Twisted actions and the obstruction to extending unitary representations of subgroups ${ }^{\tau \pi}$

Astrid an Huef ${ }^{\text {a,* }}$, Iain Raeburn ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics, University of New South Wales, Sydney NSW 2052, Australia
${ }^{\mathrm{b}}$ School of Mathematical and Physical Sciences, University of Newcastle, NSW 2308, Australia

Received 3 October 2003; received in revised form 16 April 2004
Communicated by C.A. Weibel
Available online 7 July 2004

Abstract

Suppose that G is a locally compact group and π is a (not necessarily irreducible) unitary representation of a closed normal subgroup N of G on a Hilbert space \mathscr{H}. We extend results of Clifford and Mackey to determine when π extends to a unitary representation of G on the same space \mathscr{H} in terms of a cohomological obstruction.

(c) 2004 Elsevier B.V. All rights reserved.

MSC: 20C99; 22D10; 22D25; 46L10

Let G be a group and $\pi: N \rightarrow U(\mathscr{H})$ a unitary representation of a normal subgroup N of G. When is π the restriction of a unitary representation of G ?

If π does extend to a representation ρ of G, then $\rho(s)$ implements a unitary equivalence between π and $\pi^{s}: n \mapsto \pi\left(s n s^{-1}\right)$. So an obvious necessary condition is that π should be equivalent to π^{s} for each $s \in G$ (we say that π is G-invariant), and the problem is to decide when a G-invariant representation extends.

Clifford answered this extension problem in [2] when G is discrete, π is irreducible and \mathscr{H} is finite-dimensional. In modern language, Clifford showed that if π is G-invariant, then there is an obstruction to extending the representation in the cohomology group $H^{2}(G / N, \mathbb{T})$, where \mathbb{T} is the unit circle. Mackey extended Clifford's result

[^0]to irreducible unitary representations of normal closed subgroups of locally compact groups [9, Theorem 8.2]. Mackey's solution involves Borel cocycles, so his obstruction lies in a cohomology theory where all the cochains are Borel. The resulting cohomology groups were subsequently analysed by Moore in [11-14]. Mackey's theorem was used in [3] to study the extension problem when the subgroup is a simply connected nilpotent real Lie group.

The extension problem has recently resurfaced in the context of compact Lie groups in [1], where it was tackled using the structure theory of Lie groups, and in [4], where it was studied in the context of nonabelian duality for locally compact groups and crossed products of C^{*}-algebras. Here we investigate a cohomological obstruction to the extension of an arbitrary G-invariant unitary representation π of N, and its relationship to the results in $[1,4]$. Our obstruction is a twisted action of G / N on the von Neumann algebra $\pi(N)^{\prime}$ of operators which commute with every $\pi(n)$; the representation extends if and only if this twisted action is equivalent, in a natural sense, to an ordinary action. We then use a stabilisation trick to show that if π is G-invariant then infinite multiples $\pi \otimes 1$ of π always extend.

Preliminaries. Let G be a second-countable locally compact group with a closed normal subgroup N. We endow the group $U(\mathscr{H})$ of all unitary operators on a separable Hilbert space \mathscr{H} with the strong operator topology, and note that $U(\mathscr{H})$ is a Polish group (in the sense that the topology is given by a complete metric). A unitary representation ρ of G is a continuous homomorphism $\rho: G \rightarrow U(\mathscr{H})$. A function $f: G \rightarrow \mathscr{H}$ is Borel if $f^{-1}(O)$ is a Borel set for each open set O of \mathscr{H}; equivalently, if $s \mapsto(f(s) \mid h): G \rightarrow \mathbb{C}$ is a Borel function for each $h \in \mathscr{H}$. We use a left-invariant Haar measure on G.

Let \mathscr{A} be a von Neumann algebra acting on a separable Hilbert space \mathscr{H}. The group $U(\mathscr{A})$ of unitary elements in \mathscr{A} is a Polish group in the ultra-weak topology, and it is then a closed subgroup of $U(\mathscr{H})$. The group $\operatorname{Aut}(\mathscr{A})$ of automorphisms of \mathscr{A} is Polish in the topology of pointwise ultra-weak convergence; this is called the u-topology in [6, Definition 3.4]. For $u \in U(\mathscr{A})$, we denote by $\operatorname{Ad} u$ the automorphism $a \mapsto u a u^{*}$ of \mathscr{A}, and note that $\operatorname{Ad}: U(\mathscr{A}) \rightarrow \operatorname{Aut}(\mathscr{A})$ is a continuous homomorphism.

Definition 1. A twisted action of G on a von Neumann algebra \mathscr{A} is a pair (α, σ) of maps $\alpha: G \rightarrow \operatorname{Aut}(\mathscr{A})$ and $\sigma: G \times G \rightarrow U(\mathscr{A})$ such that
(1) α and σ are Borel,
(2) $\alpha_{e}=\mathrm{id}, \sigma(e, s)=\sigma(s, e)=1$ for $s \in G$,
(3) $\alpha_{s} \circ \alpha_{t}=\operatorname{Ad} \sigma(s, t) \circ \alpha_{s t}$ for $s, t \in G$, and
(4) $\alpha_{r}(\sigma(s, t)) \sigma(r, s t)=\sigma(r, s) \sigma(r s, t)$ for $r, s, t \in G$.

Two twisted actions (α, σ) and (β, ω) of G on \mathscr{A} are exterior equivalent if there is a Borel map $v: G \rightarrow U(\mathscr{A})$ such that
(1) $\beta_{s}=\operatorname{Ad} v_{s} \circ \alpha_{s}$, and
(2) $\omega(s, t)=v_{s} \alpha_{s}\left(v_{t}\right) \sigma(s, t) v_{s t}^{*}$.

