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Expression signatures that correlated with Gleason score and
relapse in prostate cancer
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Abstract

Predicting prognosis in prostate carcinoma remains a challenge when using clinical and pathologic criteria only. We used an array-based
DASL® assay to identify molecular signatures for predicting prostate cancer relapse in formalin-fixed, paraffin-embedded (FFPE) prostate
cancers, through gene expression profiling of 512 prioritized genes. Of the 71 patients that we analyzed, all but 3 had no evidence of residual
tumor (defined as negative surgical margins) following radical prostatectomy and no patient received adjuvant therapy following surgery. All of
the 71 patients had an undetectable serum PSA following radical prostatectomy. Follow-up period was 44±15 months. Highly reproducible gene
expression patterns were obtained with these samples (average R2=0.99). We identified a panel of 11 genes that correlated positively and 5 genes
that correlated negatively with Gleason grade. A gene expression score (GEX) was derived from the expression levels of the 16 genes. We
assessed the prognostic value of these genes and found the GEX significantly correlated with disease relapse (p=0.007). These results suggest that
the approach we used is effective for expression profiling in heterogeneous FFPE tissues for cancer diagnosis/prognosis biomarker discovery and
validation.
© 2007 Elsevier Inc. All rights reserved.
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Progress in treating prostate cancer has been hampered by the
finding that histologically identical cancers exhibit widely
variant clinical behavior. The uncertainty regarding the appro-
priate clinical management of prostate cancer in many patients is
related to an incomplete and unclear understanding of the
molecular and genetic changes involved in prostate cancer
development and disease progression. Since 1988, the routine
use of serum PSA testing in men at risk for prostate cancer has
led to more favorable disease characteristics at presentation
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(stage migration) [1] and earlier diagnosis and treatment [2].
Several investigators [3–5] have used these clinical parameters
to stratify patients into risk groups (low, intermediate, high) and
to predict clinical outcomes (nomograms). Despite these useful
parameters, approximately 30% of patients with intermediate-
risk prostate cancer fail standard treatment as evidenced by a
rising serum PSA following definitive therapy. A better
understanding of the molecular abnormalities that define these
tumors at high risk for relapse is needed to help identify more
precise biomarkers.

Comparison of gene expression patterns in different cell
types, developmental stages, and disease states should enable
the discovery of characteristic gene expression patterns that can
be associated with functionally important states. Microarray-
based tumor classification [6–9], as well as treatment response
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and clinical outcome prediction [10–12], has been demonstrated
in many cancer types. Specifically, gene expression profiling
has been used to assess a patient's risk of failing therapy or to
distinguish healthy prostate, benign prostatic hyperplasia,
localized prostate cancer, and metastatic prostate cancer [10,
13–15]. These studies have demonstrated the feasibility of
combining large-scale gene expression profiling with classic
morphologic and clinical methods of staging and grading cancer
for better diagnosis and outcome prediction [16–19].

Current microarray technologies typically require snap-
frozen tissue. However, there is a vast supply of formalin-
fixed, paraffin-embedded (FFPE) tissues for which clinical
outcome is already known, and this makes them the most
widely available sample source for prognosis studies [20–22].
The ability to analyze gene expression in archived tissues will
greatly facilitate research in correlating gene expression profiles
with given disease states, or histological and clinical pheno-
types, and eventually in developing biomarkers for therapeutic
decision making. This will also be useful for future clinical test
development, as FFPE sample collection and storage is an easy
and routine practice in most pathology laboratories.

In this study, we used an array-based DASL (cDNA-
mediated annealing, selection, extension, and ligation) assay
[50,51] to profile 512 candidate genes in 71 archived FFPE
prostate carcinomas and identified a small set of genes whose
expression patterns correlate highly with Gleason scores in the
patients and are predictive of disease relapse. This approach has
the potential to allow genomic analysis in patients with
established clinical prostate cancer disease to predict disease
outcomes.

