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Given a standard graded polynomial ring R = k[x1, . . . , xn] over
a field k of characteristic zero and a graded k-subalgebra A =
k[ f1, . . . , fm] ⊂ R , one relates the module ΩA/k of Kähler k-dif-
ferentials of A to the transposed Jacobian module D ⊂ ∑n

i=1 R dxi

of the forms f1, . . . , fm by means of a Leibniz map ΩA/k → D
whose kernel is the torsion of ΩA/k . Letting D denote the R-
submodule generated by the (image of the) syzygy module of ΩA/k
and Z the syzygy module of D, there is a natural inclusion D ⊂Z

coming from the chain rule for composite derivatives. The main
goal is to give means to test when this inclusion is an equality –
in which case one says that the forms f1, . . . , fm are polarizable.
One surveys some classes of subalgebras that are generated by po-
larizable forms. The problem has some curious connections with
constructs of commutative algebra, such as the Jacobian ideal, the
conormal module and its torsion, homological dimension in R and
syzygies, complete intersections and Koszul algebras. Some of these
connections trigger questions which have interest in their own.
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Introduction

The subject envisaged turns out to be a special case of a general module approximation situation,
which we now state in a precise way.
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We are given a field k of characteristic zero and an integral domain A of finite type over k ad-
mitting an embedding A � k[f] = k[ f1, . . . , fm] ⊂ R , where R = k[x] = k[x1, . . . , xn] is a polynomial
ring. Let D be a finitely generated torsion free R-module with an embedding D ⊂ Rn � An ⊗A R that
reflects the nature of the above embedding A ⊂ R – this vagueness is to be clarified in each particular
event. The question is whether one can “approximate” a free presentation of D over R by means of a
free presentation of a well-established A-module D.

More precisely, let 0 → Z → Rm → D → 0 be a presentation of D based on the generators of
the embedding D ⊂ Rn . One looks for an appropriate finitely generated A-module D along with a
presentation 0 → Z → Am → D → 0 such that the R-submodule D := Im(Z ⊗A R) ⊂ Am ⊗A R � Rm

generated by Z approximates Z⊂ Rm .
Besides looking for a sufficiently ubiquitous D, one ought to conceive a notion of “approximation”.

Natural features are:

(i) (Inclusion) D ⊂ Z;
(ii) (Rank) rankR(D) = rankR(Z);

Further, since Z is a reflexive R-module, we may want that:
(iii) (Depth) D be a reflexive R-module;

Or else, one may wish that Z be closely approximated in low codimension, such as:
(iv) (Low codimension) D = Z locally in codimension one (i.e., ht(D : Z)� 2);
(v) (Contraction) Am ∩ Z = Z in the natural inclusion of A-modules Am ⊂ Rm induced by the ring

extension A ⊂ R .

As is well-known, conditions (i)–(iii) imply that D :R Z is height one unmixed or else D : Z = R ,
hence adding condition (iv) yields the equality D = Z. In particular, they imply condition (v). On itself,
(v) is a minimality condition on the approximation.

In this paper we deal with the following situation: one takes D as the transposed Jacobian module
D(f) of the forms f, while for D one takes the module ΩA/k of Kähler k-differentials of A and then
compare the respective modules of syzygies Z and D. One should note that while ΩA/k depends only
on the k-algebra A and not on any particular presentation – such as A � k[f] ⊂ k[x] – D(f) depends
on the choice of the forms f. What saves the face of the transposed Jacobian module regarding this
instability is a Leibniz map ΩA/k → D(f). Although this map depends on f, its kernel is ultimately
uniquely defined and coincides with the A-torsion submodule of ΩA/k (see Theorem 2.1).

We will say that f is polarizable if D = Z in the foregoing notation.
From a strict point of view, the problem considered in this paper has already been stated in [7,1].

However, while in the latter one took a purely combinatorial approach, here one gets entangled in
several module theoretic queries. As will be seen, this makes up for quite some difference between
this and the previous references.

We focus on a set of arbitrary forms of degree 2. Actually some of the preliminary results in
this paper hold for forms f of any fixed degree, but as we will see there is little hope to come
around polarizability in such generality. From another end, polarizability is hardly a matter of “gen-
eral” embeddings A ⊂ R . To illustrate this point, consider sets of general quadrics defining some of
the well-known rational maps Pn−1 ��� Pm−1: these may fail to be polarizable even when the image
of such maps is a smooth variety (see Example 5.2). Thus, there seems to be a strong correlation to
sparcity and non-genericity, perhaps nearly the same way that birationality is thus related – in fact,
in [1] there are unexpected connections between these two notions and the normality of A in case
f are monomials of degree 2. As we guess, the lack of sparcity often imposes a high initial degree on
the defining equations of A, an early obstruction to polarizability due to the relatively small initial
degree of the syzygy module Z.

We next describe the contents of each section.
The first section contains the setup and definitions. The main statement is a result bringing up

the Jacobian ideal of A as a tool to approximate the two modules. We state a general result about
modules of the same rank and Fitting ideals (Lemma 1.3).

In the second section we introduce the Leibniz map λ : ΩA/k → D(f). The main result (Theo-
rem 2.1) shows a tight relationship between the kernel of λ, the torsion of ΩA/k and the “contraction”
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of the differential syzygies Z to A. We then relate this result to polarizability, by showing that under a
certain contractibility hypothesis, polarizability implies the reflexiveness of the torsionfree A-module
P/P (2) , where A � k[T]/P .

The third section is dedicated to a discussion about when the algebra A = k[f] is a complete
intersection on the presence of polarizability. As it turns out, this is the case nearly exactly when the
transposed Jacobian module of f has homological dimension at most 1. There are some variations on
this theme assuming conditions on A of possibly unexpected nature.

In the next section we discuss the relationship between the ordinary syzygies of f and their
differential syzygies, thereby introducing a framework where both fit into a basic exact sequence.
A consequence is the ability to give an alternative way of looking at the differential syzygies as re-
lated to the ordinary syzygies. As an application we show that by restricting the generating degrees
of P , polarizability, and hence, the complete intersection property, in fact follows from the assumption
that the homological dimension of D(f) is at most 1.

The last two sections are dedicated to a detailed analysis of selected examples with varied behav-
ior, and also examples of a more structured nature coming from constructs in algebraic geometry. At
the end we state some open questions whose answers look essential for further development of the
subject.

1. Preliminaries

We establish the basic setup, drawing upon the notation stated in the introduction. Thus, A =
k[f] ⊂ R denotes a finitely generated k-subalgebra of the polynomial ring R and A � k[T]/P by map-
ping T j �→ f j .