These definitions are the von-Neumann algebraic analogues of [15, Definitions 2.1 and 3.1]. Our definition of twisted action is slightly different from the one used in [18, Definition 2.1], where the map $s \mapsto \alpha_{s}$ is required to be continuous.

Main results. In Theorem 2 we prove that the obstruction to extending a G-invariant unitary representation π of N is a twisted action of G / N on the von Neumann algebra $\pi(N)^{\prime}$, and in Theorem 5 we discuss the extension problem in the context of non-abelian duality for amenable groups G. We reconcile the two approaches in Remark 6; to do so one needs to understand not only the statement of Theorem 2 but also its proof.

Theorem 2. Let N be a closed normal subgroup of a second-countable locally compact group G. Suppose $\pi: N \rightarrow U(\mathscr{H})$ is a unitary representation of N which is G-invariant. Then there is a twisted action (α, σ) of G / N on the commutant $\pi(N)^{\prime}$ of $\pi(N)$ such that π extends to a unitary representation ρ of G on \mathscr{H} if and only if (α, σ) is exterior equivalent to an action.

Proof. We start by constructing the twisted action (α, σ). Since π^{s} is unitarily equivalent to π for all $s \in G$, there exist unitary operators $W_{s} \in U(\mathscr{H})$ such that $W_{s} \pi(n) W_{s}^{*}=$ $\pi\left(s n s^{-1}\right)$. We claim that we can choose W_{s} such that the map $s \mapsto W_{s}$ is Borel. To see this, let

$$
H=\left\{(W, s): W \in U(\mathscr{H}), s \in G \text { and } \pi(n) W^{*}=\pi\left(s n s^{-1}\right) \text { for } n \in N\right\} .
$$

Then H is a subgroup of $U(\mathscr{H}) \times G$; we claim that H is closed. So suppose that the net $\left(W_{\beta}, s_{\beta}\right) \in H$ converges to (W, s). Then $W_{\beta} \pi(n)$ converges strongly to $W \pi(n)$ for each $n \in N$, and since multiplication in $U(\mathscr{H})$ is jointly continuous, $\pi\left(s_{\beta} n s_{\beta}^{-1}\right) W_{\beta}$ converges strongly to $\pi\left(s n s^{-1}\right) W$. Thus $W \pi(n)=\pi\left(s n s^{-1}\right) W$, and H is closed. Now H is Polish since it is a closed subgroup of a Polish group, and the quotient map $H \rightarrow G:(W, s) \mapsto s$ has a Borel section $s \mapsto\left(W_{s}, s\right)$ by [13, Proposition 4].

The quotient map $G \rightarrow G / N$ admits a Borel section $c: G / N \rightarrow G$ by [8, Lemma 1.1]. We set

$$
\begin{equation*}
V_{s}=W_{c(s N)} \pi\left(c(s N)^{-1} s\right) \tag{1}
\end{equation*}
$$

Then $s \mapsto V_{s}$ is Borel and $V_{s} \pi(n) V_{s}^{*}=\pi\left(s n s^{-1}\right), V_{s n}=V_{s} \pi(n)$ and $V_{n s}=\pi(n) V_{s}$ for $s \in G$ and $n \in N$. We define $\alpha_{s}=\operatorname{Ad} V_{s}$. For $T \in \pi(N)^{\prime}$ and $s \in G$, we have

$$
\begin{aligned}
\alpha_{s}(T) \pi(n) & =V_{s} T V_{s}^{*} \pi(n)=V_{s} T\left(V_{s}^{*} \pi(n) V_{s}\right) V_{s}^{*}=V_{s} T \pi\left(s^{-1} n s\right) V_{s}^{*} \\
& =V_{s} \pi\left(s^{-1} n s\right) T V_{s}^{*}=V_{s} \pi\left(s^{-1} n s\right) V_{s}^{*} V_{s} T V_{s}^{*}=\pi(n) \alpha_{s}(T) ;
\end{aligned}
$$

thus $\alpha_{s}: \pi(N)^{\prime} \rightarrow \pi(N)^{\prime}$, and α_{s} is an automorphism of $\pi(N)^{\prime}$ because V_{s} is unitary.
To see that $s \mapsto \alpha_{s}: G \rightarrow \operatorname{Aut}\left(\pi(N)^{\prime}\right)$ is Borel, we will show that if V_{β} converges to V in the strong operator topology and $\operatorname{Ad} V_{\beta}$ and $\operatorname{Ad} V$ leave $\pi(N)^{\prime}$ invariant, then $\operatorname{Ad} V_{\beta}$
converges to $\operatorname{Ad} V$ in $\operatorname{Aut}\left(\pi(N)^{\prime}\right)$. It then follows that $s \mapsto \alpha_{s}: G \rightarrow \operatorname{Aut}\left(\pi(N)^{\prime}\right)$ is Borel because $s \mapsto V_{s}$ is Borel. The topology on $\operatorname{Aut}\left(\pi(N)^{\prime}\right)$ is the topology generated by the seminorms $\alpha \mapsto\|f \circ \alpha\|$, where $f \in \pi(N)_{*}^{\prime}$ and the pre-dual $\pi(N)_{*}^{\prime}$ has been identified with the ultra-weakly continuous functionals on $\pi(N)^{\prime}$. The ultra-weakly continuous functionals on $\pi(N)^{\prime}$ have the form $f(T)=\sum_{n=1}^{\infty}\left(T h_{n} \mid k_{n}\right)$, where $h_{n}, k_{n} \in \mathscr{H}$ satisfy $\sum_{n=1}^{\infty}\left\|h_{n}\right\|^{2}, \sum_{n=1}^{\infty}\left\|k_{n}\right\|^{2}<\infty$ (see, for example, [7, pp. 482-483]). Let $\varepsilon>0$. If K is the maximum of $\left(\sum_{n=1}^{\infty}\left\|h_{n}\right\|^{2}\right)^{1 / 2}$ and $\left(\sum_{n=1}^{\infty}\left\|k_{n}\right\|^{2}\right)^{1 / 2}$, then

