more accurate results in dimension d . We suppose that
the two random walks start respectively from the origin 0 and from a site xL and we prove
convergence to an exponential law of TL/Cd(2L)d , under the assumption that either {xL}L is
constant or moves towards infinity at a sufficiently large speed (bear in mind that on S there
are two distances between two sites x and y: the Euclidean one |x − y| and the (random)
graph distance dS(x, y)). Moreover, we identify the constant Cd , which is a fundamental tool
to compare our results with the corresponding ones on the torus in d ≥ 3.
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Recall that there exists a deterministic graph called big world B which can be mapped onto
the small world. Through the inverse of this map (see Section 2.2 for details) we associate to each
site x ∈ Λd(L) a unique site +(x) in B, and to a random walk on the small world we associate a
random walk on B, whose law is denoted by PB . We denote by Gev

B (x) the expected time spent
at site 0 by the random walk at speed 2 starting from +(x) on B, namely

Gev
B (x) :=

∫
∞

0
P+(x)

B (X2t = 0)dt. (1.1)

Note that such constants depend on the probability β. We omit this dependence to avoid
cumbersome notation. We also write 0 for +(0) for the sake of simplicity.

Theorem 1.1. Let

f (x, t) = exp(−t/Gev
B (0))


1

Gev
B (0)

δ0(x) +


1 −

Gev
B (x)

Gev
B (0)


(1 − δ0(x))


,

and let g(t) = exp(−t/Gev
B (0)).

1. Let xL ∈ Λ(L) for all L such that xL = x for all L sufficiently large. Then uniformly in t ≥ 0

PxL ,0


TL

(2L)d > t


L→∞
→ f (x, t) (1.2)

2. Let αL ≥ (log log L)2, then uniformly in t ≥ 0 and xL such that |xL | ≥ αL ,

PxL ,0


TL

(2L)d > t


→ g(t). (1.3)

3. Let xL ∈ Λ(L) for all L such that xL = x for all L sufficiently large. For all ε > 0

P


S :

PxL ,0
S


TL

(2L)d > t


− f (x, t)

 < ε,∀t ≥ 0


L→∞
→ 1. (1.4)

4. Let αL ≥ (log log L)2. For all ε > 0

P


S : sup

{xL :dS(0,xL )≥αL }

PxL ,0
S


TL

(2L)d > t


− g(t)

 < ε,∀t ≥ 0


L→∞
→ 1. (1.5)

The main tools in the proof of this result are: the use of the Laplace transform (much in the
footsteps of [6]); the fact that with large P-probability a large (but not too large) neighbourhood
of a fixed vertex looks like the big world and the fact that for very large times the random walker
is approximately uniformly distributed on the graph. We prove Theorem 1.1 for continuous
time random walks, but for discrete time random walks (which we denote by Xn) the same
arguments lead to the corresponding result. The only difference is that instead of Gev

B (x) one has
the expected number of visits at even times

Gev
B (x) :=

∞−
n=0

P+(x)

B (X2n = 0). (1.6)

Moreover, by a similar argument one proves the result for the hitting time to the origin (see
Theorem 4.2). As a corollary one can get the law of the meeting time of two random walks and
the law of the hitting time to the origin of a single walker starting from the uniform distribution.
Note that while on a translation invariant graph one immediately deduces the results on the
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meeting time of two walkers from the results on the hitting time (as on the torus), on random
graphs like the small world this is not possible.

We are now able to compare the growth speed of TL on the torus and on the small world (when
the distance between the two starting points goes to infinity): depending on the dimension d, there
are a function fd(L) and a constant Cd such that TL/Cd fd(L) converges in law. The comparison
is summarized in Table 1 (where Gev

Zd (0) is the expected time spent at 0 by the process {X2t }t≥0

on Zd ). If d ≤ 2 the small world effect is clear (adding random connection speeds up the meeting
time); if d ≥ 3 we need to compare the two constants Gev

Zd (0) and Gev
B (0). Recall that these

Table 1
Cd and fd such that TL/(Cd fd (L)) converges in law.

d Torus Small world
fd (L) Cd fd (L) Cd

1 L2 1/12 L Gev
B (0)

2 L2 log L 1/π L2 Gev
B (0)

≥3 Ld Gev
Zd (0) Ld Gev

B (0)

quantities depend on β (the probability with which the random walk moves along the long range
connection). We prove in the Appendix that if β is small then Gev

Zd (0) > Gev
B (0), while if β is

close to 1 then Gev
Zd (0) < Gev

B (0). Thus two particles meet faster on the small world than on the
torus if β is small, but meet faster on the torus if β is large. This means that where the limiting
space Zd is transient (d ≥ 3), a small probability of taking a connection towards a distant site
(the long range neighbour) makes it easier to meet, but if this probability is too large then it is
easier for the two walkers to get lost instead of meeting. Unfortunately identifying the value of β

at which the inequality between Gev
Zd (0) and Gev

B (0) reverses seems a difficult task, which goes
beyond the aim of this paper. One strategy could be try to find numerical approximations of the
two constants by evaluating with a combinatorial procedure the n-step return probabilities on Zd

up to time n0 and substituting in (1.1) this evaluation up to step n0 and the asymptotic value of
the return probabilities (see for instance [16, Theorem 13.10]) for n > n0. Of course this has to
be repeated for a large set of values of β and one also needs to tackle the question of how large
n0 needs to be in order to make the error small.

The third random time we are interested in is the coalescing time. In [9, Chapter 6], the
author sketched a proof that the number of particles of a normalized n-coalescing random walk
(that is with n particles at time 0) starting from the stationary distribution, moving according
to the simple symmetric random walk, in d = 1, on the small world, converges to Kingman’s
coalescent. Recall that Kingman’s coalescent is a Markov process starting from n individuals
without spatial structure: each couple has an exponential clock with mean 1 after which the two
particles coalesce (see [6,8,14]). We use Theorem 1.1 to get new information about the number of
particles (|ξt (A)|)t≥0 of the coalescing random walk (ξt (A))t≥0 starting from A = {x1, . . . , xn},
xi ∈ Λd(L) for 1 ≤ i ≤ n in continuous time, extending the previous result to d-dimensional
small worlds with general transition probabilities and more general initial distance between
particles. We prove the following, where M is the number of deterministic neighbours of each
site (depending on the model, M = 2d + 1 or M = (2m + 1)d ).

Theorem 1.2. Let hL ≥ (log log L)2 such that limL→∞ M4hL /(2L)d
= 0, then for each

A = {x1, . . . , xn} ⊂ Λd(L) with |xi − x j | ≥ hL for i ≠ j , T > 0 there exists a sequence
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of sets {H L
}L of small world graphs such that P(H L)

L→∞
→ 1 and for each sequence {SL

}L ,
SL

∈ H L , uniformly in 0 ≤ t ≤ TPA
SL


|ξsL t (A)| < k


− Pn (Dt < k)

 L→∞
→ 0, k = 2, . . . , n (1.7)

where PA
SL is the law of (ξt (A))t≥0 on SL , sL = (2L)d Gev

B (0) and Pn is the law of the number
of particles Dt at time t ≥ 0 in a Kingman’s coalescent starting from n particles.

We remark that the small world we consider is a random graph where each site has a single
long range connection. One can show analogous results for random graphs with a fixed number
K > 1 (not depending on L) of long range connections per site, added to the d-dimensional torus
or to a translation invariant finite graph. The exponential limit will have a different parameter
which we guess would be the expected time spent at the origin on a different big world structure.

We give here a brief outline of the paper. In Section 2.1 we give the formal definitions needed
in what follows and give some technical results. In Section 2.1 we formally define the small
world (actually two versions of it, depending on the notion of deterministic neighbourhood one
chooses) and the random walk on it. In Section 2.2 we describe the big world and its relationship
with the small world. Moreover, we prove that with large probability a ball of radius t (L) (with
t (L) which does not grow too fast) in the small world looks exactly like the corresponding
ball in the big world (that is there are no long range connections reaching inside the ball; see
Proposition 2.6). Proposition 2.7 gives useful lower bounds on the probability that the graph
distance and the Euclidean distance between two points are equal, and on the probability, if the
latter is large, that also the former is large. As we already mentioned, one of the keys in our
proofs is that when time is relatively small, thanks to Proposition 2.6 the random walker moves
with large P-probability as if she were on the big world. On the other hand, for large times we use
the fact that she is close to the stationary distribution. In Section 2.4 we state Proposition 2.10
which is an estimate on the speed of convergence to equilibrium. Its proof uses known estimates,
involving the isoperimetric constant. This is the reason why we need the results in Section 2.3,
which roughly speaking say that with large P-probability the isoperimetric constant is large.
Section 3 is devoted to the estimates of the asymptotic behaviour of the Laplace transforms of
the meeting time of two random walks, one starting at x and the other starting at 0: F L(x, λ)

is the “annealed” transform (i.e. with respect to P) and F L
S (x, λ) is the “quenched” transform

(i.e. with respect to PS). To obtain these estimates, we need to evaluate the Laplace transforms of
the time spent together of two random walks, namely GL(x, λ) and GL

S (x, λ). These results are
used in Section 4 where we prove Theorem 1.1 and the result on the hitting time of the origin.
In Section 5 we introduce the coalescing random walk and we prove the convergence theorem to
Kingman’s coalescent. Finally in the Appendix we compare Gev

Zd (0) and Gev
B (0), which allows

us to compare our results with the ones on the meeting time on the d-dimensional torus when
d ≥ 3.

2. Preliminaries

2.1. The small world

The vertices of the random graph are the ones of the d-dimensional torus, which we denote
by

Λ(L) = Λd(L) = (Z mod 2L)d ,

when there is no ambiguity, we will omit the dependence on d .
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The set of edges E L of the graph is partly deterministic (short range connections) and partly
random (long range connections). Note that we consider nonoriented edges, that is, if (x, y) ∈ E L

then also (y, x) ∈ E L (thus we identify edges with subsets of order two).
We will consider two kinds of short range connections, one between neighbours (i.e. vertices

x, y such that ‖x − y‖1 = 1), and the other between vertices x, y such that ‖x − y‖∞ ≤ m: the
corresponding neighbourhoods are

N (x) = {y ∈ Λ(L) : ‖x − y‖1 = 1}, x ∈ Λ(L),

N ∞
m (x) = {y ∈ Λ(L) : ‖x − y‖∞ ≤ m}, x ∈ Λ(L), m ∈ N.