Recall the well-known conormal sequence

P/P 2 δ−→
m∑

j=1

A dT j → ΩA/k → 0,

where δ maps a generator of P to its differential modulo P . More exactly, upon choosing a generating
set of P , the image of δ is the A-submodule generated by the image of the transposed Jacobian matrix
over k[T] of a generating set of P . Since P is a prime ideal and char(k) = 0, we know the kernel of
the leftmost map above. Therefore, we will focus on the exact sequence

0 → P/P (2) δ−→
m∑

j=1

A dT j → ΩA/k → 0, (1)

where P (2) stands for the second symbolic power of P .
Throughout, we let D ⊂ ∑m

j=1 R dT j , denote the R-submodule generated by the image δ(P/P (2))

through the embedding
∑m

j=1 A dT j ⊂ ∑m
i=1 R dT j induced by the inclusion A ⊂ R . Then D is gener-

ated by the vectors
∑

j
∂ F
∂T j

(f)dT j , where F runs through a set of generators of P . On the other hand,

by the chain rule of composite derivatives, if F ∈ P then
∑m

j=1
∂ F
∂T j

(f)df j = 0. This means that D ⊂ Z,

where Z is the first syzygy module of the differentials df. In other words, the elements of D are
relations of the transposed Jacobian matrix of f. These ideas have also been discussed in a different
context in [9, Section 1.1] and even earlier in [2, Main Lemma 2.3(i)]. Borrowing from this line of
thought, the present problem asks when a natural short complex involving differentials is exact.

Definition 1.1. The elements of D will be called polar syzygies of f (or of the embedding A ⊂ R if
no confusion arises), while D itself is named the polar syzygy module of f. For the sake of compari-
son, we call Z the differential syzygy module of f – though this is actually the syzygy module of the
differentials df. Accordingly, we say that f (or the embedding A ⊂ R) is polarizable if D = Z.
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The definition adopted here is the same as in [1] but slightly departs from the original definition
given in [7]. We will have a chance to deal with the slight difference later in this work – see also the
comment after Example 3.6. However, in general it remains a bewildering piece.

Example 1.2. To see how the concept may actually depend on the choice of the generators f, con-
sider the following non-extravagant example: A = k[x2, x3] ⊂ k[x]. Here, the differentials are 2x dx and
3x2 dx, respectively, hence the syzygy module of this set of generators is the cyclic module generated
by the single vector (3x,−2)t , while the polar module D is generated by the vector (3x4,−2x3)t that
lies deep inside Z. Thus, there is an inclusion as it should be, but not an equality. On the other hand,
the transposed Jacobian module D(f) is minimally generated by the differential 2x dx, hence, for this
generator, Z = {0}. But, of course, A itself cannot be generated over k by less than 2 elements, so we
still have the same D 
= {0} as before! Thus the theory depends on fixing the set f of generators of
the k-algebra A, fixing Z as the kernel of the presentation of D(f) on the generators df and, like-
wise fixing D as the R-submodule generated by those polar syzygies obtained by evaluating a set of
generators of P which are polynomial relations of df.

Of course, some of the particular features of the above example will not be present if one sticks
to the truly unirational case, i.e., when A is generated by forms of a fixed degree. But even then
polarizability may fail to be an invariant property of the k-isomorphism class of A (see [1, 5.5]).
Nonetheless a definite advantage of dealing with homogeneous generators, not necessarily of the
same degree, is that, as a consequence of the Euler map, their k-linear independence is tantamount
to that of the corresponding differentials (see the setup in the proof of Proposition 4.1).

A trivial example of a polarizable embedding is the case when A itself is a polynomial ring over k,
i.e., when f are algebraically independent over k. This is scarcely of any interest for the problem and
we will rather look at genuine cases of the notion. For these, an important role will be played by the
Jacobian ideal J = JA of A, which is read off the presentation A � k[T1, . . . , Tm]/P by taking the ideal
on A generated by the g-minors of the Jacobian matrix of a set of generators of P , where g = ht P .
It is well-known that J coincides with the dth Fitting ideal of the module of Kähler k-differentials,
where d = dim A, hence is independent of the presentation of A and the choice of generators of P .
We will write JR ⊂ R for the extended ideal in R = k[x].

In order to involve the Jacobian ideal we will rely on a lemma of independent general interest,
of which we found no explicit mention, much less a proof, though it is conceivable that it may be a
piece of folklore.

To place it in a familiar framework, let R be an integral domain and let E be finitely generated
R-module with rank r; then some power of the rth Fitting ideal I ⊂ R of E annihilates its torsion
τ (E). This assertion follows simply from the fact that τ (E)P = {0} for every prime ideal P /∈ V (I). In
particular, if E � F is a surjective homomorphism of R-modules of the same rank r then some power
of the Fitting ideal of E annihilates ker(E � F ).

The next result shows that if, moreover, E and F are generated by sets of the same cardinality
then I itself already annihilates the kernel. We state the result in the following format, which is more
appropriate to the subsequent development.

Lemma 1.3. Let R be an integral domain and let M ⊂ N ⊂ Rm be finitely generated submodules of a free
module, having the same rank g. Let I ⊂ R denote the Fitting ideal of order m − g of the cokernel Rm/M. Then
I ⊂ M : N.

Proof. The proof consists of a simple application of Laplace rule for computing determinants. Namely,
note that I can be taken to be the ideal generated by the g × g minors of the matrix whose columns
are the generators of M expressed as linear combinations of the canonical basis of Rm . Thus, let � ∈ I
denote a nonzero determinant thereof. We may assume for simplicity that it is the determinant of the
g × g submatrix on the upper left corner. Given any i = g +1, . . . ,m, consider the following (g +1)× g
submatrix of the columns generating M:
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⎛
⎜⎜⎜⎜⎝

u1,1 u1,2 · · · u1,g

u2,1 u2,2 · · · u2,g
...

...
...

ug,1 ug,2 · · · ug,g

ui,1 ui,2 · · · ui,g

⎞
⎟⎟⎟⎟⎠ .

Now, given any column generator of N , right border the above matrix with the corresponding entries
v1, . . . , v g , vi of this column to get a (g +1)×(g +1) matrix whose columns are elements of N . These
generate a submodule of N , hence has rank at most g . Therefore the corresponding (g + 1) × (g + 1)

determinant vanishes. Developing this determinant by Laplace along the bottom row, one finds

�vi = �1̂2...gv ui,1 + �12̂3...gv ui,2 + · · · + �12...ĝv ui,g, (2)

where �12... ĵ...gv denotes the g-minor obtained by replacing the jth column with column v .
If, on the other hand, i ∈ {1, . . . , g} then we obtain again a (g + 1) × (g + 1) matrix by first

bordering the initial g × g submatrix with the entries v1, . . . , v g and then repeating the ith row
of this matrix on the bottom. Clearly, this determinant is zero; developing it as before along the
repeated row, we find a similar expression as (2), with the same fixed g-minors as multipliers.

