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Abstract

Suppose that G is a locally compact group and � is a (not necessarily irreducible) unitary
representation of a closed normal subgroup N of G on a Hilbert space H. We extend results of
Cli2ord and Mackey to determine when � extends to a unitary representation of G on the same
space H in terms of a cohomological obstruction.
c© 2004 Elsevier B.V. All rights reserved.

MSC: 20C99; 22D10; 22D25; 46L10

Let G be a group and � : N → U (H) a unitary representation of a normal subgroup
N of G. When is � the restriction of a unitary representation of G?

If � does extend to a representation � of G, then �(s) implements a unitary equiv-
alence between � and �s : n �→ �(sns−1). So an obvious necessary condition is that
� should be equivalent to �s for each s∈G (we say that � is G-invariant), and the
problem is to decide when a G-invariant representation extends.

Cli2ord answered this extension problem in [2] when G is discrete, � is irre-
ducible and H is Anite-dimensional. In modern language, Cli2ord showed that if � is
G-invariant, then there is an obstruction to extending the representation in the cohomol-
ogy group H 2(G=N;T), where T is the unit circle. Mackey extended Cli2ord’s result
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to irreducible unitary representations of normal closed subgroups of locally compact
groups [9, Theorem 8.2]. Mackey’s solution involves Borel cocycles, so his obstruction
lies in a cohomology theory where all the cochains are Borel. The resulting cohomol-
ogy groups were subsequently analysed by Moore in [11–14]. Mackey’s theorem was
used in [3] to study the extension problem when the subgroup is a simply connected
nilpotent real Lie group.

The extension problem has recently resurfaced in the context of compact Lie groups
in [1], where it was tackled using the structure theory of Lie groups, and in [4], where
it was studied in the context of nonabelian duality for locally compact groups and
crossed products of C∗-algebras. Here we investigate a cohomological obstruction to the
extension of an arbitrary G-invariant unitary representation � of N , and its relationship
to the results in [1,4]. Our obstruction is a twisted action of G=N on the von Neumann
algebra �(N )′ of operators which commute with every �(n); the representation extends
if and only if this twisted action is equivalent, in a natural sense, to an ordinary action.
We then use a stabilisation trick to show that if � is G-invariant then inAnite multiples
� ⊗ 1 of � always extend.

Preliminaries. Let G be a second-countable locally compact group with a closed nor-
mal subgroup N . We endow the group U (H) of all unitary operators on a separable
Hilbert space H with the strong operator topology, and note that U (H) is a Pol-
ish group (in the sense that the topology is given by a complete metric). A unitary
representation � of G is a continuous homomorphism � : G → U (H). A function
f : G → H is Borel if f−1(O) is a Borel set for each open set O of H; equivalently,
if s �→ (f(s) | h) : G → C is a Borel function for each h∈H. We use a left-invariant
Haar measure on G.

Let A be a von Neumann algebra acting on a separable Hilbert space H. The group
U (A) of unitary elements in A is a Polish group in the ultra-weak topology, and it is
then a closed subgroup of U (H). The group Aut(A) of automorphisms of A is Polish
in the topology of pointwise ultra-weak convergence; this is called the u-topology in
[6, DeAnition 3.4]. For u∈U (A), we denote by Ad u the automorphism a �→ uau∗ of
A, and note that Ad : U (A) → Aut(A) is a continuous homomorphism.

De�nition 1. A twisted action of G on a von Neumann algebra A is a pair (�; �) of
maps � : G → Aut(A) and � : G × G → U (A) such that

(1) � and � are Borel,
(2) �e = id; �(e; s) = �(s; e) = 1 for s∈G,
(3) �s ◦ �t = Ad�(s; t) ◦ �st for s; t ∈G, and
(4) �r(�(s; t))�(r; st) = �(r; s)�(rs; t) for r; s; t ∈G.

Two twisted actions (�; �) and (�; !) of G on A are exterior equivalent if there is a
Borel map � : G → U (A) such that

(1) �s = Ad�s ◦ �s, and
(2) !(s; t) = �s�s(�t)�(s; t)�∗

st .
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These deAnitions are the von-Neumann algebraic analogues of [15, DeAnitions 2.1
and 3.1]. Our deAnition of twisted action is slightly di2erent from the one used in
[18, DeAnition 2.1], where the map s �→ �s is required to be continuous.