$$
\begin{align*}
\| f & \circ \operatorname{Ad} V_{\beta}-f \circ \operatorname{Ad} V \|=\sup \left\{\left|f\left(V_{\beta} T V_{\beta}^{*}-V T V^{*}\right)\right|:\|T\|=1, T \in \pi(N)^{\prime}\right\} \\
& =\sup \left\{\left|\sum_{n=1}^{\infty}\left(V_{\beta}^{*} h_{n} \mid T^{*} V_{\beta}^{*} k_{n}\right)-\left(T V^{*} h_{n} \mid V^{*} k_{n}\right)\right|:\|T\|=1, T \in \pi(N)^{\prime}\right\} \\
& \leqslant \sup \left\{\sum_{n=1}^{\infty}\left\|\left(V_{\beta}^{*}-V^{*}\right) h_{n}\right\|\left\|T^{*} V_{\beta}^{*} k_{n}\right\|+\left\|T V^{*} h_{n}\right\|\left\|\left(V_{\beta}^{*}-V^{*}\right) k_{n}\right\|\right\} \\
& \leqslant \sum_{n=1}^{\infty}\left\|\left(V_{\beta}^{*}-V^{*}\right) h_{n}\right\|\left\|k_{n}\right\|+\left\|h_{n}\right\|\left\|\left(V_{\beta}^{*}-V^{*}\right) k_{n}\right\| \\
& \leqslant K\left(\sum_{n=1}^{\infty}\left\|\left(V_{\beta}^{*}-V^{*}\right) h_{n}\right\|^{2}\right)^{1 / 2}+K\left(\sum_{n=1}^{\infty}\left\|\left(V_{\beta}^{*}-V^{*}\right) k_{n}\right\|^{2}\right)^{1 / 2} \tag{2}
\end{align*}
$$

by Hölder's inequality. Since each V_{β} is a normal operator, we have $V_{\beta}^{*} \rightarrow V^{*}$ in the strong operator topology. Now choose $N>0$ such that $\sum_{n=N}^{\infty}\left\|h_{n}\right\|^{2}<\varepsilon^{2}\left(16 K^{2}\right)^{-1}$ and $\sum_{n=N}^{\infty}\left\|k_{n}\right\|^{2}<\varepsilon^{2}\left(16 K^{2}\right)^{-1}$. Then, for each $n<N$, choose a strong-operator open neighbourhood O_{n} of V^{*} such that

$$
\left\|\left(V_{\beta}^{*}-V^{*}\right) h_{n}\right\|^{2}<\frac{\varepsilon^{2}}{8(N-1) K^{2}} \quad \text { and } \quad\left\|\left(V_{\beta}^{*}-V^{*}\right) k_{n}\right\|^{2}<\frac{\varepsilon^{2}}{8(N-1) K^{2}}
$$

whenever $V_{\beta}^{*} \in O_{n}$, and check that if $V_{\beta}^{*} \in \bigcap_{n=1}^{N-1} O_{n}$ then (2) $<\varepsilon$. This proves that $\operatorname{Ad} V_{\beta}$ converges to $\operatorname{Ad} V$, and it follows that $\alpha: G \rightarrow \operatorname{Aut}\left(\pi(N)^{\prime}\right): s \mapsto \operatorname{Ad} V_{s}$ is Borel.

Next we define $\sigma(s, t)=V_{s} V_{t} V_{s t}^{*}$. Then

$$
\begin{aligned}
\sigma(s, t) \pi(n) & =V_{s} V_{t} V_{s t}^{*} \pi(n)=V_{s} V_{t} \pi\left((s t)^{-1} n s t\right) V_{s t}^{*} \\
& =V_{s} V_{t} \pi\left((s t)^{-1} n s t\right) V_{t}^{*} V_{t} V_{s t}^{*} \\
& =V_{s} \pi\left(s^{-1} n s\right) V_{t} V_{s t}^{*}=\pi(n) V_{s} V_{t} V_{s t}^{*}
\end{aligned}
$$

for all $n \in N$, so $\sigma: G \times G \rightarrow U\left(\pi(N)^{\prime}\right)$. Note that σ is Borel because $s \mapsto V_{s}$ is Borel and both $V_{s} \mapsto V_{s}^{*}$ and $(s, t) \mapsto s t$ are continuous. The equation $V_{s n}=V_{s} \pi(n)$ implies
that $\sigma(s, n)=1=\sigma(n, s)$ for $s \in G$ and $n \in N$. We have

$$
\begin{aligned}
\sigma(r, s) \sigma(r s, t) & =V_{r} V_{s} V_{r s}^{*} V_{r s} V_{t} V_{r s t}^{*}=V_{r} V_{s} V_{t} V_{r s t}^{*} \\
& =V_{r} V_{s} V_{t}\left(V_{s t}^{*} V_{r}^{*} V_{r} V_{s t}\right) V_{r s t}^{*}=\alpha_{r}(\sigma(s, t)) \sigma(r, s t)
\end{aligned}
$$

and, for $T \in \pi(N)^{\prime}$,

$$
\alpha_{s}\left(\alpha_{t}(T)\right)=V_{s} V_{t} T V_{t}^{*} V_{s}^{*}=V_{s} V_{t} V_{s t}^{*} V_{s t} T V_{s t}^{*} V_{s t} V_{t}^{*} V_{s}^{*}=\sigma(s, t) \alpha_{s t}(T) \sigma(s, t)^{*} .
$$