This shows that the entire column generator v ∈ N is conducted by � inside M . �
Corollary 1.4. Keeping the previous notation, let J ⊂ A stand for the Jacobian ideal of A. Then JR ⊂ D :R Z.
Moreover, f is polarizable if and only if D :Rm JR = D.

Proof. We have D ⊂ Z ⊂ ∑m
j=1 R dT j and rankR(D) = rankA(P/P (2)) = ht P = rankR(Z) (see [1, 2.3]).

By definition and the well-known fact that determinants commute with base change, JR is the Fitting
ideal of Rm/D of order m − rankR(D). We apply Lemma 1.3 with Rm = ∑m

j=1 R dT j , M = D, N = Z,
where I = JR . This proves the first statement. The second assertion is a consequence of a general
property of modules: if N is the kernel of a homomorphism η : Rm → Rn of free modules, then
N :Rm J = N for any nonzero ideal J ⊂ R . Indeed, let 0 
= a ∈ J and v ∈ Rm with av ∈ N . Applying η
yields aη(v) ∈ η(N) = {0}, hence η(v) = 0, i.e., v ∈ N , as claimed. Now, to get the second statement
of the corollary, apply this fact with N = Z. �

Of course, in the statement of the corollary one could replace JR by any nonzero ideal a⊂ R such
that a ⊂ D :R Z. The point is that the Jacobian ideal is a bona fide test ideal for polarizability that
avoids knowing Z a priori. In this vein, it would be interesting to know a priori when Z = (D)∗∗
(bidual). Of course, it is often the case that D is reflexive but D 
= Z locally in codimension one.

For further insight into the role of the Jacobian ideal vis-à-vis polarizability we refer to the next
section, where the role of the Kähler differential forms is emphasized.

2. The Leibniz map

Recall the R-module Z= ker(
∑m

j=1 R dT j �D(f)) and the conormal exact sequence of the module
of Kähler k-differentials of A as in (1):

0 → P/P (2) δ−→
m∑

j=1

A dT j
π−→ ΩA/k → 0.

Theorem 2.1. There is an A-module homomorphism λ : ΩA/k →D(f) such that

π−1(ker(λ)
) = π−1(τA(ΩA/k)

) = (Z)c,
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where τA(ΩA/k) denotes A-torsion submodule of ΩA/k and (Z)c denotes the contraction of Z via the natural
inclusion

∑m
j=1 A dT j ⊂ ∑m

j=1 R dT j induced by A ⊂ R.

Proof. We define the A-module homomorphism

λ̃ :
m∑

j=1

A dT j �
m∑

j=1

A df j ⊂
m∑

j=1

R df j = D(f) ⊂
n∑

i=1

R dxi

by the association λ̃(dT j) = df j . Then the chain rule for composite derivatives shows that λ̃ induces
an A-map λ : ΩA/k → D(f). Note that the image of λ generates D(f), although the map depends
on f – i.e., on the chosen embedding A ⊂ R , not just on A. Thus, ΩA/k is the only module in sight
that depends only on A.

Now, λ fits in a commutative diagram of A-modules and A-homomorphisms

0 P/P (2) δ

⋂
∑m

j=1 A dT j
π

⋂ ΩA/k

λ

0

0 Z
∑m

j=1 R dT j D(f) 0.

From this diagram one readily sees that (Z)c ⊂ π−1(ker(λ)). On the other hand, one clearly has a
surjection ΩA/k/τA(ΩA/k) �ΩA/k/ker(λ) since D(f) is R-torsionfree, hence also A-torsionfree. Let K
(respectively, L) denote the fraction field of A (respectively, of R). Then

rankA
(
ΩA/k/ker(λ)

) = dimK
(
ΩA/k/ker(λ) ⊗A K

) = dimL
(

RΩA/k/ker(λ) ⊗R L
)

= dimL
((

ΩA/k/ker(λ) ⊗A K
) ⊗K L

)
= rankR

(
D(f)

) = dim A.

It follows that the kernel of the surjection ΩA/k/τA(ΩA/k) �ΩA/k/ker(λ) has rank 0, hence must be
the null module since ΩA/k/τA(ΩA/k) is torsionfree. Therefore, ker(λ) = τA(ΩA/k).

Now, again since ΩA/k has rank dim A, then rankA(P/P (2)) = m − dim A = ht(P ). Therefore, the
Fitting ideal of order dim A of ΩA/k is the Jacobian ideal J of A. It follows that τA(ΩA/k) = 0 : J∞ (see
[8, Lemma 5.2]). Writing out this equality in terms of submodules of

∑m
j=1 A dT j , yields the lifting

π−1(τA(ΩA/k)) = P/P (2) : J∞ . But the embedding
∑m

j=1 A dT j ⊂ ∑m
j=1 R dT j induces an embedding

P/P (2) : J∞ ⊂D : (JR)∞ which is preserved after contraction back to
∑m

j=1 A dT j . On the other hand,

D : (JR)∞ ⊂ Z : (JR)∞ = Z,

since Z is a second syzygy. It follows that π−1(τA(ΩA/k)) ⊂ (
∑m

j=1 A dT j) ∩ Z = (Z)c . Collecting the
pieces, we have

π−1(τA(ΩA/k)
) ⊂ (Z)c ⊂ π−1(ker(λ)

) = π−1(τA(ΩA/k)
)
,

thus proving the statement. �
Definition 2.2. We call the map λ the Leibniz map.

The following result is an immediate consequence of Theorem 2.1.
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Corollary 2.3. With the above notation, the following conditions are equivalent:

(i) P/P (2) is contracted from Z.
(ii) The Leibniz map λ is injective.

(iii) ΩA/k is torsion free.

Moreover, any of these conditions implies that P/P (2) is a reflexive A-module. In particular, if P/P (2) is the
contraction of its R-extension D and if f is polarizable then P/P (2) is a reflexive A-module.

Additional applications will be given in the next section.

Remark 2.4. It is illuminating to compare the result in the above corollary to the one of Corol-
lary 1.4. The reason why torsionfreeness of ΩA/k does not imply polarizability is that the former
condition means that P/P (2) :A J = P/P (2) , and hence (P/P (2) :A J)R = D, while polarizability says
that D :R JR = D. Clearly, in general there is an inclusion (P/P (2) :A J)R ⊂ (P/P (2))R :R JR = D :R JR;
thus, knowing that ΩA/k is torsionfree does not teach us a lot more than the inclusion D ⊂D :R JR .

For explicit examples comparing the two properties, see Example 3.3; and, in degree 2, Exam-
ple 5.4.

3. Complete intersections

In this part we focus on the case where A is a complete intersection. The first result is a criterion,
in terms of polarizability, for a normal almost complete intersection A with “small” invariants to be a
complete intersection.

Proposition 3.1. With the above notation, suppose that:

(a) A is a normal almost complete intersection;
(b) dim A = ecod A = 2, where ecod denotes embedding codimension.