Main results. In Theorem 2 we prove that the obstruction to extending a G-invariant
unitary representation � of N is a twisted action of G=N on the von Neumann algebra
�(N )′, and in Theorem 5 we discuss the extension problem in the context of non-abelian
duality for amenable groups G. We reconcile the two approaches in Remark 6; to do
so one needs to understand not only the statement of Theorem 2 but also its proof.

Theorem 2. Let N be a closed normal subgroup of a second-countable locally com-
pact group G. Suppose � : N → U (H) is a unitary representation of N which is
G-invariant. Then there is a twisted action (�; �) of G=N on the commutant �(N )′

of �(N ) such that � extends to a unitary representation � of G on H if and only if
(�; �) is exterior equivalent to an action.

Proof. We start by constructing the twisted action (�; �). Since �s is unitarily equiva-
lent to � for all s∈G, there exist unitary operators Ws ∈U (H) such that Ws�(n)W ∗

s =
�(sns−1). We claim that we can choose Ws such that the map s �→ Ws is Borel. To
see this, let

H = {(W; s) : W ∈U (H); s∈G and �(n)W ∗ = �(sns−1) for n∈N}:

Then H is a subgroup of U (H) × G; we claim that H is closed. So suppose that
the net (W�; s�) ∈H converges to (W; s). Then W��(n) converges strongly to W�(n)
for each n∈N , and since multiplication in U (H) is jointly continuous, �(s�ns

−1
� )W�

converges strongly to �(sns−1)W . Thus W�(n) = �(sns−1)W , and H is closed. Now
H is Polish since it is a closed subgroup of a Polish group, and the quotient map
H → G : (W; s) �→ s has a Borel section s �→ (Ws; s) by [13, Proposition 4].

The quotient map G → G=N admits a Borel section c : G=N → G by [8, Lemma 1.1].
We set

Vs = Wc(sN )�(c(sN )−1s): (1)

Then s �→ Vs is Borel and Vs�(n)V ∗
s =�(sns−1), Vsn =Vs�(n) and Vns =�(n)Vs for s∈G

and n∈N . We deAne �s = AdVs. For T ∈ �(N )′ and s∈G, we have

�s(T )�(n) = VsTV ∗
s �(n) = VsT (V ∗

s �(n)Vs)V ∗
s = VsT�(s−1ns)V ∗

s

= Vs�(s−1ns)TV ∗
s = Vs�(s−1ns)V ∗

s VsTV ∗
s = �(n)�s(T );

thus �s : �(N )′ → �(N )′, and �s is an automorphism of �(N )′ because Vs is unitary.
To see that s �→ �s : G → Aut(�(N )′) is Borel, we will show that if V� converges to

V in the strong operator topology and AdV� and AdV leave �(N )′ invariant, then AdV�
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converges to AdV in Aut(�(N )′). It then follows that s �→ �s : G → Aut(�(N )′) is Borel
because s �→ Vs is Borel. The topology on Aut(�(N )′) is the topology generated by the
seminorms � �→ ‖f ◦ �‖, where f ∈ �(N )′

∗ and the pre-dual �(N )′
∗ has been identiAed

with the ultra-weakly continuous functionals on �(N )′. The ultra-weakly continuous
functionals on �(N )′ have the form f(T ) =

∑∞
n=1 (Thn | kn), where hn; kn ∈H satisfy∑∞

n=1 ‖hn‖2;
∑∞

n=1 ‖kn‖2 ¡∞ (see, for example, [7, pp. 482–483]). Let  ¿ 0. If K

is the maximum of
(∑∞

n=1 ‖hn‖2
)1=2

and
(∑∞

n=1 ‖kn‖2
)1=2

, then

‖f ◦ AdV� − f ◦ AdV‖ = sup{|f(V�TV ∗
� − VTV ∗)| : ‖T‖ = 1; T ∈ �(N )′}

=sup

{∣∣∣∣∣
∞∑
n=1

(V ∗
� hn |T ∗V ∗

� kn) − (TV ∗hn |V ∗kn)