Thus (α, σ) is a twisted action of G on $\pi(N)^{\prime}$. But α_{s} depends only on $s N$ since

$$
\alpha_{s n}(T)=V_{s} \pi(n) T \pi(n)^{*} V_{s}^{*}=V_{s} \pi(n) \pi(n)^{*} T V_{s}^{*}=\alpha_{s}(T)
$$

for all $n \in N$. We also have

$$
\sigma(s, t n)=V_{s} V_{t n} V_{s t n}^{*}=V_{s} V_{t} \pi(n) \pi(n)^{*} V_{s t}^{*}=\sigma(s, t) .
$$

Since $V_{m s}=\pi(m) V_{s}$ for $m \in N$ we have $\sigma(m s, t)=\sigma(s, t)$, and hence $\sigma(s n, t)=\sigma\left(s n s^{-1} s, t\right)$ $=\sigma(s, t)$. So we can view (α, σ) as a twisted action of G / N on $\pi(N)^{\prime}$.

Now suppose that π extends to a continuous representation ρ of G on \mathscr{H}. Let V_{s} be as in (1) and define $v: G / N \rightarrow U(\mathscr{H})$ by $v_{s N}=\rho(s) V_{s}^{*}$. Then v is Borel because $s \mapsto V_{s}^{*}$ is Borel and ρ is continuous, and

$$
\omega(s N, t N):=v_{s N} \alpha_{s}\left(v_{t N}\right) \sigma(s N, t N) v_{s t N}^{*}=1
$$

If $\beta_{s N}:=\operatorname{Ad} v_{s N} \circ \alpha_{s N}$, then

$$
\left.\beta_{s N}(T)=\operatorname{Ad} v_{s N}\left(\alpha_{s N}(T)\right)\right)=\rho(s) V_{s}^{*}\left(V_{s} T V_{s}^{*}\right) V_{s} \rho(s)^{*}=\operatorname{Ad}(\rho(s))(T)
$$

for $T \in \pi(N)^{\prime}$, and since ρ is a homomorphism so is β. Now $\beta: G / N \rightarrow \operatorname{Aut}\left(\pi(N)^{\prime}\right)$ is a Borel homomorphism between Polish groups and hence is continuous by [13, Proposition 5]. Thus $(\beta, 1)$ is an ordinary action, and (α, σ) is exterior equivalent to an action.

Conversely, if (α, σ) is exterior equivalent to an action, then there exists a Borel map $v: G / N \rightarrow U(\mathscr{H})$ such that $v_{s N} \alpha_{s N}\left(v_{t N}\right) \sigma(s N, t N) v_{s t N}^{*}=1$. Set $\rho(s)=v_{s N} V_{s}$. Then

$$
\begin{aligned}
\rho(s) \rho(t) & =v_{s N} V_{s} v_{t N} V_{t}=v_{s N} \alpha_{s N}\left(v_{t N}\right) V_{s} V_{t} \\
& =v_{s N} \alpha_{s N}\left(v_{t N}\right) \sigma(s N, t N) V_{s t}=v_{s t N} V_{s t}=\rho(s t) .
\end{aligned}
$$

Thus $\rho: G \rightarrow U(\mathscr{H})$ is a Borel homomorphism between Polish groups, and hence is continuous by [13, Proposition 5]; ρ is the required extension of π.

Corollary 3. If $\pi: N \rightarrow U(\mathscr{H})$ is a G-invariant unitary representation of N, then there is a unitary representation ρ of G on $\mathscr{H} \otimes L^{2}(G / N)$ such that $\left.\rho\right|_{N}=\pi \otimes 1$.

From Corollary 3 we immediately obtain:
Corollary 4. Suppose that $\pi: N \rightarrow U(\mathscr{H})$ is a unitary representation of N which is unitarily equivalent to $\pi \otimes 1$ on $\mathscr{H} \otimes L^{2}(G / N)$. Then π extends to a representation of G if and only if π is G-invariant.

Proof of Corollary 3. Let (α, σ) be the twisted action of G / N on $\pi(N)^{\prime}$ constructed above. Then the twisted action $(\beta, \omega):=(\alpha \otimes \mathrm{id}, \sigma \otimes 1)$ of G / N on $\pi(N)^{\prime} \otimes B\left(L^{2}(G / N)\right)=$ $(\pi \otimes 1)(N)^{\prime}$ is the obstruction to extending $\pi \otimes 1$. We will show that (β, ω) is exterior equivalent to an action. Similar "stabilisation tricks" have been used in [19, Proposition 2.1.3] and [15, Theorem 3.4], for example.

We begin by identifying $\mathscr{H} \otimes L^{2}(G / N)$ with the space $L^{2}(G / N, \mathscr{H})$ of Bochner square-integrable functions. Since \mathscr{H} is separable, $\xi \in L^{2}(G / N, \mathscr{H})$ if and only if ξ is a Borel function from G / N to \mathscr{H} and $\int_{G / N}\|\xi(s N)\|^{2} d(s N)<\infty$. Define $v: G / N \rightarrow$ $U\left(L^{2}(G / N, \mathscr{H})\right)$ by

$$
\left(v_{t N} \xi\right)(r N)=\sigma\left(t N, t^{-1} r^{-1} N\right)^{*} \xi(r t N) \Delta(t N)^{1 / 2}
$$

where Δ is the modular function of G / N and $\xi \in L^{2}(G / N, \mathscr{H})$. (The modular function is necessary to ensure that $v_{t N}$ is unitary.) Then

$$
\left(v_{t N}^{*} \xi\right)(r N)=\sigma\left(t N, r^{-1} N\right) \xi\left(r t^{-1} N\right) \Delta(t N)^{-1 / 2}
$$