Results

Gene expression profiling reproducibility

All the RNA samples assayed in this study were extracted
from FFPE tissues. Two independent DASL assays were
performed for each RNA sample; each used 200 ng total
RNA [23]. To prequalify RNA samples prior to array analysis,
we used a real-time PCR-based method to assess the intactness
of the RNA samples. We find this approach more effective than
using a combination of RNA quantitation and a gel-based size
Fig. 1. Sample QC (by qPCR) and array data quality assessment. Ct was measured
represents the correlation between replicate DASL assays for the same cDNA run in p
have an up to 8-cycle difference in qPCR (i.e.,∼170-fold difference in “PCR-able” R
analysis by qPCR, using a Ct number of 28 as the cutoff.
analysis. Specifically, 1 μl of the cDNA reactions was taken for
a real-time PCR analysis of the housekeeping gene RPL13A.
Highly reproducible gene expression profiles were obtained for
the replicates of each FFPE sample (R2 =0.99), even though a
wide range of RNA degradation was detected in these samples
that had an up to 8-cycle difference in qPCR (i.e., ∼170-fold
difference in “PCR-able” RNA input) for the RPL13A gene
(Fig. 1). We determined that samples should not exhibit a Ct of
more than 28 cycles under these conditions to ensure a
reasonable expectation of reliable data in the DASL assay. In
addition, similar expression profiles were obtained with 36 pairs
of RNAs extracted independent of separate cuts of the same
paraffin tissue blocks (average R2 =0.93) (data not shown). RT-
PCR was performed to confirm some of the array results [24].

Correlation between gene expression signature and Gleason
score

In the interest of having the tissue samples mimicking
clinical situation as much as possible, we chose 71 tumors with
various Gleason grades. Some tumors have uniformly one
grade, while others have a primary and a secondary grade. The
tumors with one grade were counted twice to comprise a
Gleason score (i.e., Gleason grades 3+3=Gleason score 6).
Gleason scores of two primary tumor patterns were the sum of
the two Gleason grades (i.e., primary Gleason grade 4 and
secondary Gleason grade 3 would have a Gleason score of 7).
We used samples that contained at least 10% of the tumors as a
cutoff for eligibility for DASL analysis.

We found differential gene expression of tumor samples with
various Gleason grades, thus contributing to different clinical
outcomes within the groups. We first identified genes that were
either positively or negatively correlated with Gleason summary
score (GS), using a permutation method (see Materials and
methods for details), and generated a panel of 11 positively
correlated genes, CCNE2, CDC6, FBP1, HOXC6, MKI67,
MYBL2, PTTG1, DTL, UBE2C, WNT5A, and ALCAM, and 5
negatively correlated genes, AZGP1, CCK, MYLK, PPAP2B,
and PROK1. Based on the expression profiles of these16 genes,
a gene expression score (GEX; an expression analogy of
Gleason grade) was calculated (see Materials and methods). The
GEX had better correlation (r=0.63) with Gleason summary
for a 90-bp amplicon from the RPL13A gene using SYBR green detection. R2

arallel. Highly reproducible gene expression data are obtained with samples that
NA input) for a housekeeping gene, RPL13A. Samples are prequalified for array



Fig. 2. Correlation between gene expression signature and Gleason score. 5-N,
6-N, 7-N, and 8-N correspond respectively to patient groups with Gleason score
of 5–8 without relapse. 6-Y, 7-Y, 8-Y, and 9-Y correspond respectively to patient
groups with Gleason score of 6–9 with relapse.
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score than did correlation of any individual gene (Fig. 2). The
Pearson correlation coefficient between gene expression and
Gleason score and the p value calculated from the permutation
test are listed in Table 1. The 16 genes can be classified into
several groups based on their biological functions: (1)
proliferation, MKI67, MYBL2, WNT5A, PTTG1, AZGP1,
and PROK1; (2) cell cycle, CCNE2 (cyclin E2), CDC6, MKI67,
MYBL2, PTTG1, UBE2C; (3) differentiation, HOXC6,
WNT5A; (4) cell adhesion, ALCAM, AZGP1, and MYLK;
(5) signal transduction, WNT5A, CCK, MYLK, and UBE2C;
(6) basic metabolism, FBP1, AZGP1, PPAP2B, and DTL (a
protease).
Table 1
Sixteen genes that positively or negatively correlated with Gleason score and
tumor content

Gene ID Correlation coefficient
(Gleason score)

p value
(Gleason score)

Correlation coefficient
(tumor content)

CCNE2 0.36426 9.00×10−4 0.1026
CDC6 0.37274 2.00×10−4 0.3085
FBP1 0.33746 1.30×10−3 0.5266
HOXC6 0.50382 0.00 0.7511
MKI67 0.39223 0.00 0.5582
MYBL2 0.37886 0.00 0.3844
PTTG1 0.38212 4.00×10−4 0.2837
DTL 0.44857 0.00 0.2572
UBE2C 0.32517 1.10×10−3 0.3127
WNT5A 0.39458 4.00×10−4 0.1126
ALCAM 0.35123 1.40×10−3 0.5657
AZGP1 −0.35498 2.00×10−4 −0.2011
CCK −0.34259 9.00×10−4 −0.2737
MYLK −0.34564 7.00×10−4 −0.2950
PPAP2B −0.35176 8.00×10−4 −0.2800
PROK1 −0.36189 7.00×10−4 −0.3048
Gene expression profiles in tumor versus nontumor samples