∣∣∣∣∣ : ‖T‖ = 1; T ∈ �(N )′
}

6 sup

{ ∞∑
n=1

‖(V ∗
� − V ∗)hn‖ ‖T ∗V ∗

� kn‖ + ‖TV ∗hn‖ ‖(V ∗
� − V ∗)kn‖

}

6
∞∑
n=1

‖(V ∗
� − V ∗)hn‖ ‖kn‖ + ‖hn‖ ‖(V ∗

� − V ∗)kn‖

6K

( ∞∑
n=1

‖(V ∗
� − V ∗)hn‖2

)1=2

+ K

( ∞∑
n=1

‖(V ∗
� − V ∗)kn‖2

)1=2

(2)

by HKolder’s inequality. Since each V� is a normal operator, we have V ∗
� → V ∗ in

the strong operator topology. Now choose N ¿ 0 such that
∑∞

n=N ‖hn‖2 ¡ 2(16K2)−1

and
∑∞

n=N ‖kn‖2 ¡ 2(16K2)−1. Then, for each n¡N , choose a strong-operator open
neighbourhood On of V ∗ such that

‖(V ∗
� − V ∗)hn‖2 ¡

 2

8(N − 1)K2 and ‖(V ∗
� − V ∗)kn‖2 ¡

 2

8(N − 1)K2

whenever V ∗
� ∈On, and check that if V ∗

� ∈ ⋂N−1
n=1 On then (2) ¡ . This proves that

AdV� converges to AdV , and it follows that � : G → Aut(�(N )′) : s �→ AdVs is Borel.
Next we deAne �(s; t) = VsVtV ∗

st . Then

�(s; t)�(n) = VsVtV ∗
st �(n) = VsVt�((st)−1nst)V ∗

st

= VsVt�((st)−1nst)V ∗
t VtV ∗

st

= Vs�(s−1ns)VtV ∗
st = �(n)VsVtV ∗

st

for all n∈N , so � : G × G → U (�(N )′). Note that � is Borel because s �→ Vs is Borel
and both Vs �→ V ∗

s and (s; t) �→ st are continuous. The equation Vsn = Vs�(n) implies
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that �(s; n) = 1 = �(n; s) for s∈G and n∈N . We have

�(r; s)�(rs; t) = VrVsV ∗
rs VrsVtV ∗

rst = VrVsVtV ∗
rst

= VrVsVt(V ∗
st V

∗
r VrVst)V ∗

rst = �r(�(s; t))�(r; st)

and, for T ∈ �(N )′,

�s(�t(T )) = VsVtTV ∗
t V ∗

s = VsVtV ∗
st VstTV ∗

st VstV ∗
t V ∗

s = �(s; t)�st(T )�(s; t)∗:

Thus (�; �) is a twisted action of G on �(N )′. But �s depends only on sN since

�sn(T ) = Vs�(n)T�(n)∗V ∗
s = Vs�(n)�(n)∗TV ∗

s = �s(T )

for all n∈N . We also have

�(s; tn) = VsVtnV ∗
stn = VsVt�(n)�(n)∗V ∗

st = �(s; t):

Since Vms=�(m)Vs for m∈N we have �(ms; t)=�(s; t), and hence �(sn; t)=�(sns−1s; t)
= �(s; t). So we can view (�; �) as a twisted action of G=N on �(N )′.

Now suppose that � extends to a continuous representation � of G on H. Let Vs

be as in (1) and deAne � : G=N → U (H) by �sN = �(s)V ∗
s . Then � is Borel because

s �→ V ∗
s is Borel and � is continuous, and

!(sN; tN ) := �sN �s(�tN )�(sN; tN )�∗
stN = 1:

If �sN := Ad�sN ◦ �sN , then

�sN (T ) = Ad�sN (�sN (T ))) = �(s)V ∗
s (VsTV ∗

s )Vs�(s)∗ = Ad(�(s))(T )

for T ∈ �(N )′, and since � is a homomorphism so is �. Now � : G=N → Aut(�(N )′)
is a Borel homomorphism between Polish groups and hence is continuous by [13,
Proposition 5]. Thus (�; 1) is an ordinary action, and (�; �) is exterior equivalent to an
action.