For all x, y ∈ Λ(L) we denote by dS(x, y) the graph distance between x and y. Let Ω be the
set of all partitions of the set of Λ(L) into (2L)d/2 subsets of cardinality two. Let P be the
uniform probability on Ω : the random choice of ω ∈ Ω represents the choice of the set of long
range connections (some of which may coincide with short range ones). Note that both Ω and P
depend on L .

Definition 2.1. Let G L be the family of all graphs with set of vertices Λ(L). The small world S L

is a random variable S L(ω) : Ω → G L such that S L(ω) =

Λ(L), E L(ω)


, where

E L(ω) = ω ∪ {{x, y} : x ∈ Λ(L), y ∈ N (x)}.

The set of edges of the small world S L
m(Ω) is defined as

E L
m (ω) = ω ∪ {{x, y} : x ∈ Λ(L), y ∈ N ∞

m (x)}.

We denote by S L(Ω) = {S L(ω) : ω ∈ Ω} and by S L
m(Ω) = {S L

m(ω) : ω ∈ Ω}.
For any fixed ω, given two short range neighbours x and y, we write x ∼

S R y; if they are long
range neighbours we write x ∼

L R y (it may happen that x ∼
S R y and x ∼

L R y at the same time).

Note that P clearly defines a probability measure on G L : with a slight abuse of notation we
denote this measure with P as well. Given ω, we will also call “small world” the graph S L(ω).
For the sake of simplicity we will focus here on the case S L , but our proofs can be adapted to
S L

m . Moreover, when there is no ambiguity, we will write S and Sm instead of S L and S L
m .

Remark 2.2. We note that the small world could be defined imposing that we consider as
probability space Θ ⊂ Ω , the family of partitions where no couple is a short range connection
(thus the random graph has fixed degree), instead of Ω . The results of the paper would not be
different.

We consider discrete and continuous time random walks on small worlds; here is the definition
regarding the discrete ones.

Definition 2.3. Let ∆ be an adapted, symmetric and translation invariant transition matrix on the
torus, AS be the (random) matrix where the x, y entry is 1 if and only if x and y are long range
neighbours and 0 otherwise, and µ be a probability measure on Λ(L).

1. Given a small world S, the transition matrix of the walk is PS = β∆ + (1 − β)AS and we
denote by Pµ

S the law of the discrete time random walk on S with initial probability µ and
transitions ruled by PS . If µ = δx0 we writePx0

S .
2. We denote byPµ the average ofPµ

S with respect to P, that isPµ(C(x0, . . . , xn)) =

−
S∈Ω

P(S)µ(x0)pS(x0, x1) · · · pS(xn−1, xn),
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where C(x0, . . . , xn) is the set of all infinite sequences of vertices where the first n coordinates
coincide with (x0, . . . , xn).

We construct the continuous time version X t of the random walk X t by continuation. In other

words we define X t :
d
= X Nt where Nt is a Poisson process with rate 1 independent of X t : the

law of X t on S starting from a probability measure µ on Λ(L) is given by

Pµ
S (X t = y) =

∞−
k=0

e−t tk

k!

Pµ
S (Xk = y). (2.1)

From now on ∆, hence also the family of transition matrices {PS}S∈S L (Ω), is considered fixed.

2.2. The big world

The small worlds S L and S L
m (which are random graphs) can be mapped into deterministic

graphs, the big worlds B and Bm respectively, as in [10]. We recall here the construction. The
sites are all vectors ±(z1, . . . , zn), with n ≥ 1 components, for all n ∈ N z j ∈ Zd and z j ≠ 0
for j < n. The edges in B are drawn between +(z1, . . . , zn) and +(z1, . . . , zn + y) if and only
if y ∈ N (0); for Bm we consider y ∈ N ∞

m (0) (we call these edges short range connections). The
same is done between −(z1, . . . , zn) and −(z1, . . . , zn + y). Moreover, +(z1, . . . , zn) has a long
range neighbour, namely

+(z1, . . . , zn, 0) if zn ≠ 0,

+(z1, . . . , zn−1) if zn = 0, n ≥ 1,

−(0) if zn = 0, n = 1.

Analogously one defines the long range neighbour of −(z1, . . . , zn). Note that the big world is
a vertex transitive graph (i.e. the automorphism group acts transitively). We denote by |x | the
graph distance on the big world from x to +(0) and we also write 0 instead of +(0). See Fig. 1
(which is taken from [10]) for the case d = 1.

Fig. 1. A portion of the big world in d = 1.
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We construct a random map φ(ω) which maps the big world onto the small world S(ω) in a
way such that long range connections in the big world correspond to long range connections in
the small world.

Definition 2.4. Given a small world S and x ∈ Λ(L), let L RS(x) be the long range neighbour of
x . The map φ : Ω → Λ(L)B is recursively defined as follows:

φ(ω)(+(z)) = z mod (2L),

φ(ω)(−(z)) = L RS(ω)(0) + z mod (2L),

φ(ω)(±(z1, . . . , zn)) = L RS(ω) (φ(ω)(±(z1, . . . , zn−1))) + zn mod (2L).

Note that the transition matrix PS on the small world naturally induces a symmetric and
translation invariant discrete time random walk {Xn}n≥0 on the big world (moving with
probability β along the long range connection and with probability 1 − β according to the
transition matrix ∆). We denote by Px the law of {Xn}n≥0 with initial position x . One can
prove, by using Cauchy–Schwarz’s inequality, the symmetry and the translational invariance of
the walk, that for all x ∈ B and n ∈ N,Px

B(X2n = 0) ≤P0
B(X2n = 0); Px

B(X2n+1 = 0) ≤P0
B(X2n = 0). (2.2)

Using (2.1) we get the continuous time version {X t }t≥0 and we have that for each t ≥ 0

Px
B(X2t = 0) ≤ P0

B(X2t = 0). (2.3)

Let G B(x) :=
∑

∞

n=0
Px

B(Xn = 0) be the expected number of visits to 0 of {Xn}n≥0 (recall
that in (1.6) we introduced Gev

B (x)) and let G B(x) =


∞

0 Px
B(X t = 0)dt be the expected time

spent at 0 by the continuous time process (recall (1.1) to compare with Gev
B (x)). We can prove,

starting from (2.1), that G B(x) = G B(x) and by a change of variable, that G B(x) = 2Gev
B (x).

Clearly Gev
B (x) ≤ G B(x) and they coincide if the random walk has period 2 (in which case

they are nonzero only if |x | is even). Note that if m = 1 the big world is the Cayley graph of
Zd

∗ Z2 and the random walk on it is transient and G B(x) is finite. If m ≥ 2 the big world
is the Cayley graph of Zd

∗ Z2, where Zd has the m-neighbourhood relation, and the random
walk is still transient (this can be proven via the flow criterion; see [16]). Moreover, by (2.3),
Gev

B (x) ≤ Gev
B (0), and the analogous inequality holds in discrete time.

We are interested in the event where locally the small world does not differ from the big world.

Definition 2.5. If x ∈ Λ(L) and t > 0, we denote by I (x, t) the event in Ω

I (x, t) := {φ|BB(x,t) is injective},

where BB(x, t) is the ball of radius t centered at x in the big world.

Clearly P(I (x, t)) does not depend on x .

Proposition 2.6. Let M = 2d + 1 for B and M = (2m + 1)d for Bm and let t = t (L) be a
function of L such that M4t (L)

= o(Ld). Then for sufficiently large L

P(I (x, t)) ≥ 1 −
C M4t

Ld
L→∞
→ 1,

where C is a positive constant.
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Proof. Denote by Kt the number of long range connections in BB(0, t), and by Jt the total
number of vertices in the ball centered at 0 in Λ(L) and of radius t , which we denote by BB(0, t).
Note that the number of vertices in a graph with constant degree is always at most the number
of vertices in the homogeneous tree of the same degree. Recall that the ball of radius t in the
homogeneous tree of degree M ≥ 3 has exactly 1 + M

∑⌊t⌋−1
j=0 (M − 1) j

≤ 3M t vertices. Thus
we get Kt ≤ 3M t and Jt ≤ 3M t .

Enumerate the long range connections in BB(0, t) from 1 to Kt and construct the mapping φ.
Note that I (0, t) contains the set A of ω such that the long range connections in the image of
BB(0, t) in the small world S are all sites at distance at least 2t on Λ(L). Thus P(I (0, t)) ≥ P(A)

and

P(A) ≥
(2L)d

− J2t

(2L)d

(2L)d
− 2J2t

(2L)d · · ·
(2L)d

− Kt J2t

(2L)d

=

Kt∏
i=1


1 −

i J2t

(2L)d


= exp


Kt−

i=1

log


1 −
i J2t

(2L)d


.

Note that log(1 − x) ≥ −2x if x ∈ [0, x̄] for some x̄ . By our choice of t (L), for L sufficiently
large we have that Kt J2t/Ld

≤ x̄ and we get, for some positive C and C ′,

P(A) ≥ exp


−

2J2t

(2L)d

Kt−
i=1

i


≥ exp


−C ′

J2t K 2
t

Ld


≥ exp


−

C M4t

Ld


≥ 1 −

C M4t

Ld . �

By dS (x, y) we denote the (random) graph distance between x and y. Depending on ω, x
and y, it may happen that dS (x, y) = d(x, y) or dS (x, y) < d(x, y). The following proposition
provides probability estimates of these events.