To find out whether the GEX was significantly different in
tumor versus nontumor samples, we profiled a total of 126
samples of FFPE cancer (N=79) and noncancer (N=47)
prostate tissues. “Cancer” sections included 10–90% adeno-
carcinoma in the block. The mean GEX on the cancer tissues
was 7.38±0.35 and the GEX on noncancer prostate tissues was
7.2±0.16 (p=0.0013), indicating that the GEX significantly
correlated with the diagnostic tissues of cancer versus benign
prostate tissues.

Gene expression profiles to predict relapse of prostate cancer

We assessed the prognostic value of the 16 GS-correlated
genes. As shown in Fig. 3, there was a good correlation between
the GEX and relapse and a near-linear increase in percentage of
relapse cases with GEX between 7 and 7.6 (Fig. 3). For
instance, when GEX was 7.4, approximately 75% of the cases
relapsed. When the GEX reached 7.8, 100% of the cases
relapsed. It is worth noting that the average GEX was 7.2 for
GS7 patients without relapse and 7.4 for GS7 patients who
relapsed, corresponding to 20 and 75% of the chance of relapse,
respectively.

The receiver operating characteristic (ROC) curve showed
that the 16-gene expression signature was more predictive of
relapse than Gleason score (Fig. 4A). The GEX had an AUC
(area under the curve) of 0.73, which was better than the
Gleason score with an AUC of 0.65. Particularly, the GEX
improved the relapse prediction in patients with a Gleason score
of 7 (see Fig. 2).

Patients that experienced relapse tended to have higher
GEX despite having identical Gleason scores. The most
pronounced difference was observed in GS7 patients (two-
sided t test p=0.005, GS7-Y compared to GS7-N, Fig. 2). The
GEX, when divided among the groups of GEX>7.3 and
GEX≤7.3 (cutoff was chosen as median GEX for GS7 and
GS8 samples), had a significant correlation with subsequent
Fig. 3. Plot of percentage of relapse cases vs the GEX.



Fig. 4. Relapse prediction based on Gleason score and expression signature
(GEX). (A) ROC curve. False positive is defined as a case with no relapse, but
high score. The solid line shows the performance of GEX and the dotted line
shows the performance of Gleason score. (B) Kaplan-Meier analysis of relapse
(N=71). x axis, time to relapse (months); y axis, probability of relapse.
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relapse in the Kaplan–Meier analysis (Fig. 4B, p=0.007).
Among the GS7 patients, 1/21 of GS 3+4 and 4/11 of GS 4+3
relapsed (Fisher exact test p=0.037). The mean GEXs were
7.236 and 7.305 for the two groups, respectively (p=0.071 for
hypothesis testing increased GEX for 4+3 patients). GS alone
was associated with relapse versus no relapse (p=0.02).
Neither the tumor stage nor the risk groups assigned at the
time of biopsy significantly correlated with relapse (Kaplan–
Meier analysis, p=0.07 and 0.1, respectively).

We considered only samples (N=71: 55 without relapse and
16 with relapse) with no residual tumor after surgery, with the
exception of three cases that had nondetectable serum PSA after
surgery but had positive margins, and excluded patients who
received therapy and had no relapse. Therefore, the lack of
relapse could not be due to selective therapies but the under-
lying biological difference among these patients.

GEX of the 34 matched, nontumor prostate tissues generated
a mean of 7.19±0.18, lower than that in their tumor counterparts
(7.25±0.25). However, the GEX on nontumor tissue of patients
appeared to correlate with relapse by Kaplan–Meier analysis
(p=0.04), although not as significantly as the tumor itself.

Discussion

In the past few years, numerous genome-wide gene ex-
pression profiling studies have been conducted in prostate
cancers [8,10,13–15,25–38]. Specific gene-expression signa-
tures have been identified for prostate cancer subclasses
[26,30,32,38], cancer stages and Gleason score [35,37], and
clinical outcomes [13–15,27,28,31,35]. In addition, the gene
expression patterns further divided the prostate cancer into
subgroups that correlated with the degree of tumor differentia-
tion as well as patient survival [25,29,35]. However, it is no
surprise that there have been significant differences among the
molecular signatures identified in these studies, due to different
sample sets (and sample quality), different array platforms or
content, or different data analysis processes.