If the embedding A ⊂ R is polarizable and P/P (2) is the contraction of its R-extension then A is a complete
intersection in this embedding (i.e., P is generated by 2 elements).

Proof. Let A � k[T]/P as before. Since dim A = 2 and A is normal (hence, satisfies (S2)), then A is
Cohen–Macaulay. Since A is an almost complete intersection then P 2 = P (2) (see [10, (4.4)]). Then, by
Corollary 2.3, P/P 2 = P/P (2) is reflexive, hence Cohen–Macaulay because dim A = 2. By [6, 2.4], A is
a complete intersection. �
Question 3.2. In general the assumption that P have deviation at most 1 is essential for triggering
the torsionfreeness of P/P 2 even if the conditions of (b) hold. However, in the present case, P is a
particular prime ideal, so one asks whether in the present context the assumption of being almost
complete intersection is superfluous.

Example 3.3. Let A = k[x3, x2 y, xy2, y3] ⊂ R = k[x, y] be the parameters of the rational normal cubic.
Then A � k[T1, T2, T3, T4]/P , with P = I2(H), where

H =
(

T1 T2 T3
T2 T3 T4

)
.

Therefore, A is a normal Cohen–Macaulay almost complete intersection of codimension 2, hence P/P 2

is torsionfree, but not reflexive. In fact, since A is non-obstructed, P/P 2 is a proper reduction of the
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double dual (P/P 2)∗∗ [10, Corollary 4.5]. Also, ΩA/k has nontrivial torsion submodule. Note that P/P 2

is contracted from its R-extension. Therefore, A ⊂ R is not polarizable.

Of a different flavor is the next result, naturally extending [7, Theorem 2.5, (a) ⇔ (c)].

Proposition 3.4. With the above notation, suppose that f are homogeneous of the same degree and that the
embedding A = k[f] ⊂ R is polarizable. Writing A � k[T]/P , assume that μ(P ) = μ(D). The following condi-
tions are equivalent:

(a) The homological dimension of D(f) is at most one;
(b) P is generated by a regular sequence (i.e., A is a complete intersection).

Proof. (a) ⇒ (b) By a well-known stability preliminary, the homological assumption means that Z is
a projective module, hence free. Since f is assumed to be polarizable, D is free as well (of rank ht P [1,
2.3]). Now, by assumption μ(P ) = μ(D). On the other hand, μA(P/P 2) = μ(P ) because P is homo-
geneous. Then one gets μA(P/P 2) = ht P = rankA(P/P 2). It follows that P/P 2 is a free A-module and
hence, P is generated by a regular sequence of forms by the Ferrand–Vasconcelos theorem.

(b) ⇒ (a) Since P is generated by a regular sequence then P/P 2 is a free A-module. The assump-
tion μ(P ) = μ(D) then yields μ(D) = ht P = rankR(D). By polarizability, μ(Z) = rankR(Z), hence Z

is free. This shows that the homological dimension of D(f) is at most one. �
The previous result stands on the assumption that μ(P ) = μ(D). Here is one situation where this

equality holds.

Proposition 3.5. Suppose that f are k-linearly independent forms of the same degree and, moreover, that P is
generated in the same degree. Then μ(P ) = μ(D).

Proof. Morally, this comprises two steps. First, μ(P ) = μ(P/P (2)), i.e., P does not loose minimal
generators in the passage to the symbolic conormal module. Namely, we claim that the kernel of the
following map of k-vector spaces

P

(T)P
� P/P (2)

(T)P/P (2)

vanishes. Indeed, by the Zariski–Nagata differential criterion for symbolic powers in characteristic
zero, the elements of P (2) satisfy the property that all its partial derivatives belong to P . Also, since
P (2) is the P -primary component of the homogeneous ideal P 2, it is homogeneous. Therefore, the
Euler formula as applied to individual elements of P (2) yields P (2) ⊂ (T)P , as required.

Second step: μ(P ) = μ(D), i.e., P – or P/P (2) , which now amounts to the same – does not loose
minimal generators while extending to an R-module. For this to hold we need the second assump-
tion. Thus, let P be minimally generated by forms {F1, . . . , Fr} of the same degree. In any case D is
generated by the evaluated differentials {dF1(f), . . . ,dFr(f)} as an R-module. But by the assumption
on f these generators have the same standard R-degree, so the only way they can fail to be minimal
is that they be linearly dependent over the base field k. However, such a dependence immediately
implies that there are λ1, . . . , λr ∈ k, not all zero, such that

∑
1�l�r

λl
∂ Fl

∂T j
∈ P , 1 � j � m.

Since deg(∂ Fl/∂T j) < deg(Fl) for ∂ Fl/∂T j 
= 0, we arrive at a contradiction. �
The hypothesis on P seems to be needed in general, as the following example indicates.



I. Bermejo et al. / Journal of Algebra 375 (2013) 41–58 49
Example 3.6. Let R = k[x1, . . . , x6] and let

f = {x1x2, x2x3, x3x4, x4x5, x5x6, x6x1, x1x3, x3x5, x5x1}. (3)

Then the presentation ideal of k[f] is a codimension 3 almost complete intersection in which the
quadrics generate a maximal regular sequence, while the fourth generator lives in degree 3. It can be
shown that f is polarizable and that D is a free module generated by the differentials of the three
quadrics (see [1, Example 5.21]).

It would be interesting to know, under the assumption that f are homogeneous of the same degree
and perhaps also under the assumption of polarizability, when the equality μ(P ) = μ(D) holds. By a
quirk this is the case if f happens to be the set of degree 2 monomials corresponding to a connected
bipartite graph – see [7, Theorem 2.3], where this falls in an indirect way from the main result.

Remark 3.7. To see how subtle the problem is, one can take the following bipartite graph, whose
edge-ideal is ideal theoretically entirely analogous to the above:

f = {x1x2, x2x3, x3x4, x4x5, x5x6, x6x1, x1x7, x3x7, x5x7}. (4)

Both this and (3) are Cohen–Macaulay ideals of codimension 3, with same graded Betti numbers.
However, here μ(P ) = μ(D) (by [7] or by direct computation).

We observe that in both (3) and (4) the ideal P is the homogeneous defining ideal of an arith-
metically normal projective variety. Thus, in both cases one can deduce polarizability from [1, Theo-
rem 5.10].

We have the following immediate consequence.

Corollary 3.8. Suppose that f are homogeneous of the same degree and that the embedding k[f] ⊂ R is polar-
izable. If P is generated in the same degree and the homological dimension of D(f) is at most one then A is a
complete intersection.

Proof. One applies Proposition 3.4 along with Proposition 3.5. �
We emphasize the role of polarizability in the last corollary. Thus, e.g., if f are the parameters

defining the twisted cubic in P3, the hypotheses in the above statement are satisfied, nevertheless
A is not a complete intersection, and indeed it is not polarizable (see Example 3.3).