Proposition 2.7. Choose t as in Proposition 2.6. Then for sufficiently large L

(a) if d(0, x) ≤ t , then

P (dS (0, x) = d(0, x)) ≥ 1 −
C M4t

Ld ; (2.4)

(b) if d(0, x) > t , then

P (dS (0, x) > t) ≥ 1 −
C M4t

Ld . (2.5)

Proof. (a) It suffices to note that the event (dS (0, x) = d(0, x)) contains the event A of the
previous proposition.

(b) We note that the event (dS (0, x) > t) contains Cx which is the event that all the Kt/2 long
range connections in BB(0, t/2) and BB(x, t/2) are mapped by φ into vertices of Λ(L) at
distance at least t from each other and from the balls of radius t centered at 0 and at x in
Λ(L). We work as in Proposition 2.6 to estimate

P(Cx ) ≥
(2L)d

− 2Jt

(2L)d

(2L)d
− 3Jt

(2L)d · · ·
(2L)d

− Kt/2 Jt

(2L)d

and we proceed in a similar way to get the thesis. �
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2.3. Isoperimetric constant

Estimates of the distance between the random walk and the equilibrium measure involve the
isoperimetric constant. Thus we will get bounds for the edge isoperimetric constant

ι = min
|V |≤n/2

e(V, V c)

|V |
,

where n is the total number of vertices in the graph and e(V, V c) is the total number of edges
between vertices in V and V c, where V is a subset of the vertices of the graph.

Given α > 0, we define

QL
α := (S ∈ S L(Ω) : ι(S) > α). (2.6)

We want to prove that there exists α (independent of L) such that P(QL
α ) is large when L is large.

In order to prove this we need to recall some facts about random graphs.
Take n and r positive integers such that nr is even and consider the random multigraph with

n vertices obtained in the following way: attach to each vertex r half edges, pick at random
(with uniform probability P) a pairing of the nr half edges and join the half edges which are
paired. Note that parallel edges and loops are possible and that the degree is at most r . We call
this multigraph a random (n, r)-configuration. This procedure is usually proposed as a way to
construct, with uniform probability, the random r -regular graph (one has to condition to the event
that the multigraph has neither parallel edges nor loops, i.e. it is a graph); see [3] or [5].

Let us now recall [9, Theorem 6.3.2] (which is inspired by [3, Theorem 1]): it claims that,
given r , there exists α′ > 0 such that P(the (n, r)-configuration has ι ≤ α′) = o(1) as n goes to
infinity. It is not difficult to modify the proof of Durrett to get that for any fixed positive integer l
one can refine the estimate and obtain o(n−l).

Proposition 2.8. Let n, r and l be positive integers with nr even and let P be the uniform
probability on (n, r)-configurations. Then there exists α′ > 0 independent of n and r (one may
choose α′

= 1/10l), such that P(ι ≤ α′) = o(n−l).

Actually one can prove this proposition for more general random graphs. Indeed let h be
a positive integer in [1, r − 1] and call (n, r, h)-configuration the multigraph obtained by a
procedure similar to the one we used for (n, r)-configurations. The only difference is that here n
vertices have r half edges each attached, and one vertex has h half edges attached (nr + h has to
be even). It is not difficult to prove that Proposition 2.8 holds also for (n, r, h)-configurations.

Now we use this result to prove the analog for the small world. The ideas are taken from
[9, Theorem 6.3.4].

Proposition 2.9. Consider the small world S L and fix a positive integer l. Then there exists
α > 0 such that P(QL

α ) = o(L−dl).

Proof. We represent the vertices in Λ(L) by vertices in [−L , L)d
∩ Zd and partition this set into

triplets plus possibly a singleton or a couple of vertices (if 2L mod 3 = 1 or 2 respectively). We
enumerate the triplets from 1 to n = ⌊(2L)d/3⌋ and denote them by I1, . . . , In . Note that it is
possible to choose the triplets in a way such that each triplet has a vertex which is a short range
neighbour of the other two vertices (see Fig. 2 for the case d = 2 and L = 4).

Now choose A ⊂ [−L , L)d
∩ Zd with |A| ≤ (2L)d/2: we need to prove that outside a

set of small worlds of P-probability which is o(L−dl) we have that e(A, Ac)/|A| > α. Let
JA = { j ∈ { . . . , n} : I j ⊂ A}, K A = { j ∉ JA : I j ∩ A ≠ ∅} and BA =


j∈JA

I j .
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Fig. 2. The partition in triplets if d = 2 and L = 4.

Case 1. If |JA| ≤ |A|/6 then |BA| ≤ |A|/2 and |K A| ≥ |A|/4. Thus there are at least |A|/4
edges connecting A to Ac (|K A| is a lower bound for e(A, Ac)).

Case 2. If |JA| > |A|/6 we construct a (n, 3)-configuration associated to the small world: there is
an edge between j and k for any long range edge between x ∈ I j and y ∈ Ik . By Proposition 2.8
outside a set of P-probability o(L−dl) we have e(JA, J c

A) ≥ α′
|JA| for some α′ > 0.

It is enough to show that there is a map ϕ from the set of edges between JA and J c
A to the set

of edges between A and Ac, such that each edge between A and Ac has at most two preimages.
Let j ∈ JA, k ∈ J c

A and let there be an edge between them. Then there exists x ∈ I j ⊂ A, y ∈ Ik
such that x ∼

L R y. If y ∉ A then ϕ(( j, k)) = (x, y). If y ∈ A and it has a short range neighbour
z ∈ Ik ∩ Ac then we choose ϕ(( j, k)) = (y, z) and (y, z) has no other preimages.

If y does not have a short range neighbour in Ik ∩ Ac we know that it has a short range
neighbour z ∈ Ik ∩ A which is a short range neighbour of z′

∈ Ik ∩ Ac. In this case,
ϕ(( j, k)) = (z, z′) and (z, z′) might have at most another preimage (the edge between some
i and k originated by the long range edge between z and some x ′

∈ Ii ). �

2.4. Convergence to equilibrium

Note by symmetry that the reversible distribution of the walk on S L is the uniform probability
π on S L .

Proposition 2.10. Let {X t }t≥0 be the continuous time random walk on the small world
(recall Definition 2.3 and Eq. (2.1)). Fix l ∈ N and pick α as in Proposition 2.9. There exists
γ > 0 (depending only on α, ∆ and β) such that

max
x,y

Px
S(X t = y) − π(y)

 ≤ e−γ t , for all S ∈ QL
α ; (2.7)

max
x,y

Px (X t = y) − π(y)
 ≤ e−γ t

+ o(L−dl). (2.8)

Proof. Recall that given a discrete time random walk on a finite set, with transition matrix P and
reversible measure the uniform measure π , a result of Sinclair and Jerrum [13] gives an estimate
of the speed of convergence to equilibrium. Indeed in this case P has all real eigenvalues, namely
1 = λ0 > λ1 ≥ · · · ≥ λn−1. Let λ = max{|λi | : i = 1, . . . , n − 1}. It is well known that λ < 1.
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Then for all t ∈ N0 := {n ∈ Z : n ≥ 0}

max
x,y

p(t)(x, y) − π(y)

 ≤ λt
≤ exp(−(1 − λ)t),

where p(t)(x, y) is a t-step probability of the walk. If we are able to estimate λ we are done.
If λ = λ1 then the following result (which is known as Cheeger’s inequality (see [9, Theorem
6.2.1])) is useful

1
2
ι2


min
x,y:p(x,y)>0

p(x, y)

2

≤ 1 − λ1.

A sufficient condition for λ = λ1 is that all the eigenvalues are positive, which for instance holds
when we consider a lazy random walk, that is one which stays put with probability at least 1/2.
It is thus clear that for any small world S in QL

α , if the random walk X t is such that λ = λ1, then

max
x,y

Px
S(X t = y) − π(y)

 ≤ exp(−cα2t), (2.9)

where c =
1
2


minx,y:p(x,y)>0 p(x, y)

2 depends only on ∆ and is strictly positive (recall that ∆
is adapted and translation invariant on Λ(L)). Moreover, by Proposition 2.8

max
x,y

Px (X t = y) − π(y)
 ≤

−
S

P(S) max
x,y

Px
S(X t = y) − π(y)


≤ exp(−cα2t)P(QL

α ) + 2P(QL
α )

≤ exp(−cα2t) + o(L−dl). (2.10)

It is easy starting from (2.1) to prove that (2.9) and (2.10) still hold in continuous time with a
different constant in the exponential. Namely, one has to replace cα2 with 1 − exp(−cα2).

We are left with the proof that (2.9) and (2.10) hold for any random walk (not just for the lazy
one) with different constants. This can be proven by coupling X with a random walk Y = {Yt }t≥0
with transition matrix P ′ such that p′(x, x) = (1+ p(x, x))/2, p′(x, y) = p(x, y)/2: the processY is “lazy” and moves with X when a Bernoulli random variable with parameter 1/2 equals 1,
otherwise it stays put. We leave the computation to the reader. �

3. Laplace transform estimates

Let TL = inf{s > 0 : Xs = Ys} (respectively TL ) be the first time, after time 0, that two
independent continuous (respectively discrete) time random walks X t and Yt on the random
graph S meet. Clearly the law of TL (with respect to either PS or P) depends on the starting sites
of the walkers. Without loss of generality, we assume that Y0 = 0 and X0 = x (if we need to
stress the dependence on L , we write X0 = xL ).

We introduce the following (annealed) Laplace transforms in continuous time,

GL(x, λ) :=

∫
∞

0
e−λtPx,0(X t = Yt )dt =

∫
∞

0
e−λtPx (X2t = 0)dt,

F L(x, λ) :=

∫
∞

0
e−λtPx,0(TL ∈ dt),

where Px,0 denotes the product law of the two walkers. The corresponding quenched transforms
are, given S ∈ S L(Ω),

GL
S (x, λ) :=

∫
∞

0
e−λtPx,0

S (X t = Yt )dt, F L
S (x, λ) :=

∫
∞

0
e−λtPx,0

S (TL ∈ dt).
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We are interested in the asymptotic behaviour, as L → ∞, of TL/(2L)d , thus we study the
previous Laplace transforms with parameter λ/(2L)d .