and hence

$$
\begin{aligned}
\left(\beta_{s N}\left(v_{t N}^{*}\right) v_{s N}^{*} v_{s t N} \xi\right)(r N) & =\alpha_{s N}\left(\sigma\left(t N, r^{-1} N\right)\right)\left(v_{s N}^{*} v_{s t N} \xi\right)\left(r t^{-1} N\right) \Delta(t N)^{-1 / 2} \\
& =\alpha_{s N}\left(\sigma\left(t N, r^{-1} N\right)\right) \sigma\left(s N, t r^{-1} N\right)\left(v_{s t N} \xi\right)\left(r t^{-1} s^{-1} N\right) \Delta(s t N)^{-1 / 2} \\
& =\alpha_{s N}\left(\sigma\left(t N, r^{-1} N\right)\right) \sigma\left(s N, t r^{-1} N\right) \sigma\left(s t N, r^{-1} N\right)^{*} \xi(r N) \\
& =\sigma(s N, t N) \xi(r N) \\
& =(\sigma(s N, t N) \otimes 1) \xi(r N) \\
& =\omega(s N, t N) \xi(r N) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
v_{s N} \beta_{s N}\left(v_{t N}\right) \omega(s N, t N) v_{s t N}^{*}=1 . \tag{3}
\end{equation*}
$$

If we now define $\gamma: G / N \rightarrow \operatorname{Aut}\left(\pi(N)^{\prime}\right)$ by $\gamma_{s N}=\operatorname{Ad} v_{s N} \circ \beta_{s N}$, then (3) implies that γ is a homomorphism. It remains to show that v is Borel, and it then follows from [13, Proposition 5] that $\gamma=\operatorname{Ad} v \circ \beta: G / N \rightarrow \operatorname{Aut}\left(\pi(N)^{\prime}\right)$ is continuous.

Since $U\left(L^{2}(G / N, \mathscr{H})\right)$ has the strong operator topology, v is Borel if and only if $s N \mapsto v_{s N} \xi$ is Borel for every $\xi \in L^{2}(G / N, \mathscr{H})$, and hence if and only if $s N \mapsto$ $\left(v_{s N} \xi \mid \eta\right)$ is Borel for every $\xi, \eta \in L^{2}(G / N, \mathscr{H})$. Since $(U, h) \mapsto U h$ is continuous, the map $(s N, t N, r N) \mapsto(\sigma(s N, t N), \xi(r N)) \mapsto \sigma(s N, t N) \xi(r N)$ is Borel, and hence so is

$$
\begin{equation*}
(t N, r N) \mapsto\left|\left(\sigma\left(t N, t^{-1} r^{-1} N\right)^{*} \xi(r t N) \mid \eta(r N)\right)\right| . \tag{4}
\end{equation*}
$$

Since (4) is dominated by $\|\xi(r t N)\|\|\eta(r N)\|$, and an application of Tonelli's Theorem shows that this is integrable over $G / N \times G / N$, it follows from Fubini's Theorem that

$$
t N \mapsto \int_{G / N}\left(\sigma\left(t N, t^{-1} r^{-1} N\right)^{*} \xi(r t N) \mid \eta(r N)\right) d(r N)
$$

defines, almost everywhere, an integrable (and therefore Borel) function. Multiplying by $\Delta(t N)^{1 / 2}$ shows that $t N \mapsto\left(v_{t N} \xi \mid \eta\right)$ is Borel. Thus v is Borel and γ is continuous.

Thus v implements an exterior equivalence between (β, ω) and the ordinary action $(\gamma, 1)$. It now follows from Theorem 2 that there is a representation ρ of G with $\left.\rho\right|_{N}=\pi \otimes 1$.

The irreducible case. When the representation π of N is irreducible, the commutant $\pi(N)^{\prime}$ is $\mathbb{C} 1$, the action α is trivial, and the obstruction σ to extending π is a Borel cocycle in the Moore cohomology group $H^{2}(G / N, \mathbb{T})$. Thus we recover Mackey's [9, Theorem 8.2] as it applies to ordinary (that is, non-projective) irreducible representations.

When the obstruction σ is non-trivial, we can recover Corollary 3 from another important part of the Mackey machine [9, Theorem 8.3]: π extends to a projective representation U of G with cocycle $\sigma \circ(q \times q)$, and tensoring with an irreducible $\bar{\sigma}$-representation W of G / N gives an irreducible representation $U \otimes(W \circ q)$ of G whose restriction to N is a multiple $\pi \otimes 1$ of π.

Applications to compact Lie groups. When Γ is a compact connected Lie group, Moore computed $H^{2}(\Gamma, \mathbb{T})$ as follows. Let $\widetilde{\Gamma}$ be the simply connected covering group of Γ; then the fundamental group $\pi_{1}(\Gamma)$ is isomorphic to a central subgroup of $\widetilde{\Gamma}$ and $\Gamma \cong \widetilde{\Gamma} / \pi_{1}(\Gamma)$. An inflation and restriction sequence identifies $H^{2}(\Gamma, \mathbb{\mathbb { T }})$ with the quotient of the dual group $\pi_{1}(\Gamma)^{\wedge}=\operatorname{Hom}\left(\pi_{1}(\Gamma), \mathbb{T}\right)$ by the image of the restriction map Res : $(\widetilde{\Gamma})^{\wedge} \rightarrow \pi_{1}(\Gamma)^{\wedge}$ [11, pp. 55].

When $\Gamma=\mathbb{T}^{n}$, we have $\pi_{1}(\Gamma)=\mathbb{Z}^{n}$ and $\widetilde{\Gamma}=\mathbb{R}^{n}$, and the restriction map $\mathbb{R}^{n}=\left(\mathbb{R}^{n}\right)^{\wedge} \mapsto$ $\mathbb{T}^{n}=\left(\mathbb{Z}^{n}\right)^{\wedge}$ is onto by duality. Thus $H^{2}\left(\mathbb{T}^{n}, \mathbb{T}\right)=0$. Theorem 2 thus implies that if $G / N \cong \mathbb{T}^{n}$, then every G-invariant irreducible unitary representation of N extends to G. Because representations of compact groups are direct sums of irreducible representations, this observation includes [1, Corollary 3.5], and hence also [1, Theorem 1.1].