At the other end of the spectrum, even under the hypothesis of polarizability the result is false in
higher homological dimension.

Example 3.9. Let R = k[x1, x2, x3] and let A = R(2) ⊂ R be the 2-Veronese of R . Then this embedding
is polarizable by [1, 5.1] and A is defined by quadrics, while the projective dimension of D(f) is 2.

The question naturally arises as to when the two conditions in Corollary 3.8 actually imply that
k[f] ⊂ R is polarizable (hence a complete intersection). In the next section we give an answer to this
question under an additional condition (cf. Proposition 4.4).

4. The Euler–Jacobi–Koszul exact sequence

In this section we still assume that f are forms, but not necessarily of the same degree.
We wish to relate more closely the polar and differential syzygies of f to its ordinary syzygies.

Henceforth, for any set h ⊂ R , Z(h) denotes the first syzygy module of h. Set d j = deg( f j), 1 � j � m,

and f̃ = {d1 f1, . . . ,dm fm}. Since char(k) = 0, clearly (f)R = (f̃)R .
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Proposition 4.1. There is an exact sequence of R-modules

0 → Z→ Z(f̃) j−→ D(f) ∩ Z(x) → 0, (5)

where j sends a syzygy (g1, . . . , gm) of f̃ to the element
∑m

j=1 g j df j . In particular, if f is polarizable then there
is an exact sequence of R-modules

0 →D → Z(f̃) → D(f) ∩ Z(x) → 0. (6)

Proof. The restriction of the Euler map ε : ∑n
i=1 R dxi → R , where ε(dxi) = xi , induces an exact se-

quence of R-modules

0 → D(f) ∩ Z(x) → D(f) =
m∑

j=1

R df j → (f̃)R = (f)R → 0.

This in turn fits in a snake diagram:

0

0 0 D(f) ∩ Z(x)

0 Z
∑m

i=1 R dT j

dT j �→df j
D(f)

ε

0

0 Z(f̃)
∑m

i=1 R dT j

dT j �→d j f j
(f)R 0

Z(f̃)/Z 0 0

0,

Then j is the lifting to Z(f̃) of the inverse of the connecting isomorphism in the kernel–cokernel
sequence by the snake lemma. To make this map explicit, note that an element

∑m
j=1 g j df j ∈ D(f) ∩

Z(x) is characterized by the equation g ·Θ(f) ·xt = 0 or by its transpose, where Θ denotes the Jacobian
matrix of f. This readily gives the way j acts. �
Definition 4.2. The exact sequence (5) could be called the Euler–Jacobi–Koszul syzygy sequence, while
D(f)∩ Z(x) could accordingly be dubbed the module of Euler–Jacobian syzygies of f and j the Jacobi map
of f.

Both exact sequences are ways of showing, in characteristic zero, that the syzygies of a polarizable
set of forms of the same degree have a fixed structure in differential terms.

Here is a computational view of the above syzygy sequence in terms of the involved matrices,
emphasizing the Jacobi map. For the sake of simplicity we assume that f are forms of the same
degree and for the sake of lighter reading we write Rn = ∑m

i=1 R dxi , Rm = ∑m
j=1 R dT j .
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Denoting by Θt the transposed Jacobian matrix of f, one has maps

Rq

ψ

R p
ϕ

Θt ·ϕ

Rm

Θt

(f) 0

Rn

where ϕ denotes the syzygy matrix of f and ψ denotes the syzygy matrix of Θt · ϕ . Then

im
(
Θt · ϕ) ⊂ im

(
Θt) ∩ im

(
2∧

Rn κ−→ Rn

)
,

with κ denoting the first map of the Koszul complex on x. Thus, the columns of the matrix Θt · ϕ
generate the image of the map j. Viewed this way, Z is also the submodule of Rm generated by the
columns of the product matrix ϕ · ψ , though not minimally – in fact, quite often some columns may
be null.

Certainly, this is not how one would like to compute generators of Z, as it depends on computing
syzygies of an even more involved module. Its purpose is mostly theoretical, indicating the interme-
diation of the syzygies of f, thus leading us to make assumptions on those syzygies.

Let indegT (E) the initial degree of a graded module over a graded ring T . One has the easy

Lemma 4.3. Let f ⊂ R be k-linearly independent forms of the same degree � 2. Then indegR(D) � 2 and
indegR(Z) � 2. Moreover, suppose that D is generated in fixed degree d, that indegR(Z) � d and that μ(D) �
μ(Z). Then f is polarizable.

Proof. Since f are k-linearly independent forms of the same degree, one has an isomorphism of
graded k-algebras k[T]/P � A = k[f] ⊂ R , where P is a homogeneous ideal generated in degree � 2.
Clearly then the image of P/P 2 in

∑
j A dT j is a graded A-module generated in degree � 1. Recall

that D is generated by these generators further evaluated on f ⊂ R . Since deg(f) � 2, we clearly have
indegR(D) � 2.

As for Z, as seen above the entire syzygy module Z is generated by the columns of the product
matrix ϕ · ψ , where ϕ is the syzygy matrix of f, hence its entries have R-degree at least 1. Taking a
minimal set of generators of Im(Θt · ϕ), the entries of the syzygy matrix ψ of Θt · ϕ will be forms of
positive degree. It follows that the columns of ϕ · ψ have degree at least 2, hence Z is generated in
degree at least 2.

The last assertion is clear since then all the minimal generators of D must be minimal generators
of Z and the latter can thereby have no other minimal generators. �

An example of application of this sort of ideas is as follows.

Proposition 4.4. With the above notation, suppose that f are k-linearly independent forms of degree 2 and set
k[f] � k[T]/P as before. Assume that:

(a) P is minimally generated by forms of degree 2;
(b) The homological dimension of D(f) is at most one.

Then A is a polarizable complete intersection.
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Proof. By (b) Z is a free module, i.e., μ(Z) = rankZ. Since rankD = rankZ, we have μ(D) � μ(Z).
By Lemma 4.3, D = Z must be the case. That A is besides a complete intersection follows from
Corollary 3.8. �
Remark 4.5. Assumption (a) in the previous proposition is essential – see Example 5.3 below. This
shows that, in general, normal complete intersections are not polarizable.

5. Illustrative examples

The following is a selection of examples to help visualize the theory.

Example 5.1. If the degrees of the generators f of A are higher than 2, polarizability is a rare phe-
nomenon even if A is a homogeneous isolated singularity. To see this, consider a homogeneous
version of Example 1.2: A = k[x3

1, x2
1x2, x3

2] ⊂ k[x1, x2]. A simple calculation shows that Z is (cyclic)
generated in R-degree 3, while D is (cyclic) generated in R-degree 6 because the presentation ideal
of A over k is generated by a form of degree 3 in the presentation variables. Perhaps more conceptual
is the case of the parameters of the twisted cubic as shown in Example 3.3.