The discrete time version of such Laplace transforms are defined in a similar way, but the
integrals are replaced by sums. With a slight abuse of notation we omit the superscript ∼ on
the discrete time random walk when not necessary and we use X t , Yt , TL , Pµ

S , GL
S (x, λ) and

F L
S (x, λ) both in the discrete and the continuous time version of the process: since the proofs are

similar, we detail the latter one and we only point out the differences.

3.1. Estimates for G

We first note that the evaluation of the limit of the annealed transforms can be done
considering only small worlds with large isoperimetric constants, that is on QL

α (which was
defined by (2.6)). Let K := {K ⊂ R : inf K > 0}.

Lemma 3.1. Let

gL :=

−
S∈(QL

α )c

P(S)

∫
∞

0
e
−

λt
(2L)d Px

S(X2t = 0)dt,

fL :=

−
S∈(QL

α )c

P(S)

∫
∞

0
e
−

λt
(2L)d Px,0

S (TL ∈ dt).

There exists α > 0 such that P(QL
α )

L→∞
→ 1, gL

L→∞
→ 0 and fL

L→∞
→ 0 (for each K ∈ K,

uniformly for λ ∈ K ).

Proof. By Proposition 2.9 we may choose α such that P((QL
α )c) = o(L−2d). Then

0 ≤ fL ≤ gL ≤ P((QL
α )c)

∫
∞

0
e
−

λt
(2L)d dt = P((QL

α )c)
(2L)d

λ

L→∞
→ 0. �

The limit of the sum defining G, from log log L to infinity does not depend on the sequence of
small worlds, provided that they are chosen with large isoperimetric constant. From now on, if
not otherwise stated, we write tL = log log L , fix α such that P((QL

α )c) = o(L−2d) and write
QL instead of QL

α .

Lemma 3.2. If for all L we choose S ∈ QL and xL ∈ Λ(L), then for all λ > 0

lim
L→∞

∫
∞

tL

e
−

λt
(2L)d PxL

S (X2t = 0)dt =
1
λ

.

Moreover, the convergence is uniform with respect to the choice of the sequences S ∈ QL ,
xL ∈ Λ(L) (and of λ).

Proof. Note that∫
∞

tL

e
−

λt
(2L)d PxL

S (X2t = 0)dt

=

∫
∞

tL

e
−

λt
(2L)d

1
(2L)d dt +

∫
∞

tL

e
−

λt
(2L)d


PxL

S (X2t = 0) −
1

(2L)d


dt. (3.1)

The limit of the first term is uniform in λ and it is 1/λ. Since S is chosen in QL , by (2.7) there
exists a positive constant γ (recall that γ depends on α which is now fixed) such that the second
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sum on the right-hand side of (3.1) is smaller than or equal to∫
∞

tL

e
−

λt
(2L)d e−γ 2t dt =

e−(λ/(2L)d
+2γ )tL

λ/(2L)d + 2γ
,

which tends to 0 as L goes to infinity (uniformly with respect to all the choices of the
statement). �

Recall that, given a vertex x ∈ Λ(L), there is a unique vertex +(x) in the big world (if x = 0
we write 0 instead of +(0)) and that by I (0, t) we denote the set of small worlds which look
like the big world in a ball of radius t around 0 (see Definition 2.5). We now prove that, if L is
sufficiently large, for a wide choice of S (i.e. S in a set with P-probability which tends to 1 as L
increases to infinity), we have that GL

S (xL , λ/(2L)d) is close to 1/λ + Gev
B (xL).

Theorem 3.3. Let

hL
S (λ) =

GL
S (xL , λ/(2L)d) −

1
λ

− Gev
B (xL)

 .
For all ε > 0 there exists L such that for all λ, xL and L ≥ L we have that QL

∩ I (0, t2
L) ⊂ (S :

hL
S (λ) ≤ ε). If dS(0, xL) > t2

L then QL
⊂ (S : hL

S (λ) ≤ ε).

Proof. Note that

hL
S (λ) ≤

∫ ∞

tL

e
−

λt
(2L)d PxL

S (X2t = 0)dt −
1
λ


+

∫ tL

0
e
−

λt
(2L)d


PxL

S (X2t = 0)dt − P+(xL )

B (X2t = 0)


dt


+

∫
∞

tL

P+(xL )

B (X2t = 0)dt +

∫ tL

0
(1 − e

−
λt

(2L)d )P+(xL )

B (X2t = 0)dt.

By Lemma 3.2, if S ∈ QL , the first term is smaller than ε/4 provided that L is large.
Since either S ∈ I (0, t2

L) or dS(0, xL) > t2
L , the probabilities of a meeting before time tL

on S and on the big world differ only if the value of the underlying Poisson process Nt (recall
Eq. (2.1)) at time 2tL is at least t2

L : by Chebyshev’s inequality the second term on the right-hand
side is smaller than

2tLP(N2tL ≥ t2
L) ≤

(2tL)2

(t2
L − tL)2

≤ ε/4

if L is large enough.
Note that by (2.3) the integrands of the last two terms are both dominated by P0

B(X2t = 0)

which does not depend on L and is integrable. Thus by the Dominated Convergence Theorem
they are both smaller than ε/4 if L is sufficiently large. �

Theorem 3.4. For all K ∈ K, ε > 0 there exists L such that for all L ≥ L, xL ∈ Λ(L), and
λ ∈ K ,GL(xL , λ/(2L)d) −

1
λ

− Gev
B (xL)

 ≤ ε.

Proof. Recall that

GL(xL , λ/(2L)d) =

−
S

P(S)GL
S (xL , λ/(2L)d).
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By Theorem 3.3 there exists L such that for all L ≥ L ,
−

S∈QL∩I (0,t2
L )

P(S)GL
S (xL , λ/(2L)d) −

1
λ

− Gev
B (xL)

 ≤ ε/3.

Thus, since P((QL)c) and P(I (0, t2
L)c) are both small if L is large, we may choose L such that

for all λ ∈ K and L ≥ L−
S∈(QL )c∪(I (0,t2

L ))c

P(S)


1
λ

+ Gev
B (xL)


≤ ε/3.

Now we only need to prove that−
S∈(QL )c∪I (0,t2

L )c

P(S)GL
S (xL , λ/(2L)d) ≤ ε/3.

By Lemma 3.1 we know that
∑

S∈(QL )c P(S)GL
S (xL , λ/(2L)d) ≤ ε/6 for all L ≥ L and λ > 0.

Finally, by Proposition 2.6 and Lemma 3.2, for some C > 0 and L sufficiently large−
S∈QL∩I (0,t2

L )c

P(S)GL
S (xL , λ/(2L)d)

=

−
S∈QL∩I (0,t2

L )c

P(S)

∫ tL

0
e
−

λt
(2L)d PxL

S (X2t = 0) +

∫
∞

tL

e
−

λt
(2L)d PxL

S (X2t = 0)



≤


tL +

1
λ

+ C


P(I (0, t2

L)c) ≤ ε/6. �

3.2. From G to F

We note that if xL ≠ 0 then GL
S (xL , λ/(2L)d) may be written as−

z

∫
∞

0
e
−

λq
(2L)d Pz

S(X2q = z)dq
∫

∞

0
e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z).

while GL
S


0, λ/(2L)d


is equal to

1 +

−
z

∫
∞

0
e
−

λq
(2L)d Pz

S(X2q = z)dq
∫

∞

0
e
−

λs
(2L)d P0,0

S (TL ∈ ds, Xs = z).

Define H1, H2 and H3 (which depend on S, xL and L) by

H1 :=

−
z

∫ tL

0
e
−

λq
(2L)d Pz

S(X2q = z)dq
∫ tL

0
e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z)

H2 :=

−
z

∫ tL

0
e
−

λq
(2L)d Pz

S(X2q = z)dq
∫

∞

tL

e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z)

H3 :=

−
z

∫
∞

tL

e
−

λq
(2L)d Pz

S(X2q = z)dq
∫

∞

0
e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z).
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By Lemma 3.1, for all L sufficiently large and if the limit exists,

lim
L→∞

GL


xL ,
λ

(2L)d


= lim

L→∞

−
S∈QL

P(S)(H1 + H2 + H3). (3.2)

Clearly if xL = 0 for all L sufficiently large we only need to add 1 to the previous limit. The
same equality holds in discrete time, replacing the integral with the sum.

We now study each of the three summands separately, in order to obtain the limit of F L as a
function of the limit of GL .

Lemma 3.5. If S ∈ I (0, t2
L) and xL ∈ Λ(L), for each ε > 0 there exists L such that for each

L > L thenH1 −

∫ tL

0
e
−

λq
(2L)d P0

B(X2q = 0)dq
∫ tL

0
e
−

λs
(2L)d PxL ,0

S (TL ∈ ds)

 < ε. (3.3)

This inequality also holds whenever dS(0, xL) > t2
L . Moreover, uniformly with respect to the

choice of the sequence {xL}L and of λ,−
S∈(I (0,t2

L ))c

P(S)
−

z

∫ tL

0
e
−

λq
(2L)d Pz

S(X2q = z)dq

∫
∞

0
e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z)
L→∞
→ 0. (3.4)

Proof. We first note that if we consider the discrete time random walk then at time tL the walker
is at a distance at most tL from her starting site. Thus the sites z in the sum of H1 are those at
distance at most tL from 0 (all other terms being zero). Then, since q ≤ tL and S ∈ I (0, t2

L)

(actually, in discrete time S ∈ I (0, 2tL) suffices), we have that Pz
S(X2q = z) = P0

B(X2q = 0)

and the difference in Eq. (3.3) is equal to zero. On the other hand, if dS(0, xL) > t2
L it is not

possible for two random walkers starting at 0 and at xL respectively, to meet within time tL and
all quantities in Eq. (3.3) are zero.

In continuous time the walkers may take a large number of steps even in a small amount
of time (though this is quite unlikely). Denote by Nt the Poisson process underlying the random
walk from 0 (see the second integral in H1) and by N ′

t the Poisson process underlying the random
walk from z (see the first integral in H1).

