Macrophages are a type of white blood cells that play key roles in host defense by recognizing and engulfing foreign and apoptotic bodies. To accomplish this task, they rely on complex molecular interactions involving both lipids and proteins. Previous studies have shown that surface exposure of phosphatidylserine by apoptotic cells is required for their successful clearance, suggesting specific lipid-protein interactions at least for the initiation of phagocytosis of apoptotic cells. However, macrophages can engulf foreign and apoptotic bodies that substantially vary in size suggesting that non-specific interactions over a range of length scales may be relevant. The purpose of our study is to investigate the correlation between physical properties of lipid bilayers and their engulfment by macrophages. We modify bilayer properties systematically as a function of phospholipid headgroup composition and by addition of ceramide and cholesterol. We use a combination of scattering and spectroscopic methods to quantify lipid interactions and flow cytometry to measure engulfment rates. This study can help distinguish between the role of lipids and proteins in clearance of apoptotic and foreign particles.

Mentor: Horia I. Petrache, Department of Physics, Indiana University Purdue University Indianapolis Funding from NSF Undergraduate Research and Mentoring in Biological Sciences Program is gratefully acknowledged.

2658-Pos Board B350
Availability of PIP$_3$ at the Plasma Membrane Regulates Secretion in PC12 Cells

David Richards.

Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH, USA.

The phosphoinositide PIP$_2$ has long been implicated in secretion; however despite the demonstration of high affinity binding between synaptotagmin and PIP$_2$, the role of the latter in secretion has received little attention. We have investigated this question using two complementary approaches; expression of PIP$_2$ or PIP$_3$ targeting Pleckstrin Homology (PH) domains, and up or down regulation of the PIP$_3$ dephosphorylating enzyme PTEN (Phosphatase and TENSin homolog). The PH-domain of GRP1 (General receptor for phosho-inositides), which we show to have high specificity for PIP$_3$, is equally as effective at inhibiting secretion as the PH domain of phospholipase C delta 1, which is generally accepted as binding to PIP$_2$. Using super-resolution Stochastic Optical Reconstruction Microscopy we have shown that PIP$_2$ and PIP$_3$ clusters do not colocalize, and find that PIP$_3$ clusters, but not PIP$_2$ clusters, are reduced in number by over expression of PTEN (Phosphatase and TENSin homolog). Analysis of single vesicle rates of secretion with TIRF (Total Internal Reflection Fluorescence) microscopy shows a correlation between secretion rates and cellular PTEN content. These results implicate PIP$_3$ in the secretory machinery, and may illuminate some of the neurological impacts of PTEN mutations, such as epilepsy and Autism Spectrum Disorders.

2659-Pos Board B351
Comparison of Three Algorithms for Detection of Amperometric Spikes Resulting from Quantal Exocytosis

Supriya Balaji Ramachandran1, Kevin D. Gillis2.

1Bio-Engineering, Univ Of Missouri Columbia, Columbia, MO, USA.

The role of the latter in secretion has received little attention. We have investigated this question using two complementary approaches; expression of PIP$_2$ or PIP$_3$ targeting Pleckstrin Homology (PH) domains, and up or down regulation of the PIP$_3$ dephosphorylating enzyme PTEN (Phosphatase and TENSin homolog). The PH-domain of GRP1 (General receptor for phospho-inositides), which we show to have high specificity for PIP$_3$, is equally as effective at inhibiting secretion as the PH domain of phospholipase C delta 1, which is generally accepted as binding to PIP$_2$. Using super-resolution Stochastic Optical Reconstruction Microscopy we have shown that PIP$_2$ and PIP$_3$ clusters do not colocalize, and find that PIP$_3$ clusters, but not PIP$_2$ clusters, are reduced in number by over expression of PTEN (Phosphatase and TENSin homolog). Analysis of single vesicle rates of secretion with TIRF (Total Internal Reflection Fluorescence) microscopy shows a correlation between secretion rates and cellular PTEN content. These results implicate PIP$_3$ in the secretory machinery, and may illuminate some of the neurological impacts of PTEN mutations, such as epilepsy and Autism Spectrum Disorders.