Biomarkers derived from multiple analyses on multiple
microarray datasets clearly do not provide the level of con-
firmation necessary to translate into clinical utility. Using
different methods on different samples is considered an ex-
cellent way to provide validation and to translate into broader
clinical impact [9,17,18,39–41].

In this study, we took a candidate gene approach to identify
genes that strongly correlated with Gleason score and the state
of tumor differentiation and then used the expression signature
to predict disease relapse. The candidate genes we profiled were
largely selected from publicly reported lists of genes differen-
tially expressed in prostate cancer. Therefore, our work in a way
served as an independent validation for some of the previous
studies. We selected FFPE tissue samples for study because of
the abundant availability of archived material in a pathology
laboratory with known long-term clinical outcome information.
This study demonstrated that the DASL assay can overcome the
challenge of analyzing small amounts of RNA isolated from
clinical samples. The expression profiles generated appeared to
be highly reproducible. The throughput and automated nature of
the process made it a potential methodology for future clinical
use.

In this study, we first identified 16 genes that strongly cor-
related with Gleason grade from samples of wide ranges of
tumor enrichment (10–90%). One would argue that the tumor-
specific expression signal should vary with the tumor content
(among these samples). In fact, the expression level of 1 of the 16
genes (HOXC6) had a strong correlation with the tumor content
in the samples (Table 1). However, there may be multiple factors
that contribute to the Gleason grade of the tumor at the molecular
level, such as stroma–tumor interactions. We believe the
expression profiles of the 16 genes reflect contributions from
both tumor cells and their environments; it is quite possible that
nontumor cells may also contribute to the Gleason grade (please
see below for more discussion). Moreover, combining the 16
genes together provides a balanced measurement of many
different molecular contributions related to Gleason grade,
including the tumor content.



Table 2
Patient demographics

Mean age (years) 68.9 (55–81)
Mean PSA (ng/ml) 8.1 (1.76–24.03)
Months follow-up 43.9±15 (6–84)
Biopsy risk group (n)
Low 29
Intermediate 26
High 16

Gleason Score Distribution
5 2
6 9
7 31
8 26
9 3

Relapse
No 55
Yes 16

Survival
Alive 60
Dead 11

AJCC TNM stage
I 0
II 53
III 15
IV 3

670 M. Bibikova et al. / Genomics 89 (2007) 666–672
The GEX derived from the expression levels of the 16 genes
was used to predict relapse of prostate cancer. It is worth
pointing out that there was no “training/fitting” made toward
their prognostic power at the gene selection step. Making
continuous analogy of Gleason grade increased molecular
resolution, especially at GS=7–8, with which we can stratify
patients better based on their gene expression profiles (Fig. 2);
in turn, this translates to a good predictor of relapse for prostate
cancer (Fig. 4).

Interestingly, the GEX exhibited a nonlinear pattern, in
which the expression signature score stayed flat when GS<7
and started rising at GS=7 and plateaued at GS=9 (Fig. 2). This
suggests that there may be three distinct molecular stages
among the prostate cancer patients, and this may have
corresponded to Gleason scores 6, 7, and 8, respectively.
GEX profiles can potentially identify a subset of histologically
intermediate-grade tumors that have more aggressive clinical
behavior, i.e., to separate out GS7 patients who were more
likely to relapse.

The 16-gene signature may provide insight into the under-
lying molecular mechanisms that regulate the tumorigenesis
and metastases in prostate cancer. For example, MKI67 is a
known proliferation marker for prostate cancer [42] and other
cancer types [43,44]. Activation of the Wnt signaling cascade
associated with increased expression of WNT5Awas suggested
as a signature pathway of the early stage poor-prognosis
subtype of human prostate cancer [28]. HOXC6 was identified
previously as a good marker for prediction of prostate cancer
patient outcome [35]. In our study, we found HOXC6 highly
correlated with tumor content (Table 1). UBE2C is a cell cycle
gene that promotes cell growth and malignant transformation.
ALCAM plays an important role in progression of prostate
cancer [45].