Conversely, if (�; �) is exterior equivalent to an action, then there exists a Borel
map � : G=N → U (H) such that �sN �sN (�tN )�(sN; tN )�∗

stN = 1. Set �(s) = �sNVs. Then

�(s)�(t) = �sNVs�tNVt = �sN �sN (�tN )VsVt

= �sN �sN (�tN )�(sN; tN )Vst = �stNVst = �(st):

Thus � : G → U (H) is a Borel homomorphism between Polish groups, and hence is
continuous by [13, Proposition 5]; � is the required extension of �.

Corollary 3. If � : N → U (H) is a G-invariant unitary representation of N , then
there is a unitary representation � of G on H ⊗ L2(G=N ) such that �|N = � ⊗ 1.

From Corollary 3 we immediately obtain:

Corollary 4. Suppose that � : N → U (H) is a unitary representation of N which is
unitarily equivalent to � ⊗ 1 on H ⊗ L2(G=N ). Then � extends to a representation
of G if and only if � is G-invariant.
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Proof of Corollary 3. Let (�; �) be the twisted action of G=N on �(N )′ constructed
above. Then the twisted action (�; !) := (�⊗ id; �⊗1) of G=N on �(N )′⊗B(L2(G=N ))=
(� ⊗ 1)(N )′ is the obstruction to extending � ⊗ 1. We will show that (�; !) is exterior
equivalent to an action. Similar “stabilisation tricks” have been used in [19, Proposition
2.1.3] and [15, Theorem 3.4], for example.

We begin by identifying H ⊗ L2(G=N ) with the space L2(G=N;H) of Bochner
square-integrable functions. Since H is separable, &∈L2(G=N;H) if and only if & is
a Borel function from G=N to H and

∫
G=N ‖&(sN )‖2 d(sN ) ¡∞. DeAne � : G=N →

U (L2(G=N;H)) by

(�tN &)(rN ) = �(tN; t−1r−1N )∗&(rtN )((tN )1=2;

where ( is the modular function of G=N and &∈L2(G=N;H). (The modular function
is necessary to ensure that �tN is unitary.) Then

(�∗
tN &)(rN ) = �(tN; r−1N )&(rt−1N )((tN )−1=2;

and hence

(�sN (�∗
tN )�∗

sN �stN &)(rN ) = �sN (�(tN; r−1N ))(�∗
sN �stN &)(rt−1N )((tN )−1=2

= �sN (�(tN; r−1N ))�(sN; tr−1N )(�stN &)(rt−1s−1N )((stN )−1=2

= �sN (�(tN; r−1N ))�(sN; tr−1N )�(stN; r−1N )∗&(rN )

= �(sN; tN )&(rN )

= (�(sN; tN ) ⊗ 1)&(rN )

= !(sN; tN )&(rN ):

It follows that

�sN�sN (�tN )!(sN; tN )�∗
stN = 1: (3)

If we now deAne ) : G=N → Aut(�(N )′) by )sN = Ad�sN ◦ �sN , then (3) implies that )
is a homomorphism. It remains to show that � is Borel, and it then follows from [13,
Proposition 5] that ) = Ad� ◦ � : G=N → Aut(�(N )′) is continuous.