Example 5.2. If f are general forms of degree 2 then polarizability may fail. Indeed, if f are 5 general
quadrics in k[x0, x1, x2] then k[f] is (up to degree renormalization) the homogeneous coordinate ring
of a general projection V to P4 of the 2-Veronese embedding of P2 in P5. It is known and classical
that V is a smooth variety cut out by cubics, hence the polar syzygy module D is minimally generated
in degree 4. But the differential syzygy module Z is generated in degree 3.

This example teaches us quite a bit:

(1) A is an isolated singularity (i.e., Proj(A) is smooth), but it is not normal nor Cohen–Macaulay as
depth(k[f]) = 1;

(2) f are the Pfaffians of a skew-symmetric 5 × 5 matrix, whose entries are then necessarily linear
forms. Therefore, the ideal (f) is linearly presented. This is in direct contrast with the situation
where f are monomials, in which case f is always polarizable (see [1, Proposition 5.18]).

In any case, one may observe that through the Jacobi map of Proposition 4.1 the linear syzygies
of f correspond to the degree 2 component of the kernel of the Euler map D(f) → (f). Thus, if f
linearly presented then this kernel is generated in degree 2, a condition which would be interesting
to understand. Unfortunately, this condition does not seem to have immediate impact on the degrees
of Z as the generators of the latter will be non-minimal syzygies of f.

Example 5.3. (See [1, Theorem 5.10].) A normal hypersurface is not polarizable in general. Let

A = k
[
x2

1, x1x2, x2x3, x3x4, x2x4
] ⊂ k[x1, x2, x3, x4].

Then A is a normal hypersurface of degree 3 with defining equation T 2
2 T4 − T1T3T5. Obviously, D is

free (of rank one). A is not polarizable since the transposed Jacobian matrix of its generators has
a nonzero relation in degree 3 while D is generated in degree 4. Actually, Z is cyclic, hence free.
Thus, though D is isomorphic to Z as abstract R-modules, it is not a second syzygy in its natural
embedding (the inclusion D ⊂ Z is not an equality in codimension one exactly along the prime (x2)).

A computation shows that P/P 2 is the contraction of Z, hence is contracted from its R-extension
as well. Thus, contractibility and reflexivity together do not imply polarizability, hence the last as-
sertion in Corollary 2.3 admits no weak converse. One may wonder whether contractibility is always
the case for a normal complete intersection parameterized by 2-forms. Note, however, that there may
exist ideals in A which are not contracted from their extensions in R , as is here the case – e.g.,
I = (x3x4)A is not contracted from its extension since x2

2 · x3x4 ∈ I R ∩ A \ A.
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Example 5.4. (See [7, p. 992].) A is now generated by square-free monomials and D is not a reflexive
R-module. Namely, one takes

A = k[x1x2, x2x3, x3x4, x4x5, x5x6, x6x1, x2x4, x2x6] ⊂ k[x1, x2, x3, x4, x5, x6].
Here one can show that A is normal, hence Cohen–Macaulay, i.e., P is a codimension two perfect
ideal. Moreover, it can easily be seen that P is an almost complete intersection. It follows that
P 2 = P (2) (see [10, (4.4)]). On the other hand, A is locally regular in codimension 2, hence ΩA/k

is torsionfree (see [10, 4.6]). It follows from Corollary 2.3 that P/P 2 is both reflexive and contracted.
It was pointed out in [7] that A is not polarizable. An additional calculation gives ht(D : Z) � 2,
hence the two modules coincide in codimension one. Of course D fails to be reflexive since A is not
polarizable.

Example 5.5. Next is an example where nearly everything goes wrong although the k-generators f of
A in the embedding A ⊂ R have some inner symmetry:

A = k
[
x2

1, x2
3, x1x2, x2x3, x3x4, x1x4

] ⊂ k[x1, x2, x3, x4].
The presentation ideal P of A is a codimension two ideal generated by one quadric and three cubics.
Clearly, the quadric forbids the generators to be minors. Therefore, A is not Cohen–Macaulay, hence
not normal either (although it is locally regular in codimension one). Here, P 2 = P (2) and P/P 2 is not
a reflexive A-module. A is not polarizable, hence D is not a reflexive R-module either – as a direct
computational check, e.g., one can see that ht(D : Z)� 2.

6. Structured “geometric” classes

In the previous section most examples had no structured nature. In this part we collect a few
examples of a more structured geometric nature.

Previously known results are as follows:

Veronese embeddings of order 2. It has been proved in [1, Corollary 5.1] that the edge algebra of a
complete graph with a loop at every vertex is polarizable. This means that the 2-Veronese embedding
of Pn is given by a polarizable parameterization.

Segre embedding and its coordinate projections. It was proved in [1, Corollary 5.2] that the edge
algebra of a connected bipartite graph is polarizable. This means that the homogeneous coordinate
rings of the Segre embedding Pn × Pm ↪→ PN and of all its “connected” coordinate projections are
polarizable.

6.1. Grassmannian of lines and scrollar parameterizations

In this part we prove two new results.

Proposition 6.1. Let X := (xkl) (1 � k � 2, 1 � l � m � 3) be a 2 × m generic matrix over k. Let R = k[xkl]
and A = k[f] ⊂ R where f is the set of the 2 × 2 minors of X. Then f is polarizable.

Proof. It is classical and well-known that a defining ideal P ⊂ k[T] of A over k is generated by the
Grassmann–Plücker (quadratic) relations of these minors and such P is minimally generated by

(m
4

)
such relations quadratic T-forms, one for each 2 × 4 submatrix of X. By Proposition 3.5, D is min-
imally generated by

(m
4

)
elements. We will show that any element in Z can be expressed as an

R-combination of these
(m

4

)
polar syzygies, i.e., f is polarizable.

For this we will proceed by induction on the number m of columns (not on the number 2m of vari-
ables!). The assertion is (vacuously) verified for m = 3 since the minors are algebraically independent
in this case and D = Z= 0.
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Thus, assume that m � 4. To stay clear, we write X(m) for X, f(m) for f and, accordingly, write
P (m) for P and Z(m) for Z. Note that the equality

(m
4

) = (m−1
4

) + (m−1
3

)
is the numerical counterpart

of saying that P (m) = (P (m − 1), Q (m − 1)), where Q (m − 1) denotes the set of Grassmann–Plücker
relations obtained from all 2 × 4 submatrices of X(m) involving the last column.

On the other hand, the transposed Jacobian matrix of f(m) has the following shape

tΘ
(
f(m)

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2m 0 0 · · · 0
0 x2m 0 · · · 0

tΘ(f(m − 1))m−1
1 0 0 x2m · · · 0

...
...

... · · · ...