For non-compact groups G, one might want to prove Corollary 3 by reducing to the irreducible case using a direct-integral decomposition. There can be substantial technical difficulties; see, for example [5], where a direct-integral decomposition is used to find sufficient conditions for a unitary representation of a closed normal subgroup of a separable locally compact group to extend.

The nonabelian duality approach. If $\alpha: G \rightarrow \operatorname{Aut}(A)$ is a strongly continuous action of a locally compact group G on a C^{*}-algebra A, a covariant representation of (A, G, α) consists of a representation μ of A and a unitary representation U of G such that

$$
\mu\left(\alpha_{t}(a)\right)=U_{t} \mu(a) U_{t}^{*} \quad \text { for } a \in A \quad \text { and } t \in G ;
$$

covariant representations can take values either in abstract C^{*}-algebras or in the concrete C^{*}-algebra $B(\mathscr{H})$. The crossed product $A \times_{\alpha} G$ is the C^{*}-algebra generated by a universal covariant representation in the multiplier algebra $M\left(A \times{ }_{\alpha} G\right)$ (see [16] for details of what this means). The covariant representations (μ, U) of (A, G, α) therefore give representations $\mu \times U$ of $A \times{ }_{\alpha} G$, and all representations of $A \times{ }_{\alpha} G$ have this form. We shall be particularly interested in the actions lt : $G \rightarrow \operatorname{Aut}\left(C_{0}(G / N)\right)$ and
rt : $G / N \rightarrow \operatorname{Aut}\left(C_{0}(G / N)\right)$ defined by

$$
\operatorname{lt}_{s}(f)(u N)=f\left(s^{-1} u N\right) \quad \text { and } \quad \mathrm{rt}_{t N}(f)(u N)=f(u t N)
$$

The automorphisms $\mathrm{rt}_{t N}$ commute with the automorphisms lt_{s}, and hence induce an action β of G / N on the crossed product $C_{0}(G / N) \times{ }_{\text {lt }} G$.

If π is a unitary representation of N, then the induced representation Ind π of G acts in the completion $\mathscr{H}(\operatorname{Ind} \pi)$ of

$$
\left\{\xi \in C_{b}(G, \mathscr{H}): \xi(t n)=\pi(n)^{-1}(\xi(t)) \text { and }(t N \mapsto\|\xi(t)\|) \in C_{c}(G / N)\right\}
$$

with respect to the inner product $(\xi \mid \eta)=\int_{G / N}(\xi(t) \mid \eta(t)) d(t N)$, according to the formula (Ind $\pi)_{t}(\xi)(r)=\xi\left(t^{-1} r\right)$. (See, for example, [17, pp. 296]; because N is normal there is a G-invariant measure on G / N, and we can take the rho-function in the usual formula to be 1.)

Let M be the representation of $C_{0}(G / N)$ by multiplication operators on $\mathscr{H}(\operatorname{Ind} \pi)$, and note that $(M, \operatorname{Ind} \pi)$ is a covariant representation of $\left(C_{0}(G / N), G\right.$, lt $)$. The nonabelian duality approach to the extension problem yields the following theorem.

Theorem 5. Suppose that N is a closed normal subgroup of an amenable and secondcountable locally compact group G, and suppose that $\pi: N \rightarrow U(\mathscr{H})$ is a unitary representation. Then π extends to a unitary representation of G if and only if there exists a unitary representation $Q: G / N \rightarrow U(\mathscr{H}(\operatorname{Ind} \pi))$ such that $(M \times \operatorname{Ind} \pi, Q)$ is a covariant representation of $\left(C_{0}(G / N) \times{ }_{\mathrm{lt}} G, G / N, \beta\right)$.

Proof. The induction-restriction theory of [4] says that π is the restriction of a representation of G if and only if $M \times \operatorname{Ind} \pi$ is induced, in a dual sense, from a representation of the group C^{*}-algebra $C^{*}(G)=\mathbb{C} \times G$. To deduce this from [4, Theorem 5.16], we need to recall some ideas of nonabelian duality. The group $C^{*}-$ algebra $C^{*}(G)$ is generated by a universal unitary representation $\imath: G \rightarrow U M\left(C^{*}(G)\right)$. The comultiplication $\delta: C^{*}(G) \rightarrow M\left(C^{*}(G) \otimes C^{*}(G)\right)$ is the representation corresponding to the unitary representation $\imath \otimes \imath$; it has a restriction $\delta \mid$ which is a coaction of G / N on $C^{*}(G)$. Since G is amenable, $C^{*}(G)$ coincides with the reduced group C^{*}-algebra $C_{r}^{*}(G)$, and hence we can apply results from $[4,10]$ concerning reduced crossed products. In particular, we can induce representations from $C^{*}(G)$ to the coaction crossed product $C^{*}(G) \times_{\delta \mid} G / N$ by tensoring with a ($\left.C^{*}(G) \times_{\delta \mid} G / N\right)-C^{*}(G)$ bimodule Y constructed by Mansfield [10]; the resulting map on representations is denoted by Y-Ind.