Since U (L2(G=N;H)) has the strong operator topology, � is Borel if and only
if sN �→ �sN & is Borel for every &∈L2(G=N;H), and hence if and only if sN �→
(�sN & | *) is Borel for every &; *∈L2(G=N;H). Since (U; h) �→ Uh is continuous, the
map (sN; tN; rN ) �→ (�(sN; tN ); &(rN )) �→ �(sN; tN )&(rN ) is Borel, and hence so is

(tN; rN ) �→ |(�(tN; t−1r−1N )∗&(rtN ) | *(rN ))|: (4)

Since (4) is dominated by ‖&(rtN )‖ ‖*(rN )‖, and an application of Tonelli’s Theorem
shows that this is integrable over G=N × G=N , it follows from Fubini’s Theorem that

tN �→
∫

G=N
(�(tN; t−1r−1N )∗&(rtN ) | *(rN )) d(rN )

deAnes, almost everywhere, an integrable (and therefore Borel) function. Multiplying
by ((tN )1=2 shows that tN �→ (�tN & | *) is Borel. Thus � is Borel and ) is continuous.
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Thus � implements an exterior equivalence between (�; !) and the ordinary action
(); 1). It now follows from Theorem 2 that there is a representation � of G with
�|N = � ⊗ 1.

The irreducible case. When the representation � of N is irreducible, the commutant
�(N )′ is C1, the action � is trivial, and the obstruction � to extending � is a Borel
cocycle in the Moore cohomology group H 2(G=N;T). Thus we recover Mackey’s [9,
Theorem 8.2] as it applies to ordinary (that is, non-projective) irreducible representa-
tions.

When the obstruction � is non-trivial, we can recover Corollary 3 from another
important part of the Mackey machine [9, Theorem 8.3]: � extends to a projective
representation U of G with cocycle � ◦ (q × q), and tensoring with an irreducible
N�-representation W of G=N gives an irreducible representation U ⊗ (W ◦q) of G whose
restriction to N is a multiple � ⊗ 1 of �.

Applications to compact Lie groups. When , is a compact connected Lie group, Moore
computed H 2(,;T) as follows. Let ,̃ be the simply connected covering group of
,; then the fundamental group �1(,) is isomorphic to a central subgroup of ,̃ and
, ∼= ,̃=�1(,). An inOation and restriction sequence identiAes H 2(,;T) with the quo-
tient of the dual group �1(,)∧ = Hom(�1(,);T) by the image of the restriction map
Res : (,̃)∧ → �1(,)∧ [11, pp. 55].

When ,=Tn, we have �1(,)=Zn and ,̃=Rn, and the restriction map Rn=(Rn)∧ �→
Tn = (Zn)∧ is onto by duality. Thus H 2(Tn;T) = 0. Theorem 2 thus implies that if
G=N ∼= Tn, then every G-invariant irreducible unitary representation of N extends to
G. Because representations of compact groups are direct sums of irreducible repre-
sentations, this observation includes [1, Corollary 3.5], and hence also [1, Theorem
1.1].

For non-compact groups G, one might want to prove Corollary 3 by reducing to the
irreducible case using a direct-integral decomposition. There can be substantial technical
diPculties; see, for example [5], where a direct-integral decomposition is used to And
suPcient conditions for a unitary representation of a closed normal subgroup of a
separable locally compact group to extend.

The nonabelian duality approach. If � : G → Aut(A) is a strongly continuous action of
a locally compact group G on a C∗-algebra A, a covariant representation of (A;G; �)
consists of a representation . of A and a unitary representation U of G such that

.(�t(a)) = Ut.(a)U ∗
t for a∈A and t ∈G;

covariant representations can take values either in abstract C∗-algebras or in the con-
crete C∗-algebra B(H). The crossed product A ×� G is the C∗-algebra generated by
a universal covariant representation in the multiplier algebra M (A ×� G) (see [16] for
details of what this means). The covariant representations (.; U ) of (A;G; �) therefore
give representations . × U of A ×� G, and all representations of A ×� G have this
form. We shall be particularly interested in the actions lt : G → Aut(C0(G=N )) and
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rt : G=N → Aut(C0(G=N )) deAned by

lts(f)(uN ) = f(s−1uN ) and rttN (f)(uN ) = f(utN ):

The automorphisms rttN commute with the automorphisms lts, and hence induce an
action � of G=N on the crossed product C0(G=N ) ×lt G.