Suppose that S ∈ I (0, t2
L): if (NtL < t2

L/2) and (N ′

2tL
< t2

L) then the whole path from z to z

of duration 2q lies in the ball of radius t2
L centered at 0 and the law of the walk coincides with

the corresponding walk on the big world. By Chebyshev’s inequality

P(NtL ≥ t2
L/2) ≤

C

t3
L

and P(N ′

2tL
≥ t2

L) ≤
C

t3
L

, (3.5)

for some positive constant C . Then straightforward computation shows that H1 differs from−
z

∫ tL

0
e
−

λq
(2L)d Pz

S(X2q = z, N ′

2tL
< t2

L)dq
∫ tL

0
e
−

λs
(2L)d PxL ,0

S

× (TL ∈ ds, Xs = z, NtL < t2
L/2) (3.6)
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at most by 3t2
L · C/t3

L . The same argument that we used in discrete time gives

Pz
S(X2q = z, N ′

2tL
< t2

L) = P0
B(X2q = 0, N ′

2tL
< t2

L)

and by Eq. (3.5), Eq. (3.3) follows (similarly one proves it in the case dS(0, xL) > t2
L ).

In order to prove (3.4), note that for some C > 0−
S∈I (0,t2

L )c

P(S)
−

z

∫ tL

0
e
−

λq
(2L)d Pz

S(X2q = z)
∫

∞

0
e
−

λs
(2L)d PxL ,0

S (TL = s, Xs = z)

≤ CtLP(I (0, t2
L)c)F L(xL , λ/(2L)d),

which, by Proposition 2.6 and since F L(x, λ) ≤ 1 for all λ and x , goes to 0, uniformly in xL and
λ, as L goes to infinity. �

Lemma 3.6. For all K ∈ K, ε > 0 there exists L such that for all L ≥ L, xL and λ ∈ K ,
−

S∈QL

P(S)H2 −

∫ tL

0
e
−

λq
(2L)d P0

B(X2q = 0)dq

−
S∈QL

P(S)

∫
∞

tL

e
−

λs
(2L)d PxL ,0

S (TL ∈ ds)

 ≤ ε. (3.7)

Proof. Note that
∑

S∈QL P(S)H2 can be written as−
z

−
S∈QL∩I (z,t2

L )

P(S)

∫ tL

0
e
−

λq
(2L)d Pz

S(X2q = z)dq
∫

∞

tL

e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z)

+

−
z

−
S∈QL∩I (z,t2

L )c

P(S)

∫ tL

0
e
−

λq
(2L)d Pz

S(X2q = z)dq
∫

∞

tL

e
−

λs
(2L)d PxL ,0

S

× (TL ∈ ds, Xs = z)

= H2,1 + H2,2.

We prove that H2,2 → 0, indeed since exp(−λq/(2L)d)Pz
S(X2q = z) ≤ 1 then

H2,2 ≤ tL

−
z

−
S∈QL∩I (z,t2

L )c

P(S)

∫ log L

tL

e
−

λs
(2L)d PxL ,0

S (Xs = Ys = z)ds

+

∫
∞

log L
e
−

λs
(2L)d PxL ,0

S (Xs = Ys = z)ds


=: H2,2,1 + H2,2,2.

Note that H2,2,1 is smaller than or equal to

tL

−
S∈QL

P(S)

∫ log L

tL

e
−

λs
(2L)d P0

S(X2s = xL)ds.

We write P0
S(X2s = xL) ≤

P0
S(X2s = xL) − 1/(2L)d

 + 1/(2L)d , which by (2.7) is smaller
than or equal to e−γ s

+ 1/(2L)d (recall that γ depends only on the parameter α which has been
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fixed in QL ). It is thus only a matter of computation to show that H2,2,1 goes to zero (uniformly
in xL and λ) as L goes to infinity.

Now we consider H2,2,2. Note that PxL ,0
S (Xs = Ys = z) = Pz

S(Xs = 0)Pz
S(Ys = xL). Write

Pz
S(Xs = 0) = Pz

S(Xs = 0) −
1

(2L)d +
1

(2L)d

and do the same for Pz
S(Ys = xL). Using (2.7) and Proposition 2.6, we have that H2,2,2 is smaller

than or equal to

tL

−
z

−
S∈QL∩I (z,t2

L )c

P(S)

∫
∞

log L
e
−

λs
(2L)d


e−γ s

+
1

(2L)d

2

ds

≤ CtL Ld M4t2
L

Ld

∫
∞

log L
e
−

λs
(2L)d


e−2γ s

+
1

(2L)2d
+

2e−γ s

(2L)d


ds ≤ C ′

tL M4t2
L

L2γ
,

for some C ′ > 0. The last quantity goes to 0 (uniformly in xL and λ ∈ K for each K ∈ K) as
L → ∞ (the numerator contains only terms which are logarithmic in L).

We now prove that Eq. (3.7) holds with H2,1 in place of
∑

S∈QL P(S)H2. The same arguments
that we used to prove that H2,2 converges to 0 tell us that−

z

−
S∈QL∩I (z,t2

L )c

P(S)

∫ tL

0
e
−

λq
(2L)d P0

B(X2q = 0)dq
∫

∞

tL

e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z)

converges to zero. Thus we are left with−
z

−
S∈QL∩I (z,t2

L )

P(S)

∫ tL

0
e
−

λq
(2L)d

Pz
S(X2q = z) − P0

B(X2q = 0)

 dq

∫
∞

tL

e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z) (3.8)

and we have to prove that it is small when L is large. By (3.5) we have
 tL

0 |Pz
S(X2q = z) −

P0
B(X2q = 0)|dq ≤ C/t2

L . Thus the quantity in Eq. (3.8) is at most

C

t2
L

−
S∈QL

∫
∞

0
e
−

λs
(2L)d PxL ,0

S (TL ∈ ds) ≤
C

t2
L

F L(xL , λ/(2L)d)

which can be taken as small as we want if L is large (recall that F L(xL , λ/(2L)d) ≤ 1 and that
all sums and integrals are interchangeable since all quantities are nonnegative). �

Lemma 3.7. Let

aL
λ (S) := H2 −

∫ tL

0
e
−

λq
(2L)d P0

B(X2q = 0)dq
∫

∞

tL

e
−

λs
(2L)d PxL ,0

S (TL ∈ ds). (3.9)

Then aL
λ ≥ 0 and aL

λ → 0 in probability (for each K ∈ K, uniformly in xL and λ ∈ K ), that is
for all K ∈ K, ε > 0 and δ > 0 there exists L such that for all L ≥ L and xL

P(AL
ε (K )) := P(S : aL

λ (S) ≤ ε, ∀λ ∈ K ) ≥ 1 − δ.

Proof. We first note that for all z and S, Pz
S(X2q = z) ≥ P0

B(X2q = 0), hence aL
λ (S) ≥ 0.

Suppose by contradiction that there exist K , ε > 0 and δ > 0 such that P(AL
ε (K )) ≤ 1 − δ
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infinitely often. Then infinitely often−
S

P(S)aL
λ (S) > δε.

By Lemmas 3.6 and 3.1, there exists L such that
∑

S P(S)aL
λ (S) < δε for each L ≥ L , xL ,

λ ∈ K , whence the contradiction. �

Lemma 3.8. For all K ∈ K and ε > 0 there exists L such that for all L ≥ L, S ∈ QL , xL and
λ ∈ K ,H3 −

1
λ

F L
S (xL , λ/(2L)d)

 ≤ ε. (3.10)

Proof. Note that

H3 =

−
z

∫
∞

tL


Pz

S(X2q = z) −
1

(2L)d


e
−

λq
(2L)d dq

∫
∞

0
e
−

λs
(2L)d PxL ,0

S (TL ∈ ds, Xs = z)

+

∫
∞

tL

e
−

λq
(2L)d

1
(2L)d F L

S (xL , λ/(2L)d)dq,

and the modulus of the first member does not exceed∫
∞

tL

e
−

λq
(2L)d

−2γ q
dq
∫

∞

0
e
−

λs
(2L)d PxL ,0

S (TL ∈ ds) ≤ C exp(−γ tL)

by (2.7) (recall that S ∈ QL and the fact that F L
S (xL , λ/(2L)d) ≤ 1). The claim follows since

for L sufficiently large 1
(2L)d

∫
∞

tL

e
−

λq
(2L)d dq −

1
λ

 < ε/2. �

Theorem 3.9. Let

bL
λ (S) :=

F L
S


xL ,

λ

(2L)d


−

Gev
B (xL) +

1
λ

− I{0}(+(xL))

Gev
B (0) +

1
λ

 .
(a) Then bL

λ → 0 in probability, for each K ∈ K such that sup K < ∞, uniformly in
xL ∈ Λ(L) and λ ∈ K , namely for all ε > 0 (S : bL

λ (S) ≤ ε, ∀λ ∈ K ) ⊃ QL
∩I (0, t2

L)∩AL
ε/2(K )

for all L sufficiently large (AL
ε (K ) was defined in Lemma 3.7).

(b) For all ε > 0, (S : bL
λ (S) ≤ ε, ∀λ ∈ K ) ⊃ QL

∩ (S : dS(0, xL) > t2
L) ∩ AL

ε/2(K ) for all
L sufficiently large.

Proof. (a) Note that by the Dominated Convergence Theorem (recall (1.1)), since sup K = λ0 <

∞, for each ε > 0 and L > L large enough∫ tL

0
e
−

λq
(2L)d P0

B(X2q = 0)dq − Gev
B (0)

 < ε. (3.11)

Consider

GL
S (xL , λ/(2L)d) − I{0}(xL) −


Gev

B (0) +
1
λ


F L

S (xL , λ/(2L)d).
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Writing GL
S (xL , λ/(2L)d) = I{0}(xL) + H1 + H2 + H3, using Lemmas 3.5, 3.7 and 3.8 and

(3.11) follows that the previous difference is smaller than ε when L is sufficiently large and
S ∈ QL

∩ I (0, t2
L) ∩ AL

ε/2(K ). Note that all these three sets have probability which converges

to 1. By Theorem 3.3 we conclude that bL
λ goes to zero in probability.