We also calculated the GEX in the “matched” nontumor
prostate tissues in the same population. The GEXs were lower
than those seen in the tumor glands but the scores had statistically
significant correlation with disease relapse (p=0.04). However,
the statistical significance was much less than the GEX in the
tumor glands (p=0.007). It is possible that the most robust
signals generated by GEX came from the tumor glands.
However, it is highly plausible that the stromal signals also
contributed to the overall GEX. Additional prospective clinical
trials are needed to test whether nontumor stromawould generate
signals that can predict relapse, i.e., the possibility of using small
samples such as using LCM in needle biopsies, with or without
tumor glands, to assess prognostic outcomes prior to definitive
therapy.

The sensitivity and specificity of the 16 gene markers remain
to be validated in another independent cohort and prospectively
in clinical trials in which patients undergo prostate needle
biopsy for diagnosis of carcinoma. We anticipate that this test
would give us the information on diagnosis as well as prognosis
through needle biopsy samples. The ultimate goal of this study
is to develop a mature diagnostic test that is technically simple
and applicable for routine clinical use and eventually
incorporate it into existing prostate cancer nomograms
[40,46,47].
Materials and methods

Tissue selection and RNA extraction

Surgically removed radical prostatectomy specimens were processed under
routine pathological protocol and examined by at least two pathologists. We
obtained approval of UCSD IRB (No. 040487X) to study patients' existing
tissue materials and review of pertinent medical records. A study number was
assigned to the specimen and the patient identification information (names and
hospital identification number) was also recorded at the time of specimen
retrieval. The specimens were received in the pathology laboratory fresh
within 45 min of removal and fixed in 10% buffered formalin overnight.
Representative sections were submitted for tissue processing and paraffin
embedding. Five-micrometer-thick sections were made for routine hematox-
ylin and eosin stains. Specific tissue blocks that included areas of carcinoma
and nearby noncancerous tissue were selected for RNA extraction. Tumor
blocks from each case were chosen if they contained the predominant tumor
grade and the most tumor volume. Each tissue block was reviewed by one of
the authors, who is a board certified pathologist (J.W.R.), and co-authors
(J.M., M.K., and A.A.) who were urology residents. Gleason grade and score
were assigned to each tissue block containing the tumor, and the percentage of
tumor content was estimated and used as a reference for gene expression
pattern analysis. RNA was extracted from four or five 5-μm sections using an
RNA extraction kit (Roche High Pure RNA Paraffin kit), yielding 0.5–3 μg of
total RNA. RNA quality was assessed by quantitative RT-PCR analysis of the
housekeeping gene RPL13A (forward primer, GTACGCTGTGAAGGCAT-
CAA, and reverse primer, GTTGGTGTTCATCCGCTTG).

Only tissue samples that yielded sufficient quantities and qualities of RNA
were entered into the study. Samples were excluded if (1) the RNA was too
degraded for study, (2) the block was less than 10% tumor, (3) the patient had a
positive surgical resection margin and the patient's postoperative PSA never
nadired to below detectable level, or (4) the patient was treated with other
adjunctive therapy. From the year 1998 to 2000, 71 of 150 cancer samples met
above selection criteria and were entered into this study (Table 2). Three cases
with positive margins were included in this cohort because their postoperative
PSA nadired to undetectable levels; they were believed to be tumor free after
the definitive resection. The patients were stratified into three clinical risk
groups. Low-risk group patients (n=29) had a serum PSA≤10 ng/ml, Gleason
summary score ≤6, and a digital rectal examination (DRE) of cT1c/cT2a.
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Intermediate-risk group patients (n=26) had a serum PSA 10–20 ng/ml,
Gleason summary score of 7, and DRE of cT2b/cT2c. The high-risk group
patients (n=16) had a serum PSA >20 ng/ml, Gleason summary score of
8–10, and DRE of cT3a/cT3b. All tumor blocks contained at least 10%
malignant glands. In addition, 34 matched, adjacent nontumor prostate tissues
from the same cohort were used as the patients' own baseline controls. These
tissues were composed of inflammation, stroma, benign glandular hyperplasia,
and glandular atrophy. As truly benign prostate controls, an additional 13
noncancer prostates were used. They were from patients with benign prostate
hyperplasia.

We had 6–84 months follow-up on the study patients. Information relevant
to the patient's diagnosis was obtained (Table 2), which included, but was not
limited to, age, ethnicity, serum PSA at the time of surgery, tumor localization,
pertinent past medical history related to comorbidity, other oncological history,
family history of cancer, physical exam findings, radiological findings, biopsy
date, biopsy result, type of operation performed (radical retropubic or radical
perineal prostatectomy), TNM staging, neoadjuvant therapy (i.e., chemotherapy,
hormones), adjuvant or salvage radiotherapy, hormonal therapy for a rising PSA
(biochemical disease relapse), local vs distant disease recurrence, and survival
outcome.