If � is a unitary representation of N , then the induced representation Ind � of G acts
in the completion H(Ind �) of

{&∈Cb(G;H) : &(tn) = �(n)−1(&(t)) and (tN �→ ‖&(t)‖) ∈Cc(G=N )}

with respect to the inner product (& | *) =
∫
G=N (&(t) | *(t)) d(tN ), according to the for-

mula (Ind �)t(&)(r) = &(t−1r). (See, for example, [17, pp. 296]; because N is normal
there is a G-invariant measure on G=N , and we can take the rho-function in the usual
formula to be 1.)

Let M be the representation of C0(G=N ) by multiplication operators on H(Ind �),
and note that (M; Ind �) is a covariant representation of (C0(G=N ); G; lt). The non-
abelian duality approach to the extension problem yields the following theorem.

Theorem 5. Suppose that N is a closed normal subgroup of an amenable and second-
countable locally compact group G, and suppose that � : N → U (H) is a unitary
representation. Then � extends to a unitary representation of G if and only if there
exists a unitary representation Q : G=N → U (H(Ind �)) such that (M × Ind �; Q) is
a covariant representation of (C0(G=N ) ×lt G;G=N; �).

Proof. The induction-restriction theory of [4] says that � is the restriction of a rep-
resentation of G if and only if M × Ind � is induced, in a dual sense, from a rep-
resentation of the group C∗-algebra C∗(G) = C × G. To deduce this from [4,
Theorem 5.16], we need to recall some ideas of nonabelian duality. The group C∗-
algebra C∗(G) is generated by a universal unitary representation – : G → UM (C∗(G)).
The comultiplication 3 : C∗(G) → M (C∗(G) ⊗ C∗(G)) is the representation corre-
sponding to the unitary representation – ⊗ –; it has a restriction 3| which is a coaction
of G=N on C∗(G). Since G is amenable, C∗(G) coincides with the reduced group
C∗-algebra C∗

r (G), and hence we can apply results from [4,10] concerning reduced
crossed products. In particular, we can induce representations from C∗(G) to the coac-
tion crossed product C∗(G) ×3| G=N by tensoring with a (C∗(G) ×3| G=N )–C∗(G)
bimodule Y constructed by MansAeld [10]; the resulting map on representations is
denoted by Y -Ind.

We recall from [17, Theorem C.23] that there is a Morita equivalence between
C0(G=N ) ×lt G and C∗(N ) which is implemented by an imprimitivity bimodule X ; we
denote by X -Ind the corresponding map on representations. The algebras C0(G=N )×ltG
and C∗(G) ×3| G=N have exactly the same covariant representations, and hence are
isomorphic (see, for example, [4, Theorem A.64]). Thus we can view X as a (C∗(G)×3|
G=N )–C∗(N ) bimodule. Theorem 5.16 of [4] (with A = C and M = G) says that,
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provided G is amenable, we have a commutative diagram

RepC  (G) Res  RepC  (N)

Y-Ind X-Ind

Rep(C *(G ) × | G/N )

* *

�

Since X -Ind is a bijection, it follows that a representation � of C∗(N ) extends to a
representation of C∗(G) if and only if X -Ind � is in the range of Y -Ind.

To deduce Theorem 5 from this, we have to make two observations. First, the repre-
sentation X -Ind � of C0(G=N )×ltG is equivalent to M ×Ind �. To see this, note that the
intertwining unitary isomorphism W of (X ⊗C∗(N ) H; X -Ind �) onto (H(Ind �); Ind �)
constructed in the proof of [17, Theorem C.33] carries the left action of C0(G=N ) into
M . Second, we recall from MansAeld’s imprimitivity theorem [10, Theorem 28] that a
representation . of C∗(G)×3|G=N has the form Y -Ind � if and only if there is a unitary
representation Q of G=N on H(.) such that (.; Q) is covariant for the dual action (3|)∧

of G=N . Since [4, Theorem A.64] also says that the isomorphism of C0(G=N ) ×lt G
onto C∗(G) ×3| G=N carries the action � into (3|)∧, the result follows.