(b) Since Eq. (3.3) holds also when dS(0, xL) > t2
L , we have that S ∈ QL

∩ (S : dS(0, xL) >

t2
L) ∩ AL

ε/2(K ). �

Theorem 3.10. For each ε > 0 and K ∈ K such that sup K < ∞, there exists L such that for
each L > L, λ ∈ K and for each sequence {xL}L such that xL ∈ Λ(L),F L


xL ,

λ

(2L)d


−

Gev
B (xL) +

1
λ

− 1{0}(+(xL))

Gev
B (0) +

1
λ

 ≤ ε.

Proof. To keep notation simple we deal only with the case +(xL) ≠ 0 (the case +(xL) = 0 is
completely analogous). Let

QL
ε,λ =


S : bL

λ ≤ ε


, (3.12)

(bL
λ was defined in Theorem 3.9). By Theorem 3.9 there exists L such that for all L ≥ L we have

P(QL
ε,λ) > 1 − ε.

Then since both F L
S (xL , λ/(2L)d) and (Gev

B (xL) + 1/λ)/(Gev
B (0) + 1/λ) are in [0, 1], for all

L ≥ L−
S

P(S)

F L
S


xL ,

λ

(2L)d


−

Gev
B (xL) +

1
λ

Gev
B (0) +

1
λ

 ≤ 2P((QL
ε,λ)

c) + ε ≤ 3ε. �

Remark 3.11. Clearly for all λ > 0, if

Gev
B (xL) +

1
λ

− 1{0}(xL)

Gev
B (0) +

1
λ

has a limit f (λ) then by Theorem 3.10 we have that F L(xL , λ/(2L)d) has limit f (λ).

Remark 3.12. In discrete time one can show the same results with 2tL instead of t2
L and constantGev

B (xL). As seen in the proof of Lemma 3.5 the key of the proof in discrete time is that two
random walkers cannot meet before a time smaller than half of their initial distance (while this is
possible in continuous time, though it is unlikely that particles at initial distance t2

L meet before
time tL ).

4. Meeting and hitting time of random walks

It is clear that, if Gev
B (xL) has a limit as L goes to infinity, then Theorems 3.9 and 3.10 provide

the limits of F L
S (xL , λ/(2L)d) and F L(xL , λ/(2L)d). The limit of Gev

B (xL) exists for instance
in two particular cases: xL = x for all L sufficiently large, or |xL | → ∞. In the first case clearly
limL→∞ Gev

B (xL) = Gev
B (x). In the second case, Gev

B (xL) converges to 0 by the Dominated
Convergence Theorem.

Proof of Theorem 1.1. We prove the claim in continuous time. The proof in discrete time works
in a similar way.
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1. By Theorem 3.10 we know that for all λ > 0

F L


xL ,
λ

(2L)d


L→∞
→

λGev
B (x) + 1 − λ1{0}(+(x))

λGev
B (0) + 1

. (4.1)

Since for each L , F L is a monotone function of λ and so is the right-hand side of (4.1), which
is also continuous in λ, it follows that (4.1) holds uniformly in λ ≥ 0.

Thus, if x ≠ 0, TL/(2L)d converges in law (with respect to Px,0) to

Gev
B (x)

Gev
B (0)

δ0 +


1 −

Gev
B (x)

Gev
B (0)


exp


1

Gev
B (0)


,

while if x = 0 then it converges to
1 −

1
Gev

B (0)


δ0 +

1
Gev

B (0)
exp


1

Gev
B (0)


.

Then (1.2) holds, and by monotonicity it holds uniformly in t ≥ 0.

2. It follows as in the previous step using the fact that Gev
B (xL) → 0 uniformly in {xL}L such

that |xL | ≥ αL . Indeed Gev
B (xL) =


∞

0 P0
B(X2t = +(xL))dt goes to 0 by the Dominated

Convergence Theorem since P0
B(X2t = +(xL)) ≤ P0

B(X2t = 0) and


∞

0 P0
B(X2t = 0)dt ≤

G B(0) < ∞.

3. By Theorem 3.9 we know that for all n there exists Ln such that P(S : bL
λ (S) ≤ 1/n, ∀λ ∈

[1/n, n]) ≥ 1 − 1/n for all L ≥ Ln . Clearly the sequence {Ln}n≥1 is nondecreasing and for
any L ∈ [Ln, Ln+1) we may define

H L
:= (S : bL

λ (S) ≤ 1/n, ∀λ ∈ [1/n, n]).

By Theorem 3.9 we have that P(H L)
L→∞
→ 1. If for all L we choose S ∈ H L then for all

λ > 0

F L
S


xL ,

λ

(2L)d


L→∞
→

λGev
B (x) + 1

λGev
B (0) + 1

.

This, by an argument as in step 1, proves that

PxL ,0
S


TL

(2L)d > t


L→∞
→


1 −

Gev
B (x)

Gev
B (0)


exp


−

t

Gev
B (0)


,

uniformly in t ≥ 0. Since this convergence holds whenever we choose for all L , S ∈ H L , the
assertion follows.

4. Choosing S ∈ H L as in previous step, uniformly with respect to {xL}L such that either
|xL | ≥ αL or dS(0, xL) ≥ αL we get

PxL ,0
S


TL

(2L)d > t


L→∞
→ exp


−

t

Gev
B (0)


,

uniformly in t ≥ 0. This proves the claim. �

Remark 4.1. Theorem 1.1.4 holds if we fix 0 ∈ Λ(L) and we consider the supremum over all
possible xL ∈ Λ(L) such that dS(xL , 0) ≥ αL . We can repeat the same proof to show that the
result still holds if we take the supremum over all possible pairs (xL , yL) ∈ Λ(L) × Λ(L) such
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that dS(xL , yL) ≥ αL . Namely, let αL > t2
L then for all ε > 0

P


S : sup

(xL ,yL )∈Λ(L)2:dS(xL ,yL )≥αL

PxL ,yL
S


TL

(2L)d > t


− g(t)

 < ε,∀t ≥ 0


L→∞
→ 1.

We observe that the same technique we employed to determine the asymptotic behaviour of
the first encounter time of two random walkers, one starting at xL and the other at 0, may be used
to obtain similar results for the first time that a single random walker starting at xL hits 0.

Theorem 4.2. Let WL be the first time that a random walk starting at xL hits 0 either in discrete
or in continuous time. Then Theorem 1.1 still holds with constant G B(x) instead of Gev

B (x).

Proof. (Discrete time) The proof is analogous to the one of Theorem 1.1 but easier, since we
consider the return time of one single walk. Notice that the constant is the expected number of
visits to 0 of the discrete time random walk on the big world starting at 0.
(Continuous time) A standard approach (for instance use Slutsky theorems) allows us to get the
result starting from the one in discrete time. �

Remark 4.3. As a corollary of Theorems 1.1 and 4.2 one can get a similar convergence result
for random walkers starting from the stationary distribution π . The key is that the initial distance
between the random walk and the origin (respectively between two random walks) is larger than
t2
L with probability which converges to 1 as L goes to infinity, so that we are under hypothesis of

Theorem 1.1 either (2), in the annealed case, or (4) in the quenched one.

5. Coalescing random walk on small world

The goal of this section is to prove a convergence result for coalescing random walk of n
particles on the small world. From now on we work on the continuous time process.

Let I(n) = {{x1, . . . , xn} : xi ∈ Λ(L), xi ≠ x j }. Given A ∈ I(n), let {(X S
t (xi ))t≥0}xi ∈A

be a family of independent random walks on small world S ∈ S L such that X S
0 (xi ) = xi and

transition ruled by PS (recall Definition 2.3). In what follows we will drop the superscript S and
simply write X t (xi ). We define for each (xi , x j ) ∈ Λ(L) × Λ(L) and S ∈ S L

τ(i, j) := inf{s > 0 : X S
s (xi ) = X S

s (x j )}

and for each A ∈ I(n)

τ (A) := inf
{xi ,x j }⊆A

{τ(i, j)}.

Let {ξ S
t (A)}t≥0 be the coalescing random walk starting from A ∈ I(n) on S ∈ S L , that is the

process of n independent random walks subjected to the rule that when two particles reach the
same site they coalesce to one particle. Given a probability measure µ on Λ(L)n , we denote by
Pµ

S the law of the coalescing random walk on S with initial probability µ and transitions ruled
by PS . If µ = δA with |A| = n, we write PA

S .
Let |ξ S

t (A)| be the number of particles of ξ S
t (A) at time t . When not necessary we omit the

dependence on S and we simply write {ξt (A)}t≥0, X t (xi ), τ(i, j) and τ(A).
Kingman’s coalescent is a Markov process (Dt )t≥0 on {0, 1, . . . , n} with transition

mechanism

n → n − 1 at rate
n

2


.
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The law Pn(Dt = k) = qn,k(t) is given by

qn,k(t) =

n−
j=k

(−1) j+k(2 j − 1)( j + k − 2)!


n
j


k!(k − 1)!( j − k)!


n+ j−1

j

 exp


−t


j

2


;

q∞,k(t) =

∞−
j=k

(−1) j+k(2 j − 1)( j + k − 2)!

k!(k − 1)!( j − k)!
exp


−t


j

2


.

See for instance [6,14].
We define

AL(h, n) :=


A ∈ In : d(xi , x j ) > h, for all i ≠ j


(5.1)

AL
S (h, n) :=


A ∈ In : dS(xi , x j ) > h, for all i ≠ j


(5.2)

the set of n-tuples with distance larger than h respectively on Λ(L) and on a fixed small world S.
Notice that AL

S (h, n) ⊆ AL(h, n) for all S ∈ S L . Given A ∈ AL(h, n), we introduce

D(A) :=


S ∈ E L
: A ∈ AL(h, n) \ AL

S (h, n)

. (5.3)

Remember that we focus on the nearest neighbour case, but all results can be extended to the
case with neighbourhood structure given by N ∞

m .
We begin from n particles in A ∈ AL(h, n). We prove that by taking a particular h := hL and

L large we get that A ∈ AL
S (h, n) with large probability. We assume that

(i) hL ≥ t2
L (ii) lim

L→∞

M4hL

(2L)d = 0 (5.4)

where M = (2m + 1)d or M = 2d + 1 depending on the neighbourhood structure we work with.
Note that hypothesis (5.4) are satisfied if hL = t2

L .