PSA recurrence was defined as two consecutive increasing PSA values of
more than 1.0 ng/ml and differing by more than 0.2 ng/ml to avoid scoring
PSA failure from PSA increase due to testosterone rebound, which can occur
after the AST is discontinued. Before PSA recurrence, patients had a serum
PSA measurement and an annual digital rectal examination at a median of
every 4–6 months. After PSA recurrence, the serum PSA level was measured
at a median of 3 months (range, 1 to 6 months).

Gene selection

In this study, we took a candidate gene approach. Instead of performing
whole genome expression profiling, we focused on a set of “informative” genes
that are the most relevant to prostate cancer (and other cancer types). The genes
were selected based on two criteria: (1) Biological relevance. This included
tumor suppressor genes and oncogenes; genes that were indirectly involved in
cancer development, for example, DNA repair genes; metastasis-inhibitor genes;
genes regulated by various signaling pathways and/or responsible for altered cell
growth and differentiation or apoptosis. (2) Publicly reported lists of genes
differentially expressed in prostate cancer [8,10,11,25–33,35,37,38,48]. We
selected a list of 512 genes from these gene lists based on their overlapping
occurrences among the studies, differential expression levels, and biological
relevance.

High-throughput RNA profiling on universal array matrices

We used a gene expression profiling assay, the DASL assay, for parallel
analysis of 1536 sequence targets (512 genes at three probes per gene) [23]. In
this assay, two oligos were designed to target a specific gene sequence. Total
RNA was first converted to cDNA by random priming. The corresponding
query oligos annealed to the cDNA and were extended and ligated enzy-
matically. The ligated products were then amplified and fluorescently labeled
during PCR and finally detected by binding to address sequences on the
universal array. All of the array data have been submitted to ArrayExpress
(Accession No. E-TABM-216).

Array data analysis

Array data were normalized using the “rank invariant” method in Illumina's
BeadStudio software. The method normalizes all arrays with respect to a
common reference sample. For each array, normalization transforms array
signals based on linear coefficients of robust least-squares fit (iteratively
reweighted least squares using Tukey's biweight functions) of intensities of a
rank invariant set of probes. Specifically, all probes ranked between Low-
Rank=50th and HighRank=90th percentiles are considered. If the change in
rank relative to the common reference is less than 0.05, the probe is considered
to be rank invariant. If less than 2% of all probes are picked as rank invariant,
LowRank is gradually decreased until it reaches the 25th percentile.
Samples with tumor content higher than 10% and inflammation content less
than 5% were used to identify genes whose expression is correlated to Gleason
grade. For each gene, we computed Pearson's correlation coefficient between its
expression level and its Gleason score. We assigned p values to observed
correlations by a permutation test. Sample labels were randomly permuted
10,000 times and the correlation values were determined. For each gene, the p
value was assigned as the fraction of random permutations that resulted in higher
correlation value than the one seen with correct sample labels. We used a cutoff
value of 14/10,000, which corresponded to a false discovery rate [49] adjusted p
value of 0.05 and obtained a list of 16 genes. For all the selected genes, we fitted
linear models (using the rlm function with method “MM” in the MASS library of
the R statistical package) to predict Gleason grades and used the average of 16
independently derived predicted values, GEX, as a gene expression analogy of
the Gleason grade. Kaplan–Meier analysis was performed using the SurvDiff
function from the SURVIVAL library of the R package with parameters
corresponding to a log-rank test.
Acknowledgments

We thank Sean Hu and Jane Jenkins for help in initiating this
study and Yixin Wang for helpful discussions.
References

[1] J.W. Moul, Variables in predicting survival based on treating “PSA-Only”
relapse, Urol. Oncol. 21 (2003) 292–304.

[2] J.W. Moul, Prostate specific antigen only progression of prostate cancer,
J. Urol. 163 (2000) 1632–1642.

[3] A.V. D'Amico, et al., Clinical utility of the percentage of positive prostate
biopsies in defining biochemical outcome after radical prostatectomy for
patients with clinically localized prostate cancer, J. Clin. Oncol. 18 (2000)
1164–1172.

[4] M.W. Kattan, et al., A preoperative nomogram for disease recurrence
following radical prostatectomy for prostate cancer, J. Natl. Cancer Inst. 90
(1998) 766–771.

[5] A.W. Partin, et al., Contemporary update of prostate cancer staging
nomograms (Partin Tables) for the new millennium, Urology 58 (2001)
843–848.