0 0 0 · · · x2m

0 −x21 −x22 −x23 · · · −x2m−1

−x1m 0 0 · · · 0
0 −x1m 0 · · · 0

tΘ(f(m − 1))2m−1
m+1 0 0 −x1m · · · 0

...
...

... · · · ...

0 0 0 · · · −x1m

0 x11 x12 x13 · · · x1m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the left vertical block, interspersed with two rows of zeros, is the transposed Jacobian matrix
of f(m − 1). By the inductive hypothesis, Z(m − 1) is generated by

(m−1
4

)
polar syzygies. Let’s denote

by ˜Z(m − 1) the submodule of Z(m) minimally generated by these
(m−1

4

)
polar syzygies each stacked

over a column of m − 1 zeros. Observe that ˜Z(m − 1) is the submodule of Z(m) generated by the
polar syzygies arising from the minimal generators of P (m − 1), and that any element in Z(m) not

involving the right vertical block above (i.e., whose last m − 1 entries are zero) belongs to ˜Z(m − 1).
Let h ∈ Rm−1 denote the vector whose coordinates are the last m − 1 coordinates of an arbitrarily

given vector s ∈ Z(m). By the shape of the matrix, h is a syzygy of the matrix formed with the mth
and last rows of the matrix right vertical block. Up to a permutation of these rows and a sign, this
matrix is just X(m − 1). We know the minimally generating syzygies of this generic matrix from the
Buchsbaum–Rim complex. To wit, for every 2 × 3 submatrix of X(m − 1) with columns 1 � i < j <

k � m − 1, take its 2 × 2 signed minors. Then let mi jk ∈ Rm−1 denote the vector whose coordinates
are these minors in places i, j and k, and zero elsewhere. The set of these vectors minimally generate
the module of syzygies of X(m − 1).

Accordingly, write h = ∑
1�i< j<k�m−1 qijkmi jk for suitable qijk ∈ R .

From the other end, choosing a 2 × 3 submatrix of X(m − 1) with columns i, j,k amounts to
picking a 2 × 4 submatrix of X(m) involving the last column. The latter gives rise to a Grassmann–
Plücker equation pi jk inducing a polar syzygy whose nonzero coordinates in the last m − 1 slots are
precisely the (signed) minors of the 2 × 3 submatrix in places i, j and k as above.

It follows that the last m − 1 coordinates of s − ∑
1�i< j<k�m−1 qijkpi jk are zero, hence this vector

belongs to ˜Z(m − 1). Therefore, s is an R-combination of the polar syzygies pi jk and of the polar

syzygies that generate ˜Z(m − 1). This shows the contention. �
We next treat a well-known class of scrollar parameterizations. The approach of [4] is suited here,

whereby any d-catalecticant 2 × m generic matrix can be written as a scrollar matrix. As remarked in
[4] this gives a subclass of all scrollar matrices for which the corresponding subalgebras are Koszul
algebras, hence defined by quadratic relations (that include the appropriate Grassmann–Plücker rela-
tions).
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Explicitly, fixing an integer 1 � d � m, let now

X(m,d) :=
(

x1 x2 · · · x1+d · · · xm−1 xm

x1+d x2+d · · · x1+2d · · · xm−1+d xm+d

)
.

Note that the extreme values d = 1 and d = m correspond, respectively, to the ordinary Hankel ma-
trix and the generic matrix. As in the previous example, we let f(m,d) denote the 2 × 2 minors of
X(m,d) and consider the k-subalgebra A = k[f(m,d)] ⊂ R = k[x1, . . . , xm+d]. It has also been shown
that dim A = min{2m − 3,m + d} (see [4, Theorem 5.2]). Therefore, dim A = dim R if and only if
d � m − 3; for d > m − 3, A is isomorphic to the homogeneous coordinate ring of the Grassman-
nian G(1,m + d − 1) discussed in the previous example.

Proposition 6.2. Let f(m,d) denote the 2 × 2 minors of the d-catalecticant 2 × m generic matrix X(m,d).
Then f(m,d) is polarizable.

Proof. To see that f(m,d) is polarizable, we would like to apply the same recipe as in the generic
case. This is fine insofar that removing the last column of the above matrix preserves its catalecticant
shape with the same leap d, thus allowing to induct on the number of columns as in the completely
generic case.

However, there are some numerical changes when d � m − 4. Firstly, the ideal P (m,d) is now
generated by the Grassmann–Plücker relations and additional quadratic relations containing more
than 3 terms. According to [4, Corollary 3.4] these latter relations – called N-relations – constitute
a set whose cardinality is the number ν(m,d) of indices i, j,k, l such that 1 � i < j < k < l � m and
k − j > d. Therefore, ν(m,d) = (m−d

4

)
, and hence μ(P (m,d)) = (m

4

) + (m−d
4

)
.

A set of generators of P (m,d) as given in [4, Corollary 3.4] can be further slightly modified so that
each N-relation is replaced by a quadratic relation with exactly 6 terms, which for convenience we
will call an M-relation.

The advantage of switching to M-relations stems from the fact that, while an N-relation as in [4]
comes naturally from a parallel relation at the level of the initial ideal, an M-relation is seen to
be structurally defined. Namely, for every choice of indices i, j,k, l such that d + 1 � i < j < k <

l � m, pick the 2 × 4 submatrix of X(m,d) whose entries on the first row are xi, x j, xk, xl . (Clearly, the

total number of such different choices is ν(m,d) = (m−d
4

)
.) Then pick the unique 2 × 4 submatrix of

X(m,d) whose entries on the second row are xi, x j, xk, xl . Next stack these two matrices together to
form a 4 × 4 matrix M(i, j,k, l) with one repeated row, so its determinant vanishes. Expanding this
determinant by the Laplacian rule along the 2-minors of the first two rows yields a quadratic relation
between a subset of the 2-minors of M(i, j,k, l) which, by construction, gives a relation between a
subset of the 2-minors of the original matrix X(m,d). In this way, one gets exactly one M-relation for
each choice of a 2 × 4 submatrix of X(m,d) involving four of the last m − d columns of X(m,d).

Now one argues in a similar way as in the generic case by a slight adaptation of the procedure. �
6.2. A class of polar maps

This example is inspired by a renowned construction of Gordan and Noether in connection with
the Hesse problem (see [5]). We will actually look only at the simplest situation of their construction
as follows: let f1, . . . , fn−r (n � r + 1) be forms of the same degree � 2 in the polynomial ring
R := k[x1, . . . , xr] over a field k – in [5] the authors assume that the given forms are algebraically
dependent over k, e.g., when n � 2r + 1, but will make no such restriction at the outset.

Consider the k-subalgebra A := k[ f1, . . . , fn−r] ⊂ R . Take new variables xr+1, . . . , xn , and let F be
the following form

F := xr+1 f1 + · · · + xn fn−r ∈ S := k[x1, . . . , xr, xr+1, . . . , xn],
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which can suggestively be thought of as the generic member of the linear system spanned by f :=
{ f1, . . . , fn−r}.