Lemma 5.1. If (5.4) holds, for each n < ∞, ε > 0 there exists L such that for each L > L and
A ∈ AL(hL , n),

P (D(A)) < ε.

Proof. Let A ∈ AL(hL , n). If S ∈ D(A), then there exists at least one pair of elements
(xi , x j ) ∈ A × A, i ≠ j , such that dS(xi , x j ) < hL . By (5.3) and (2.5)

P (D(A)) = P


S ∈ E L
: ∃(xi , x j ) ∈ A × A : dS(xi , x j ) ≤ hL


≤ n2 C M4hL

Ld .

Since n is fixed, the claim follows by (5.4)(ii). �

Therefore given A ∈ AL(hL , n) with large probability A ∈ AL
S (hL , n).

By Remark 4.1, if αL ≥ t2
L , there exists a sequence {H L

}L with H L
⊆ S L such that

P(HL)
L→∞
→ 1 and for each sequence {SL

}L with SL
∈ H L

sup
(xL ,yL ):dS(xL ,yL )≥αL

PxL ,yL
S


TL

(2L)d > t


− exp


−

t

Gev
B (0)

 L→∞
→ 0. (5.5)

Note that (5.5) still holds for the sequence {QL
∩ H L

}L and P(QL
∩ HL)

L→∞
→ 1. Let

H L
:= H L

∩ QL .
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The following lemma states that, starting from 4 particles in a set of small world with large
probability, when two particles meet the others are distant.

Lemma 5.2. Assume (5.4). For each ε > 0 there exists L such that for each L > L, S ∈ H L

and A ∈ AL
S (hL , 4),∫

∞

0
PA

S (τ (1, 2) ∈ ds, dS(Xs(x1), Xs(x3)) ≤ hL) < ε, (5.6)∫
∞

0
PA

S (τ (1, 2) ∈ ds, dS(Xs(x3), Xs(x4)) ≤ hL) < ε. (5.7)

Proof. We prove (5.6); (5.7) can be proved in a similar way. We split the integral into two parts.
By Theorem 1.1.4 and by (5.4)(ii), for each ε > 0 there exists L such that for each L > L∫ d

γ
log(2L)

0
PA

S (τ (1, 2) ∈ ds, dS(Xs(x1), Xs(x3)) ≤ hL) ≤

∫ d
γ

log(2L)

0
PA

S (τ (1, 2) ∈ ds)

= 1 − exp


−
d log(2L)

γ Gev
B (0)(2L)d


+ ε/6 < ε/3, (5.8)

where γ is given by (2.7) and does not depend on S since we are choosing S ∈ QL . The second
part is∫

∞

d
γ

log(2L)

PA
S (τ (1, 2) ∈ ds, dS(Xs(x1), Xs(x3)) ≤ hL)

≤

∫
∞

d
γ

log(2L)

−
y∈Λ(L)

PA
S (τ (1, 2) ∈ ds, Xs(x1) = y)

−
z:dS(y,z)≤hL

Px3
S (Xs = z) −

1
(2L)d


+

∫
∞

d
γ

log(2L)

−
y∈Λ(L)

PA
S (τ (1, 2) ∈ ds, Xs(x1) = y)

−
z:dS(y,z)≤hL

1
(2L)d

:= I (1) + I (2).

Since the number of sites z such that dS(y, z) ≤ hL is at most MhL for each y ∈ Λ(L), for each
L large enough we get

I (2) ≤

∫
∞

d
γ

log(2L)

PA
S (τ (1, 2) ∈ ds)

MhL

(2L)d

= Px1,x2
S


TL >

d

γ
log(2L)


MhL

(2L)d ≤ ε/3 (5.9)

by (5.4)(ii). Note that if s ≥
d
γ

log(2L) then e−γ s
≤

1
(2L)d ; therefore by (2.7) then I (1) is smaller

than or equal to∫
∞

d
γ

log(2L)

−
y∈Λ(L)

PA
S (τ (1, 2) ∈ ds, Xs(x1) = y)

−
z:dS(y,z)≤hL

e−γ s

≤

∫
∞

d
γ

log(2L)

−
y∈Λ(L)

PA
S (τ (1, 2) ∈ ds, Xs(x1) = y)

MhL

(2L)d < ε/3 (5.10)

and the claim follows by (5.8)–(5.10). �
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Remark 5.3. Since S ∈ H L , Lemma 5.2 still holds if for all A ∈ AL(hL , n) we choose
S ∈ H L

∩ D(A)c. Moreover, by Lemma 5.1 and (5.5) such a set has probability which converges
to 1 as L goes to infinity.

We prove that the number of particles in the rescaled coalescing random walk converges in
law to the number of particles of a Kingman’s coalescent. A similar approach has been used for
[6, Theorem 5] and in [8].

We work by induction on the number of particles n. If n = 2, the induction basis is given by
Theorem 1.1.4. The following lemma shows that the assertion is true before the first collision of
two particles.

Lemma 5.4. Assume (5.4). For each n ∈ N, T > 0, A ∈ AL(hL , n), and ε > 0 there exists L
such that for each L > L, S ∈ H L

∩ D(A)c and 0 ≤ t ≤ T ,PS

|ξsL t (A)| = n


− exp


−

n

2


t
 < ε

where sL := (2L)d Gev
B (0).

Proof. Note that PS(|ξsL t (A)| = n) and exp

−
 n

2


t


are non-increasing monotone t functions.
We define, for each pair {i, j} ⊆ {1, 2, . . . , n},

Ht (i, j) := {τ(i, j) ≤ sL t}; qt = qt (A) := P(τ (A) ≤ sL t).

For all S ∈ H L
∩ D(A)c,

PA
S (Ht (i, j)) = PA

S (τ = τ(i, j) ≤ sL t)

+

−
{k,l}≠{i, j}

∫ sL t

0
PA

S (τ = τ(k, l) ∈ ds, τ (i, j) ≤ sL t) . (5.11)

Each term of the sum on the right-hand side is equal to∫ sL t

0

−
y,z

PA
S


τ = τ(k, l) ∈ ds, Xs(xi ) = y, Xs(x j ) = z, τ (i, j) ≤ sL t


.

By Lemma 5.2 for all L sufficiently large∫ sL t

0

−
y

−
z:dS(y,z)≤hL

PA
S


τ = τ(k, l) ∈ ds, Xs(xi ) = y, Xs(x j ) = z, τ (i, j) ≤ sL t


≤

∫
∞

0
PA

S


τ = τ(k, l) ∈ ds, dS(Xs(xi ), Xs(x j )) ≤ hL


≤ ε/(8n4) (5.12)

for all choices of S ∈ H L
∩ D(A)c, {i, j} ⊆ {1, . . . , n} and t ≥ 0. We are left with evaluating∫ sL t

0

−
y

−
z:dS(y,z)>hL

PA
S


τ = τ(k, l) ∈ ds, Xs(xi ) = y, Xs(x j ) = z


× Py,z

S (TL ≤ sL t − s) . (5.13)

By Theorem 1.1.2, |Py,z
S (TL ≤ sL t − s) − 1 + exp(−t + s/sL)| < ε/(8n4) for all L sufficiently

large and for all choices of S ∈ H L
∩ D(A)c, y and z such that dS(y, z) ≥ hL , 0 ≤ s ≤ t . Then
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Eq. (5.13) does not differ by more than ε/(4n4) from∫ sL t

0
PA

S (τ = τ(k, l) ∈ ds) (1 − exp(−t + s/sL)) . (5.14)

Indeed the difference between (5.13) and (5.14) is not larger than the sum of (5.12) and∫
∞

0
|Py,z

S (TL ≤ sL t − s) − 1 + exp(−t + s/sL)|PA
S (τ = τ(k, l) ∈ ds),

which is not larger than ε/(8n4) if L is sufficiently large. Integrating by parts and changing
variables, we get∫ sL t

0
PA

S (τ = τ(k, l) ∈ ds) (1 − exp(−t + s/sL))

=

∫ sL t

0
PA

S (τ = τ(k, l) ≤ s)
1
sL

exp (−t + s/sL) ds

=

∫ t

0
PA

S (τ = τ(k, l) ≤ sLu) exp (−(t − u)) du. (5.15)

By Theorem 1.1.2, for all L sufficiently large |PA
S (Ht (i, j) ≤ t) − (1 − e−t )| ≤ ε/(4n2) for all

S ∈ H L
∩ D(A)c, (i, j) ⊆ {1, . . . , n} and t ≥ 0. Summing over all pairs of i and j on (5.11)

and using (5.15)

qt =

−
{i, j}

PA
S (τ = τ(i, j) ≤ sL t)

=

−
i, j

PA
S (Ht (i, j)) −

−
{i, j}

−
{k,l}≠{i, j}

∫ sL t

0
PA

S (τ = τ(k, l) ∈ ds, τ (i, j) ≤ sL t)

=

n

2


(1 − e−t ) −

n

2


− 1


e−t

∫ t

0
qsesds + R

where the modulus of R, for all L sufficiently large for all choices of S ∈ H L
∩ D(A)c, y and z

such that dS(y, z) ≥ hL and for all 0 ≤ t ≤ T is smaller than ε/2. We know (see [8, Lemma 2])
that if

uL(t) =

n

2


(1 − e−t ) −

n

2


− 1


e−t

∫ t

0
uL(s)esds + R

then for L large enough uL(t) does not differ by more than ε/2 from u(t), the solution of

u(t) =

n

2


(1 − e−t ) −

n

2


− 1


e−t

∫ t

0
u(s)esds

which is

u(t) = 1 − exp

−

n

2


t


and the claim follows. �

We are now ready to prove the final result.