We recall from [17, Theorem C.23] that there is a Morita equivalence between $C_{0}(G / N) \times_{\text {lt }} G$ and $C^{*}(N)$ which is implemented by an imprimitivity bimodule X; we denote by X-Ind the corresponding map on representations. The algebras $C_{0}(G / N) \times{ }_{\text {lt }} G$ and $C^{*}(G) \times_{\delta \mid} G / N$ have exactly the same covariant representations, and hence are isomorphic (see, for example, [4, Theorem A.64]). Thus we can view X as a $\left(C^{*}(G) \times_{\delta \mid}\right.$ $G / N)-C^{*}(N)$ bimodule. Theorem 5.16 of [4] (with $A=\mathbb{C}$ and $M=G$) says that,
provided G is amenable, we have a commutative diagram

Since X-Ind is a bijection, it follows that a representation π of $C^{*}(N)$ extends to a representation of $C^{*}(G)$ if and only if X-Ind π is in the range of Y-Ind.

To deduce Theorem 5 from this, we have to make two observations. First, the representation X-Ind π of $C_{0}(G / N) \times{ }_{\text {lt }} G$ is equivalent to $M \times \operatorname{Ind} \pi$. To see this, note that the intertwining unitary isomorphism W of $\left(X \otimes_{C^{*}(N)} \mathscr{H}, X\right.$-Ind $\left.\pi\right)$ onto ($\mathscr{H}(\operatorname{Ind} \pi)$, Ind $\left.\pi\right)$ constructed in the proof of [17, Theorem C.33] carries the left action of $C_{0}(G / N)$ into M. Second, we recall from Mansfield's imprimitivity theorem [10, Theorem 28] that a representation μ of $C^{*}(G) \times{ }_{\delta \mid} G / N$ has the form Y-Ind ρ if and only if there is a unitary representation Q of G / N on $\mathscr{H}(\mu)$ such that (μ, Q) is covariant for the dual action $(\delta \mid)^{\wedge}$ of G / N. Since [4, Theorem A.64] also says that the isomorphism of $C_{0}(G / N) \times{ }_{\text {lt }} G$ onto $C^{*}(G) \times_{\delta \mid} G / N$ carries the action β into $(\delta \mid)^{\wedge}$, the result follows.

Remark 6. Comparing Theorem 5 with Theorem 2, it is natural to ask what happened to the hypothesis " π is G-invariant". Suppose π is G-invariant, so that there exist unitary operators W_{s} on \mathscr{H} such that $W_{s} \pi(n) W_{s}^{*}=\pi\left(s n s^{-1}\right)$. Then

$$
U_{s}(\xi)(t)=W_{s}(\xi(t s)) \Delta(s N)^{1 / 2}
$$

defines a unitary operator U_{s} on $\mathscr{H}(\operatorname{Ind} \pi)$ which intertwines the covariant representations $(M, \operatorname{Ind} \pi)$ and $\left(M \circ \mathrm{rt}_{s N}, \operatorname{Ind} \pi\right)$. So $R_{s N}:=U_{c(s N)}$ defines a map $R: G / N \rightarrow$ $U(\mathscr{H}($ Ind $\pi))$ which formally satisfies the covariance relations but is not necessarily a representation.

Our original extension problem for a G-invariant representation $\pi: N \rightarrow U(\mathscr{H})$ therefore reduces to:

Given a representation ϕ of $C^{*}(G) \times_{\delta \mid} G / N$ such that $\phi \circ(\delta \mid)_{s N}^{\wedge}$ is equivalent to ϕ for every $s N \in G / N$, is there a representation Q of G / N such that (ϕ, Q) is covariant for $\left(C^{*}(G) \times_{\delta \mid} G / N, G / N,(\delta \mid)^{\wedge}\right)$?

Since there are by hypothesis unitary operators $R_{s N}$ such that $\phi \circ(\delta \mid)_{s N}=\operatorname{Ad} R_{s N} \circ \phi$, we can repeat the analysis of Theorem 2 to see that there is a twisted action (β, ω) of G / N on the commutant of the range of ϕ, such that (β, ω) is exterior equivalent to an ordinary action if and only if we can adjust the $R_{s N}$ to obtain the required representation Q. Thus $\beta_{s N}=\operatorname{Ad} R_{s N}$ and, for $\xi \in \mathscr{H}($ Ind $\pi)$,

$$
\omega(r N, s N)(\xi)(t)=R_{r N} R_{s N} R_{r s N}^{*}(\xi)(t)=U_{c(r N)} U_{c(s N)} U_{c(r s N)}^{*}(\xi)(t)
$$

$$
\begin{aligned}
& =W_{c(r N)} W_{c(s N)} W_{c(r s N)}^{*}\left(\xi\left(t c(r N) c(s N) c(r s N)^{-1}\right)\right) \\
& =W_{c(r N)} W_{c(s N)} W_{c(r s N)}^{*} \pi\left(c(r N) c(s N) c(r s N)^{-1}\right)^{-1}(\xi(t)) \\
& =W_{c(r N)} W_{c(s N)} W_{c(r s N)}^{*} \pi\left(c(r s N) c(s N)^{-1} c(r N)^{-1}\right)(\xi(t))
\end{aligned}
$$

We claim that the obstruction (β, ω) is essentially the same as the obstruction (α, σ) to extending π from Theorem 2 . To see this, we first identify $\pi(N)^{\prime}$ with $\phi\left(C^{*}(G) \times\right.$ $\left.{ }_{\delta \mid} G / N\right)^{\prime}$ when $\phi=M \times \operatorname{Ind} \pi$. If $T \in \pi(N)^{\prime}$, then the formula $1 \otimes T(\xi)(t)=T(\xi(t))$ defines an operator in $\phi\left(C^{*}(G) \times_{\delta \mid} G / N\right)^{\prime}$. When we view $\mathscr{H}(\operatorname{Ind} \pi)$ as $X \otimes_{C^{*}(N)} \mathscr{H}$, then we recover \mathscr{H} as $\widetilde{X} \otimes_{C^{*}(G) \times G / N}\left(X \otimes_{C^{*}(N)} \mathscr{H}\right)$, where \widetilde{X} is the dual imprimitivity bimodule, and the natural isomorphism of \mathscr{H} onto $\tilde{X} \otimes_{C^{*}(G) \times G / N}\left(X \otimes_{C^{*}(N)} \mathscr{H}\right)$ takes T to $1 \otimes 1 \otimes T$. Thus $T \mapsto 1 \otimes T$ is an isomorphism of $\pi(N)^{\prime}$ onto $\phi\left(C^{*}(G) \times{ }_{\delta \mid} G / N\right)^{\prime}$.