Let B be the k-subalgebra of S generated by the partial derivatives of F . Write

B := k

[
∂ F

∂x1
, . . . ,

∂ F

∂xr
,

∂ F

∂xr+1
= f1, . . . ,

∂ F

∂xn
= fn−r

]
⊂ S.

For simplicity, call these generators g = {g1, . . . , gr, gr+1, . . . , gn}.

Proposition 6.3. With the above notation, if dim A = r then B is polarizable if (and only if) A is polarizable.

Proof. Note that the hypothesis of the claim implies that n � 2r.
Actually, we prove something more precise. Namely, look at the transposed Jacobian matrix of g

which is nothing but the Hessian matrix of F . A careful inspection of g leads to the following block
shape

tΘ(g) =
(

H tΘ(f)

Θ(f) 0

)
,

where Θ(f) is the Jacobian matrix of the originally given forms f and H is the r × r Hessian matrix
of F regarded as a polynomial in x1, . . . , xr with coefficients in k[xr+1, . . . , xn]. Since dim A = r � n − r
then the rank of Θ(f) is r, hence one readily obtains that the first r coordinates of any syzygy of the
above matrix are all zero, while the last n − r coordinates constitute a syzygy of tΘ(f).

To translate this outcome in a more formal fashion, let ZT (h) stand for the differential syzygy
module of a set of forms h in a polynomial ring T over k. By definition, we have the exact sequence
of S-modules

0 → ZR(f) → Rn−r
tΘ(f)−−−→

r∑
i=1

R dxi . (7)

Since R ⊂ S is a flat (free) extension, we get an exact sequence of R-modules

0 → ZR(f) ⊗R S → Sn−r
tΘ(f)⊗R S−−−−−−→

r∑
i=1

S dxi .

Taking R-duals in (7), observing that coker(tΘ(f)) is torsion because the rank of tΘ(f) is r, and
tensoring with S over R , yields a short exact complex

0 →
r∑

i=1

S
∂

∂xi

Θ(f)⊗R S−−−−−→ (
Sn−r)∗

. (8)

Consider the map of complexes over S

0 ZR(f) ⊗R S Sn−r
tΘ(f)⊗R S ∑r

i=1 S dxi

0
∑r

i=1 S ∂
∂xi

Θ(f)⊗R S

H

(Sn−r)∗.
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The mapping cone of this map is the exact complex

0 → ZR(f) ⊗R S → Sn−r ⊕
r∑

i=1

S
∂

∂xi

Ψ−→
r∑

i=1

S dxi ⊕ (
Sn−r)∗

,

where Ψ is represented, in suitable bases, by the matrix

(
tΘ(f) H

0 Θ(f)

)
.

Therefore, up to change of basis in the free modules, one gets an isomorphism ZR(f) ⊗R S �
ZS (g) ⊂ Sn .

In particular, these two S-modules have the same rank. Now, the S-rank of ZR(f) ⊗R S equals the
R-rank of ZR(f) and the latter is n − r − dim A. But the rank of the S-module ZS (g) is n − dim B . It
follows that dim B = dim A + r. But since B is generated over A by r elements, it follows that B is a
polynomial ring over A (of dimension 2r).

We now deal with the respective modules of polar syzygies. Let A � k[T1, . . . , Tn−r]/P and B �
k[T1, . . . , Tn]/P denote respective polynomial presentations of the two algebras. One has an inclusion
Pk[T1, . . . , Tn] ⊂ P . Since ht(P ) = n − r − dim A = n − 2r = n − dim B = ht(P ), we have an equality.
This implies a similar relation as above between the respective associated modules of polar syzygies.
Namely, B is a polynomial ring over A, hence A ⊂ B is a free extension. Therefore, by the same token,
the equality Pk[T1, . . . , Tn] = P translates into a natural isomorphism

Im
(

P/P 2) ⊗A B � Im
(

P/P 2) ⊂
∑
�=1

B dT�.

This shows the contention. �
Illustration. Take A to be a d-catalecticant parameterization as in (6.2), with d � m − 3. Then, as
remarked there, A has maximal dimension, i.e., dim A = m + d. The polar map of the corresponding
hypersurface F has an image of (geometric) dimension 2m + 2d − 1 in P(m

2)+m+d−1. As a slight check
on the numbers, since we are assuming d � m − 3 then m + d � 2m − 3. Clearly then

(m
2

)
< m + d �

2m − 3 would entail (m − 2)(m − 3) = m2 − 5m + 6 < 0, which is impossible as m � 3.
In the simplest case, with d = 1 and m = 4, we get the polarizable forms

x3x6 + x4x7 + x5x8,−2x2x6 − x3x7 − x4x8 + x4x9 + x5x10, x1x6 − x2x7 − 2x3x9 − x4x10 + x5x11,

x1x7 − x2x8 + x2x9 − x3x10 − 2x4x11, x1x8 + x2x10 + x3x11,−x2
2 + x1x3,−x2x3 + x1x4,

−x2x4 + x1x5,−x2
3 + x2x4,−x3x4 + x2x5,−x2

4 + x3x5

parameterizing a Plücker quadric hypersurface in P10.

Remark 6.4. We observe that this procedure is in principle iterative, but the numbers and the result
proper will be different.

We close with some general questions.

Question 6.5. Let f ⊂ R be a polarizable set of forms of degree 2. Is k[f] ⊂ R normal?

Question 6.6. Let f ⊂ R be a polarizable set of forms of degree 2. Is k[f] ⊂ R Cohen–Macaulay?
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In [1] the answer to the first of these questions is affirmative when f are monomials, hence so is
the answer to the second question under the same assumption.

In general, if the answer to the second of these questions is affirmative – or, if at least k[f] satisfies
Serre’s property (S2) – a loose strategy for the first question would be to show that htJR � htJ. This
would entail htJ� 2 since with D = Z the ideal JR would be the Fitting of a second syzygy. Thus,
a preliminary question along this line is to understand when the Jacobian ideal is height decreasing
through k[f] ⊂ R . A sufficient condition for this to happen is that the contraction JR ∩k[f] is contained
in some minimal prime of J of minimal height.

Affirmative answers to these questions would give another proof of the result of [4] to the effect
that the algebra parameterized by the 2 × 2 minors of a d-catalecticant matrix is normal and Cohen–
Macaulay. Of course, this is not a totally impressive outcome since we have drawn upon the ideas of
[4] for the structure of such objects in order to prove their polarizability.

Question 6.7. Suppose that P is generated by forms of degree 2 constituting a Gröbner basis for some
monomial order. Is f polarizable?

The assumption forces the k-algebra A = k[f] ⊂ R to be a Koszul algebra according to [3, Theo-
rem 2.2]. Note that most geometric examples in this section are Koszul algebras.
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