2660-Pos Board B352
NeuroSensor 521: A Fluorescent Sensor for Selective Labeling of Norepinephrine-Containing Vesicles

Xin A. Liu1, Kenneth S. Hettie1, Kevin D. Gillis1, Timothy E. Glass2.

1Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA, 2Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA, 3Biological Engineering, University of Missouri-Columbia, Columbia, MO, USA.

We have developed a novel fluorescence-based turn-on molecular sensor (NeuroSensor 521) that selectively binds to primary amines via iminium ion formation. The fluorescence increases >5-fold upon binding norepinephrine and is accompanied by a red shift in the absorption maximum from 448 to 488 nm. Norepinephrine and dopamine bind with a ~10-fold higher affinity (~10 nM) than other alkyl amines such as glycine, but secondary amines such as epinephrine do not have a measurable binding affinity. We used confocal microscopy to image chromaffin cells labeled with NS521. Chromaffin cells were separated into norepinephrine-enriched and epinephrine-enriched fractions by centrifugation on a Percoll gradient. The norepinephrine-enriched cell population shows strong, punctate fluorescence compared to the epinephrine-enriched cell population, which exhibits only marginal fluorescence. To further validate the selective labeling of norepinephrine-containing vesicles, we labeled fixed cells using an antibody against phenylethanolamine N-methyltransferase (PNMT). The NE-enriched cell population stains brightly with NS521 and weakly with the fluorescent PNMT secondary antibody while the opposite is true for the EP-enriched cell population. Next, we used Total Internal Reflection Fluorescence Microscopy (TIRFM) to image the bottom surface of chromaffin cells loaded with NS521. Clear punctate fluorescence consistent with labeling of individual norepinephrine-containing granules is observed. We conclude that NeuroSensor 521 represents a convenient method to selectively stain norepinephrine and dopamine in neurosecretory vesicles. Supported by the NSF (CHE-1112194) and the NIH (R43 MH096650).

2661-Pos Board B353
Darkfield Imaging of Platelet Cytoskeleton-Granule Interactions

Solation Fickenstaedt-Quinn, Christy L. Haynes.

Chemistry, University of Minnesota, Minneapolis, MN, USA.

Platelets play a major role in clot formation during hemostasis; however, one of their primary roles, activation, is still poorly understood. When circulating platelets encounter a breach in a vessel wall or certain signaling molecules, such as thrombin or calcium, they begin to activate. Activation is a multivariate process including the release of granular contents and a rearrangement of the cytoskeleton. To obtain a better fundamental understanding of platelet activation, the interplay between these two processes should be investigated. Live platelets are difficult to image due to their small size and tendency to activate when disrupted (i.e. by attempting to permeabilize the membrane to allow fluorescent molecule access). Fluorescence imaging is further complicated by the fact that platelets do not contain a nucleus, preventing transfection with plasmids that encode fluorescently tagged proteins. This work overcomes these challenges by using darkfield microscopy to image platelets during activation. Darkfield microscopy results in bright, defined images of platelets without exogenous labels. In addition, platelet granules can be tracked using darkfield. Finally, platelet membrane components can be fluorescently labeled and combined with the darkfield imaging for co-localization studies.

2662-Pos Board B354
Direct Measurement of Secretory Vesicle-Plasma Membrane Tethering Interactions by Correlating AFM Force-Clamp and TIRF Microscopy

Mark C. Harris1, Christopher Umbach2, Manfred Lindau3.

1Applied and Engineering Physics, Cornell University, Ithaca, NY, USA, 2Materials Science & Engineering, Cornell University, Ithaca, NY, USA.

The molecular mechanisms behind the tethering of secretory vesicles to the plasma membrane are not well understood. To study these mechanisms, we use a combined AFM/TIRF method applying forces to GFP-tagged secretory granules tethered to PC-12 cell membrane sheets. In the experiment shown in the figure, the AFM tip captured a granule, and was then lowered onto the sheet (a-b). Pulling forces were applied, ranging from ~ 100 pN to ~ 700 pN (c-e). Extension and rupture events are apparent as transient variations in the