[6] T.R.Golub, et al.,Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring, Science 286 (1999) 531–537.

[7] C.M. Perou, et al., Molecular portraits of human breast tumours, Nature
406 (2000) 747–752.

[8] J.B. Welsh, et al., Analysis of gene expression identifies candidate markers
and pharmacological targets in prostate cancer, Cancer Res. 61 (2001)
5974–5978.

[9] J. Quackenbush, Microarray analysis and tumor classification, N. Engl. J.
Med. 354 (2006) 2463–2472.

[10] S.M. Dhanasekaran, et al., Delineation of prognostic biomarkers in
prostate cancer, Nature 412 (2001) 822–826.

[11] L.J. van 't Veer, et al., Gene expression profiling predicts clinical outcome
of breast cancer, Nature 415 (2002) 530–536.

[12] M. West, et al., Predicting the clinical status of human breast cancer by
using gene expression profiles, Proc. Natl. Acad. Sci. USA 98 (2001)
11462–11467.

[13] A.J. Stephenson, et al., Integration of gene expression profiling and clinical
variables to predict prostate carcinoma recurrence after radical prosta-
tectomy, Cancer 104 (2005) 290–298.

[14] S. Varambally, et al., Integrative genomic and proteomic analysis of
prostate cancer reveals signatures of metastatic progression, Cancer Cell 8
(2005) 393–406.

[15] Y.P. Yu, et al., Gene expression alterations in prostate cancer predicting
tumor aggression and preceding development of malignancy, J. Clin.
Oncol. 22 (2004) 2790–2799.

[16] R.F. Chuaqui, et al., Post-analysis follow-up and validation of microarray
experiments, Nat. Genet. 32 (2002) 509–514 (Suppl.).



672 M. Bibikova et al. / Genomics 89 (2007) 666–672
[17] L. Ein-Dor, O. Zuk, E. Domany, Thousands of samples are needed to
generate a robust gene list for predicting outcome in cancer, Proc. Natl.
Acad. Sci. USA 103 (2006) 5923–5928.

[18] J.P. Ioannidis, Microarrays and molecular research: noise discovery?
Lancet 365 (2005) 454–455.

[19] M.J. van de Vijver, et al., A gene-expression signature as a predictor of
survival in breast cancer, N. Engl. J. Med. 347 (2002) 1999–2009.

[20] H.N. Abrahamsen, et al., Towards quantitative mRNA analysis in paraffin-
embedded tissues using real-time reverse transcriptase-polymerase chain
reaction: a methodological study on lymph nodes from melanoma patients,
J. Mol. Diagn. 5 (2003) 34–41.

[21] M. Cronin, et al., Measurement of gene expression in archival paraffin-
embedded tissues: development and performance of a 92-gene reverse
transcriptase-polymerase chain reaction assay, Am. J. Pathol. 164 (2004)
35–42.

[22] F. Lewis, et al., Unlocking the archive—Gene expression in paraffin-
embedded tissue, J. Pathol. 195 (2001) 66–71.

[23] J.B. Fan, et al., A versatile assay for high-throughput gene expression
profiling on universal array matrices, Genome Res. 14 (2004) 878–885.

[24] H.R. Li, et al., Two-dimensional transcriptome profiling: identification
of messenger RNA isoform signatures in prostate cancer from
archived paraffin-embedded cancer specimens, Cancer Res. 66 (2006)
4079–4088.

[25] S. Bettuzzi, et al., Successful prediction of prostate cancer recurrence by
gene profiling in combination with clinical data: a 5-year follow-up study,
Cancer Res. 63 (2003) 3469–3472.

[26] T. Ernst, et al., Decrease and gain of gene expression are equally
discriminatory markers for prostate carcinoma: a gene expression analysis
on total and microdissected prostate tissue, Am. J. Pathol. 160 (2002)
2169–2180.

[27] P.G. Febbo, W.R. Sellers, Use of expression analysis to predict outcome
after radical prostatectomy, J. Urol. 170 (6 Pt. 2) (2003) S11–S19
(discussion S19-20).

[28] G.V. Glinsky, et al., Gene expression profiling predicts clinical outcome of
prostate cancer, J. Clin. Invest. 113 (2004) 913–923.

[29] S.M. Henshall, et al., Survival analysis of genome-wide gene expression
profiles of prostate cancers identifies new prognostic targets of disease
relapse, Cancer Res. 63 (2003) 4196–4203.