With V as in Eq. (1), the cocycle σ in the twisted action (α, σ) satisfies

$$
\begin{aligned}
\sigma(r N, s N) & =V_{r} V_{s} V_{r s}^{*} \\
& =W_{c(r N)} \pi\left(c(r N)^{-1} r\right) W_{c(s N)} \pi\left(c(s N)^{-1} s\right) \pi\left(c(r s N)^{-1} r s\right)^{-1} W_{c(r s N)}^{*} \\
& =W_{c(r N)} W_{c(s N)} \pi\left(c(s N)^{-1} c(r N)^{-1} r c(s N)\right) \pi\left(c(s N)^{-1} s\right) \pi\left(s^{-1} r^{-1} c(r s N)\right) W_{c(r s N)}^{*} \\
& =W_{c(r N)} W_{c(s N)} \pi\left(c(s N)^{-1} c(r N)^{-1} c(r s N)\right) W_{c(r s N)}^{*} \\
& =W_{c(r N)} W_{c(s N)} W_{c(r s N)}^{*} \pi\left(c(r s N) c(s N)^{-1} c(r N)^{-1}\right) .
\end{aligned}
$$

Thus with this choice of $R_{s N}$, we have $\omega(r N, s N)=1 \otimes \sigma(r N, s N)$, and for $T \in \pi(N)^{\prime}$,

$$
\begin{aligned}
\beta_{s N}(1 \otimes T)(\xi)(t) & =R_{s N}(1 \otimes T) R_{s N}^{*}(\xi)(t) \\
& =W_{c(s N)} T W_{c(s N)}^{*}(\xi(t)) \\
& =\left(1 \otimes V_{s} T V_{s}^{*}\right)(\xi)(t) \\
& =\left(1 \otimes \alpha_{s}(T)\right)(\xi)(t) .
\end{aligned}
$$

So the isomorphism of $\pi(N)^{\prime}$ onto $\phi\left(C^{*}(G) \times_{\delta \mid} G / N\right)^{\prime}$ carries (α, σ) into the twisted action (β, ω) which obstructs the existence of Q. Thus, reassuringly, the cohomological obstruction to finding Q is identical to the obstruction to extending π.

References

[1] J.W. Cho, M.K. Kim, D.Y. Suh, On extensions of representations for compact Lie groups, J. Pure Appl. Algebra 178 (2003) 245-254.
[2] A.H. Clifford, Representations induced in an invariant subgroup, Ann. Math. 38 (1937) 533-550.
[3] M. Duflo, Sur les extensions des représentations irréductibles des groupes de Lie nilpotents, Ann. Sci. École Norm. Sup. 5 (1972) 71-120.
[4] S. Echterhoff, S. Kaliszewski, J. Quigg, I. Raeburn, A categorical approach to imprimitivity theorems for C^{*}-dynamical systems, preprint, arXiv:math.OA/0205322.
[5] R.C. Fabec, A theorem on extending representations, Proc. Amer. Math. Soc. 75 (1979) 157-162.
[6] U. Haagerup, The standard form of von Neumann algebras, Math Scand. 37 (1975) 271-283.
[7] R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras II, in: Graduate Studies in Mathematics, Vol. 16, American Mathematical Society, Providence, RI, 1997.
[8] G.W. Mackey, Induced representations of locally compact groups I, Ann. Math. 55 (1952) 101-139.
[9] G.W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958) 265-311.
[10] K. Mansfield, Induced representations of crossed products by coactions, J. Funct. Anal. 97 (1991) 112-161.
[11] C.C. Moore, Extensions and low dimensional cohomology theory of locally compact groups, I, Trans. Amer. Math. Soc. 113 (1964) 40-63.
[12] C.C. Moore, Extensions and low dimensional cohomology theory of locally compact groups, II, Trans. Amer. Math. Soc. 113 (1964) 64-86.
[13] C.C. Moore, Group extensions and cohomology for locally compact groups, III, Trans. Amer. Math. Soc. 221 (1976) 1-33.
[14] C.C. Moore, Group extensions and cohomology for locally compact groups, IV, Trans. Amer. Math. Soc. 221 (1976) 35-58.
[15] J.A. Packer, I. Raeburn, Twisted crossed products of C^{*}-algebras, Math. Proc. Camb. Philos. Soc. 106 (1989) 293-311.
[16] I. Raeburn, On crossed products and Takai duality, Proc. Edinburgh Math. Soc. 31 (1988) 321-330.
[17] I. Raeburn, D.P. Williams, Morita Equivalence and Continuous-Trace C^{*}-Algebras, in: Mathematical Surveys and Monographs, Vol. 60, American Mathematical Society, Providence, RI, 1998.
[18] C.E. Sutherland, Cohomology and extensions of von Neumann algebras, I, Publ. Res. Inst. Math. Sci. 16 (1980) 105-133.
[19] C.E. Sutherland, Cohomology and extensions of von Neumann algebras, II, Publ. Res. Inst. Math. Sci. 16 (1980) 135-174.

[^0]: This research was supported by grants from the Australian Research Council and the University of New South Wales.

 * Corresponding author.

 E-mail addresses: astrid@maths.unsw.edu.au (A. an Huef), iain@frey.newcastle.edu.au (I. Raeburn).