Remark 6. Comparing Theorem 5 with Theorem 2, it is natural to ask what happened
to the hypothesis “� is G-invariant”. Suppose � is G-invariant, so that there exist
unitary operators Ws on H such that Ws�(n)W ∗

s = �(sns−1). Then

Us(&)(t) = Ws(&(ts))((sN )1=2

deAnes a unitary operator Us on H(Ind �) which intertwines the covariant represen-
tations (M; Ind �) and (M ◦ rtsN ; Ind �). So RsN := Uc(sN ) deAnes a map R : G=N →
U (H(Ind �)) which formally satisAes the covariance relations but is not necessarily a
representation.

Our original extension problem for a G-invariant representation � : N → U (H)
therefore reduces to:

Given a representation 7 of C∗(G) ×3| G=N such that 7 ◦ (3|)∧
sN is equivalent to 7

for every sN ∈G=N , is there a representation Q of G=N such that (7;Q) is covariant
for (C∗(G) ×3| G=N;G=N; (3|)∧)?

Since there are by hypothesis unitary operators RsN such that 7 ◦ (3|)∧
sN = AdRsN ◦ 7,

we can repeat the analysis of Theorem 2 to see that there is a twisted action (�; !)
of G=N on the commutant of the range of 7, such that (�; !) is exterior equivalent
to an ordinary action if and only if we can adjust the RsN to obtain the required
representation Q. Thus �sN = AdRsN and, for &∈H(Ind �),

!(rN; sN )(&)(t) = RrNRsNR∗
rsN (&)(t) = Uc(rN )Uc(sN )U ∗

c(rsN )(&)(t)
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= Wc(rN )Wc(sN )W ∗
c(rsN )(&(tc(rN )c(sN )c(rsN )−1))

= Wc(rN )Wc(sN )W ∗
c(rsN )�(c(rN )c(sN )c(rsN )−1)−1(&(t))

= Wc(rN )Wc(sN )W ∗
c(rsN )�(c(rsN )c(sN )−1c(rN )−1)(&(t)):

We claim that the obstruction (�; !) is essentially the same as the obstruction (�; �)
to extending � from Theorem 2. To see this, we Arst identify �(N )′ with 7(C∗(G) ×
3|G=N )′ when 7 = M × Ind �. If T ∈ �(N )′, then the formula 1 ⊗ T (&)(t) = T (&(t))
deAnes an operator in 7(C∗(G) ×3| G=N )′. When we view H(Ind �) as X ⊗C∗(N ) H,
then we recover H as X̃ ⊗C∗(G)×G=N (X ⊗C∗(N ) H), where X̃ is the dual imprimitivity
bimodule, and the natural isomorphism of H onto X̃ ⊗C∗(G)×G=N (X ⊗C∗(N ) H) takes
T to 1⊗1⊗T . Thus T �→ 1⊗T is an isomorphism of �(N )′ onto 7(C∗(G)×3| G=N )′.

With V as in Eq. (1), the cocycle � in the twisted action (�; �) satisAes

�(rN; sN ) = VrVsV ∗
rs

= Wc(rN )�(c(rN )−1r)Wc(sN )�(c(sN )−1s)�(c(rsN )−1rs)−1W ∗
c(rsN )

=Wc(rN )Wc(sN )�(c(sN )−1c(rN )−1rc(sN ))�(c(sN )−1s)�(s−1r−1c(rsN ))W ∗
c(rsN )

= Wc(rN )Wc(sN )�(c(sN )−1c(rN )−1c(rsN ))W ∗
c(rsN )

= Wc(rN )Wc(sN )W ∗
c(rsN )�(c(rsN )c(sN )−1c(rN )−1):

Thus with this choice of RsN , we have !(rN; sN ) = 1 ⊗ �(rN; sN ), and for T ∈ �(N )′,

�sN (1 ⊗ T )(&)(t) = RsN (1 ⊗ T )R∗
sN (&)(t)

= Wc(sN )TW ∗
c(sN )(&(t))

= (1 ⊗ VsTV ∗
s )(&)(t)

= (1 ⊗ �s(T ))(&)(t):

So the isomorphism of �(N )′ onto 7(C∗(G) ×3| G=N )′ carries (�; �) into the twisted
action (�; !) which obstructs the existence of Q. Thus, reassuringly, the cohomological
obstruction to Anding Q is identical to the obstruction to extending �.
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