Proof of Theorem 1.2. We fix A ∈ AL(hL , n) and we show (1.7) by induction on n. Theo-
rem 1.1 gives the result when n = 2 for all k (that is k = 2) and Lemma 5.4 gives the result for
n and k = n.
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Suppose the result holds for n − 1 for all k. We have to prove it for n and k < n.

PA
S (|ξsL t (A)| < k) =

∫ sL t

0
PA

S (τ ∈ ds, |ξsL t (A)| < k)

=

∫ sL t

0

−
B∈I (n−1)

PA
S (τ ∈ ds, ξs(A) = B)PB

S (|ξsL t−s(B)| < k). (5.16)

Using Lemma 5.2, if B ∉ AL
S (hL , n − 1), for all L sufficiently large∫ sL t

0

−
B∉AL

S (hL ,n−1)

PA
S (τ ∈ ds, ξs(A) = B)PB

S (|ξsL t−s(B)| < k)

≤

−
{i, j}

−
{k,l}≠{i, j}

∫ sL t

0
PA

S (τ (i, j) ∈ ds, dS(Xs(xk), Xs(xl) ≤ hL)) < ε/3

since n is fixed, for each S ∈ H L
∩ D(A)c, t ≥ 0.

Changing variables, setting s = sLv, then (5.16) is equal to∫ t

0

−
B∈AL

S (hL ,n−1)

PA
S (τ ∈ sLdv, ξsLv(A) = B)PB

S (|ξsL (t−v)(B)| < k) + R

where the modulus of R is smaller than ε/3 for all L sufficiently large for all choices of A ∈

AL(hL , n), S ∈ H L
∩ D(A)c, 0 ≤ t ≤ T . By induction hypothesis, for all L sufficiently largePB

S (|ξsL (t−s)(B)| < k) − Pn−1(Dt−s < k)

 < ε/3

for B ∈ AL
S (hL , n − 1) and for each S ∈ H L

∩ D(A)c and 0 ≤ s ≤ t . Thus the last term of the
previous integral differs at most by ε from∫ t

0
PA

S


τ

sL
∈ dv


Pn−1(Dt−v < k) = −

∫ t

0
PA

S


τ

sL
≤ v


d

dv
Pn−1(Dt−v < k)dv

after an integration by parts. Note that v → Pn−1(Dt−v = k) is a continuous function; therefore
by the definition of Kingman’s coalescent and because the right-hand side Pn(Dt < k) is finite,
we get (see [6])

PA
S (|ξsL t (A)| < k) =

k−1−
i=1

∫ t

0

n

2


exp


−

n

2


v


Pn−1(Dt−v = k)dv + R

=

k−1−
i=1

Pn(Dt = k) + R = Pn(Dt < k) + R

where the modulus of R, for all L sufficiently large, for all choices of S ∈ H L
∩ D(A)c and

0 ≤ t ≤ T is smaller than ε. �

Remark 5.5. In Theorem 1.2 we fix A ∈ AL(hL , n) and the result holds in a sequence of small
world graphs depending on A. One can prove that the same result holds for the sequence (H L)L
uniformly in AL

S (hL , n) and S ∈ H L .
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Remark 5.6. By summing over all realizations of the small world graph, one can get the
annealed result as a corollary of Theorem 1.2.
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Appendix. Comparison with the d-dimensional torus

As observed in the Introduction, if we consider the usual neighbourhood structure on Zd , then
the big world is the Cayley graph of Zd

∗Z2. Recall that we are given a transition matrix ∆ which
defines a random walk on Zd and a positive number β which gives the probability of moving in
the Z2 direction on the big world (one moves with probability 1 − β in the Zd component).
In order to compare the asymptotic behaviour of the meeting time of two walkers on the small
world and on the torus, we need to compare Gev

Zd (0) with Gev
B (0). Proposition A.1 gives some

information in this direction.

Proposition A.1. Let d ≥ 3, ∆ be the transition matrix of an adapted, translation invariant
symmetric random walk on Zd and β > 0.

(i) There exists β1 > 0 such that Gev
Zd (0) < Gev

B (0) for each β ∈ [β1, 1].
(ii) There exists β2 > 0 such that Gev

Zd (0) > Gev
B (0) for each β ∈ (0, β2].

Proof. Since Gev
B (0) = G B(0)/2 (we defined G B(0) in Section 2.2) and Gev

Zd (0) = GZd (0)/2
(where GZd (0) is the expected time spent at 0 by the walk on Zd ), we prove that GZd (0) is
smaller (respectively larger) than G B(0) for β large (respectively small) enough.

(i) Since P0
B(X2n = 0) ≥ β2n (note that one possible trajectory of the walk is the one which

from 0 takes the long range edge and back n times) we get

G B(0) ≥

∞∑
n=0

β2n
=

1
1−β2

and the claim follows by taking β close to 1 since GZd (0) < ∞ if d ≥ 3.
(ii) Let G be the Green function of the Markov chain Y on Zd which has transition matrix ∆,

and F be the generating function of its first time returns

G(z) =

∞−
n=0

P0(Yn = 0)zn
; F(z) =

∞−
n=0

P0(Yn = 0, Yk ≠ 0 for all k < n)zn .

Note that G(1) = GZd (0). By [16, Proposition 9.10], there exists r > 0 and a function Φ(·) such
that G(z) = Φ(zG(z)), z ∈ [0, r). (A.1)

Moreover, Φ ∈ C 2 and it is strictly increasing and strictly convex.
Let P be the transition matrix on the big world. We denote by ΦZd∗Z2

, ΦZd and ΦZ2 the
functions which satisfy (A.1) respectively for the Markov chains X on the big world, Y on Zd
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and the simple random walk on Z2. The function ΦZ2(t) can be computed explicitly,

ΦZ2(t) =
1
2


1 +


1 + 4t2


.

By [16, Theorem 9.19]

ΦZd∗Z2
(t) =

1
2


1 +


1 + 4β2t2


+ ΦZd ((1 − β)t) − 1. (A.2)

We denote by Gβ = GZd∗Z2
(1) = G B(0), and by G = GZd (1) = GZd (0). Note that, by (A.1)Gβ is a fixed point of ΦZd∗Z2
, while G is a fixed point of ΦZd . We write (A.2) with t = Gβ :

Gβ = −
1
2

+
1
2


1 + 4β2G2

β + ΦZd ((1 − β)Gβ). (A.3)

Our goal is to write the second member of (A.3) in a neighbourhood of β = 0, as a function
of G.

We note that limβ→0 Gβ = G: to prove this denote by X and Y the random walks on Zd
∗ Z2

and on Zd respectively, both starting from the identity 0 of the group. Then, since every trajectory
from 0 to 0 on Zd

∗ Z2 projects onto a trajectory from 0 to 0 in Zd , we have

P(X2n = 0) ≤

n−
k=0

P(Y2n−2k = 0)β2k .

Recognizing in the second term the general term of the product of two series, we get

Gβ =

∞−
n=0

P(X2n = 0) ≤

∞−
n=0

P(Y2n = 0)

∞−
k=0

β2k
=

G
1 − β2 ,

whence lim supβ→0
Gβ ≤ G.

Let Am be the event that the trajectory of X up to step 2m lies entirely in the first copy of Zd :
for all m

Gβ ≥

m−
n=0

P(X2n = 0) =

m−
n=0

P(X2n = 0|Am)(1 − β)2m

+

m−
n=0

P(X2n = 0|Ac
m)(1 − (1 − β)2m).

Note that
∑m

n=0 P(X2n = 0|Ac
m) ≤ m, thus for all m,

lim inf
β→0

Gβ ≥ lim inf
β→0

m−
n=0

P(X2n = 0|Am) =

m−
n=0

P(Y2n = 0),

and lim infβ→0 Gβ ≥ G.
Notice that as β → 0

1 + 4β2G2
β = 1 + 2β2G2

β + o(β3G3
β)

and by the Taylor expansion of ΦZd centered at G with the Lagrange form of the remainder:

ΦZd ((1 − β)Gβ) = G + Φ′

Zd (G)

(1 − β)Gβ − G+

1
2
Φ′′

Zd (y)(y − G)2,
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where y is between G and (1 − β)Gβ . Two useful formulas for Φ′ and Φ′′ can be found in
[16, p. 99]:

Φ′(t) = 1/(z + G(z)/G ′(z)), Φ′′(t) = (G(z)/(G(z) + zG ′(z)))3F ′′(z),

where z is such that t = zG(z). If t = G then

Φ′

Zd (G) =

G ′G ′ + G , Φ′′

Zd (G) =

 GG + G ′

3 F ′′(1),

where G ′
=

d
dz
GZd (z)|z=1− . Therefore we may write (A.3) as

Gβ − G = β2G2
β +

G ′G ′ + G Gβ − G − βGβ


+

1
2
Φ′′

Zd (y)(y − G)2
+ o(β3G3

β).

Since (y − G)2
≤ (Gβ − G − βGβ)2 we get

(Gβ − G)
GG ′ + G ≤ β2G2

β − βGβ

G ′G ′ + G
+

1
2
Φ′′

Zd (y)

(Gβ − G)2

+ β2G2
β − 2βGβ(Gβ − G) + o(β3G3

β)

.

Thus

(Gβ − G)

 GG ′ + G + Φ′′

Zd (y)βGβ −
1
2
Φ′′

Zd (y)(Gβ − G)



≤ −βGβ

 G ′G ′ + G + βGβ(1 +
1
2
Φ′′

Zd (y) + o(βGβ))


.

Note that by convexity Φ′′ > 0, and by continuity we get that Φ′′

Zd (y)
β→0
→ Φ′′

Zd (
G) > 0. Then

the coefficient of (Gβ − G) on the left-hand side is strictly positive when β is small; while the
coefficient of βGβ on the right-hand side is strictly negative when β is small. Whence Gβ − G
has to be negative for β sufficiently small and the claim follows. �
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