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Learn-merge invariance is a property of prior distributions (related to postulates 
introduced by the philosophers W. E. Johnson and R. Carnap) which is defined and 

discussed within the Bayesian learning model. It is shown that this property in its 
strong formulation characterizes the Dirichlet distributions and processes. 

Generahzations towards weaker formulations are outlined. 11: 1986 Academic Press, Inc. 

1. INTRODUCTION AND OUTLINE 

Every Bayesian analysis of the multinomial situation requires choosing a 
prior from the set of all distributions over the possible parameter vectors, 
i.e., over the simplex spanned by the observation categories. By applying 
the principle of natural conjugate priors, the class of all priors is restricted 
to the Dirichlet-family. However, this principle accounts merely for 
mathematical convenience and does not seem to be genuinely statistically 
founded. This raises the question, whether other statistically motivated 
requirements may be formulated with respect to any potentially chosen 
prior. 
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In this paper we propose a principle termed “Learn-Merge Invariance” 
(LMI) which in its strongest formulation like the above principle charac- 
terizes the Dirichlet distributions and, if suitably applied, also characterizes 
the Dirichlet processes introduced by Ferguson (1973). Roughly speaking, 
the principle of LMI states that it should make no difference in inference, 
whether one combines (merges) some of the observation categories before 
or after sampling. This principle has not yet been investigated in the 
literature. However, Lochner (1975) also stated this as a desirable 
property, but did not know that it characterizes the Dirichlet-distributions, 
if arbitrary mergers are allowed. Within non-statistical framework the 
philosophers W. E. Johnson (1932) and R. Carnap (1958) introduced 
independently postulates which turn out (in section 2) to be equivalent to 
the principle of LMI in a special case. 

Instead of choosing a prior from the set of all measures on the simplex, 
one may equivalently choose a symmetric measure on AN, where A denotes 
the finite set of observation categories. This is possible, since both sets of 
measures are known to be bijectively related to each other, by virtue of the 
results of Hewitt-Savage (1955) (i.e. the generalization of De Finetti’s 
representation theorem). This relation is utilized in the approach given 
here. Given the set of all strictly positive symmetric measures on A”, the 
principle of LMI (and generalizations of it) may be conveniently for- 
mulated and discussed in terms of these measures rather than in terms of 
random variables (Section 2). In Section 3, the LMI-Measures on A” and 
their counter parts on the simplex (the Dirichlet family) are characterized. 
The generalization to infinite A (characterizing the Dirichlet processes) is 
carried out in section 4. 

The main results in the finite case were already obtained by Boge (1969) 
and some proofs were shortened by Tremmel (1971). This paper reports 
still shorter proofs. The presentation given here follows the structure 
worked out by the second author. 

2. THE PRINCIPLE OF LEARN-MERGE-INVARIANCE 

First we give some notation and definitions. A denotes a finite set of 
observation categories, and A”, A* the set of all infinite respectively finite 
sequences of elements of A (the latter includes the empty sequence). For 
dE A* let IdI denote the lenght of d. W(A) resp. W(A”) is the space of all 
probability measures on A resp. A” (with usual a-algebra). For P E W(A”) 
and d E A*, P(d) denotes the probability of d according to the marginal dis- 
tribution of P on the first IdI coordinates. According to Hewitt-Savage 
(1955), PE W(A”) will be called symmetric if P(d)= P(nd) VdEA*, where 
rc may be any permutation operator on the IdI elements. P is called regular 
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if P(d) > 0, VIE A *. Let S(A N ) and R (A WI ) respectively denote the set of all 
symmetric and of all regular probability measures on AN and let 
SR(A”)=S(A”)nR(A”). 

For cp: A + B, PE W(A”), let Pp denote the q-induced measure on B”, 
and T(A) the class of all such surjective cp’s with arbitrary B. We shall call 
such mappings “mergers”, and P+ Pv the “process of merging” 
(enlargement of observation categories). Pd(. ) (de A*, PE R(A”)) denotes 
the conditional distribution on the remaining coordinates given d. We shall 
call P + Pd the “process of learning”, since it reflects the updating of P 
according to the observed data. Note that 

P(d)= P(4)*Pd,w~ ... . p, I,.... d,-,(d*) 

Vd=d i,..., dnE A* and PE R(A”). 
(2.1) 

Now the statistician is requested to choose a P E SR(A”) which reflects all 
a-priori knowledge. For practical reasons he might be interested to know 
whether P is Learn-Merge invariant (LMI) for some or all mergers, in the 
sense that the process of learning is interchangeable with the process of 
merging. For example in the analysis of categorial data it is common usage 
to merge the categories after sampling, and it would be undesireable if the 
conclusions drawn in this case could be different from those obtained-with 
the same observed frequencies-if the categories had been merged in the 
beginning. Loosely speaking, LMI states something like “scale” indepen- 
dence of the learning process. Formally: Let PE R(A”), then all diagrams 
of the form 

(2.2) 

should commute for a given merger cp and every dE A*, where cp is defined 
on A* in a natural manner. That is (Pd)+’ = P& for all de A*. We will say 
that PE R(A”) is compatible with cp. For this definition one needs only the 
partition of A induced by cp. Therefore we will interpret cp E f(A) according 
convenience either as a mapping or as a partition without mentioning this 
explicitly. The following proposition states a necessary and sufficient con- 
dition for PE R(A”) to be compatible with a given cp E I’(A). 

(2.3) PROPOSITION: PE R(A”) is q-compatible for cp ET(A) iff 
Pd( Y) = P, ( Y) for every YE cp and every d, u E A* with cpd = cpu. 
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Proof: Assume P to be cp-compatible, let d, u E A* where cpd = cpu and 
let 101 = 1. Setting qP1u = Y, the following holds by (2.2): 

PAY) = (PdY (u) = P$(U) = P&(u) = (P,,)V (u) = P,( Y), 

proving the first part. Conversely it suffices to show 

(Pe,dP(U) = m&fw for e,dEA*, IuI = 1. 