[30] J. Lapointe, et al., Gene expression profiling identifies clinically relevant
subtypes of prostate cancer, Proc. Natl. Acad. Sci. USA101 (2004) 811–816.

[31] A. Latil, et al., Gene expression profiling in clinically localized prostate
cancer: a four-gene expression model predicts clinical behavior, Clin.
Cancer Res. 9 (2003) 5477–5485.

[32] J. Luo, et al., Gene expression signature of benign prostatic hyperplasia
revealed by cDNA microarray analysis, Prostate 51 (2002) 189–200.

[33] W.G. Nelson, A.M. De Marzo, W.B. Isaacs, Prostate cancer, N. Engl. J.
Med. 349 (2003) 366–381.
[34] N. Schulke, et al., The homodimer of prostate-specific membrane antigen
is a functional target for cancer therapy, Proc. Natl. Acad. Sci. USA 100
(2003) 12590–12595.

[35] D. Singh, et al., Gene expression correlates of clinical prostate cancer
behavior, Cancer Cell 1 (2002) 203–209.

[36] T.A. Stamey, et al., Genetic profiling of Gleason grade 4/5 prostate cancer:
which is the best prostatic control tissue? J. Urol. 170 (6 Pt. 1) (2003)
2263–2268.

[37] T.A. Stamey, et al., Molecular genetic profiling of Gleason grade 4/5
prostate cancers compared to benign prostatic hyperplasia, J. Urol. 166
(2001) 2171–2177.

[38] R.O. Stuart, et al., In silico dissection of cell-type-associated patterns of
gene expression in prostate cancer, Proc. Natl. Acad. Sci. USA 101 (2004)
615–620.

[39] D.A. Wigle, M. Tsao, I. Jurisica, Making sense of lung-cancer gene-
expression profiles, Genome Biol. 5 (2004) 309.

[40] S. Ramaswamy, Translating cancer genomics into clinical oncology,
N. Engl. J. Med. 350 (2004) 1814–1816.

[41] G.L. Miklos, R. Maleszka, Microarray reality checks in the context of a
complex disease, Nat. Biotechnol. 22 (2004) 615–621.

[42] R. Li, et al., Ki-67 staining index predicts distant metastasis and survival in
locally advanced prostate cancer treated with radiotherapy: an analysis of
patients in Radiation Therapy Oncology Group Protocol 86-10, Clin.
Cancer Res. 10 (12 Pt. 1) (2004) 4118–4124.

[43] S. Paik, et al., A multigene assay to predict recurrence of tamoxifen-
treated, node-negative breast cancer, N. Engl. J. Med. 351 (2004) 2817–2826.

[44] A. Urruticoechea, I.E. Smith, M. Dowsett, Proliferation marker Ki-67 in
early breast cancer, J. Clin. Oncol. 23 (2005) 7212–7220.

[45] G. Kristiansen, et al., Expression profiling of microdissected matched
prostate cancer samples reveals CD166/MEMD and CD24 as new
prognostic markers for patient survival, J. Pathol. 205 (2005) 359–376.

[46] T.T.A.B.P.W. Group, Expression profiling—Best practices for data
generation and interpretation in clinical trials, Nat. Rev. Genet. 5 (2004)
229–237.

[47] M. Sullivan Pepe, et al., Phases of biomarker development for early
detection of cancer, J. Natl. Cancer Inst. 93 (2001) 1054–1061.

[48] S. Ramaswamy, et al., A molecular signature of metastasis in primary solid
tumors, Nat. Genet. 33 (2003) 49–54.

[49] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical
and powerful approach to multiple testing, J. R. Stat. Soc. B 57 (1995)
289–300.

[50] J.B. Fan, et al., A versatile assay for high-throughput gene expression
profiling on universal array matrices, Genome Res. 14 (5) (2004)
878–885.

[51] M. Bibikova, et al., Quantitative gene expression profiling in formalin-
fixed, paraffin-embedded tissues using universal bead arrays, Am. J.
Pathol. 165 (5) (2004) 1799–1807.


	Expression signatures that correlated with Gleason score and relapse in prostate cancer
	Results
	Gene expression profiling reproducibility
	Correlation between gene expression signature and Gleason �score
	Gene expression profiles in tumor versus nontumor samples
	Gene expression profiles to predict relapse of prostate cancer

	Discussion
	Materials and methods
	Tissue selection and RNA extraction
	Gene selection
	High-throughput RNA profiling on universal array matrices
	Array data analysis

	Acknowledgments
	References