(Then, because of (2.1), (P,)“( cpd) and P& (cpd) are both equal to n:=, 
Rd ,,_... 4m ,I” (v-4) where d= 4 ,...? d,.) With qP’u= Y and U=cp-‘cpd we 
have (Pe,d)q (u) = Pe,J Y). On the other hand: 

(P,)v(cp4u)=P,(Ux Y)= 1 P,(ux Y)= C P,(u).P,.,(Y) 
UE 1: “EC! 

= P,(U. f’e,A Y) = (f’,P(cpd). Pe.J Y). 

Finally (Pe)&,(u) = (P,)” (cpd, u)l(P,Y (cpd) = Pc,,J Y) = (P,.d)v (u), com- 
pleting the proof. 

Let L E SR(A”); we say that L is closed under learning, if for every P E L 
and every de A* Pde L holds. It is straightforward to show from the 
definition, that the set of a11 PESR(A~) which are cp-compatible with a 
specified cp is closed under learning. Using an induction argument and the 
symmetry of P, we derive from (2.3): 

(2.4) COROLLARY: Let L c SR(AN) be closed under learning. EuerJ 
P E L is q-compatible if and or@ if P,(Y) = Ph( Y) holds Va, b E A with 
cpa=cpb and VYEcp, OPEL. 

P is called an “LMI-measure”, if (2.2) holds for all cp E T(A), that is, P is 
compatible with every cp E T(A). Let CR(A”) denote the set of all LMI- 
measures in SR(A”). It is straightforward to show for PE CR(AN): 

Pv E CR((p(A)“) v’cp E QA 1 (2.5) 

PDF CR(A’) VdE A* (2.6) 

The next proposition states an equivalent formulation for CR(A”). 

(2.7) PROPOSITION: Let PESR(A”), then PECR(A”) lff P,,(x)= 
P,,(x) for every a, b, x E A with a # x # b, and every d E A*. 

ProoJ Let P E CR(AN)). If a = b there is nothing to prove. Otherwise 
choose cp E T(A) with {x} E cp and (a, b} E 40 which is always possible. For 
dE A* we have PDF CR(A”) and finally: 

Pd#(X) = (pd,oP (cpx) = (P& (cpx) = 

= (Pd& (cpx) = (Pd,bY (cpx) = P,,(x). 
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For the converse, let cp E T(A) be arbitrary, and let a, h E A with qa = cph. 
Then P,(Y) = Pb( Y) VYE cp. Indeed, if a, b $ Y this is true by hypothesis. 
In the other case we have P,( Y) = Pb( Y), and the statement follows from 
P, ( Y’) = 1 - P, ( Y) = 1 - P, ( Y). The same reasoning holds for P,, d E A *, 
which by (2.4) proves the rest. 

Still another equivalent formulation is an easy consequence of (2.7), 
namely the condition: 

Pd(X) = Pd’(x) (2.8) 

for every x E A, d E A*, and all d’, which are constructed from d= d, ,..., d, 
by arbitrarily replacing any d, E A\(x) by some element of the same set. 

Except for terminology this is the formulation close to the postulates 
stated by Johnson (1932) and Carnap (1958). Within statistics (2.8) was 
introduced by Good (1965, 1967) who called (2.8) “Johnson’s sufficiency 
(resp. sufficientness) postulate”. However, his statistical applications and 
generalizations are along other lines than developed here. The first of the 
present authors, not knowing W. E. Johnson’s paper (1932) adopted (2.8) 
from Carnap et al. (1958, Ax 9 or NA 14) and proved its equivalence to the 
LMI-principle in the mid-sixties. Therefore also the LMI-principle was 
called “Carnap’s postulate” in Boge (1969) and in subsequent papers by 
Tremmel (1971) Mocks-Stockel (1972), and Kursetz (1973). (2.8) means 
that Pd(x) is a function of the number of x’s in d, (dl, and x. In Johnson’s 
postulate the dependence on the latter argument was omitted, while in Car- 
nap’s system the dependence is excluded by an additional axiom (compare 
also Humburg (1971) and Stegmiiller (1973)). 

3. LEARN-MERGE-INVARIANT MEASURES 

In this section we give the proof, that the measures fulfilling (2.8) (and 
thus by section 2 the LMI-measures) are defined by a simple learning for- 
mula (3.3), which in turn is characterizing the Dirichlet distributions. For 
convenience we start with the latter. Let m E W(A) with m > 0 (i.e. m(a) > 0 
for every a E A) and p E R with p > 0. Consider the Dirichlet distribution 
D p,m defined by the parameter vector fi = p ~ * . m E RtAI. Fix some b E A, 
then the density of D,., with respect to 0 acA, jb) d& can be written (for a 
detailed definition compare Wilks (1962), Ferguson (1973)): 

fp,m (A)= D(G)-’ n Jf’“‘-’ l,(A) (3.1) 
Ut?A 

where A = (A,),, A E RIA’, D(G) = nlleA r(fi(a))/r(C,r?~(a)) (here r 
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denotes the usual r-function) and 1, represents the indicator function of 
the IAl - 1 dimensional simplex 

S:= Al&>O, VaEA, c A,=1 
i I 

. 
IlSA 

For (Al = 2 this reduces to the Beta Distribution. Let gA denote the class of 
all Dirichlet distributions enlarged by the degenerate cases D,,, = E, 
(m E S G W(A)), E, denoting the measure giving mass 1 to x. Hewitt-Savage 
(1955) showed that for every PE S(A”) there exists a unique Q E W( W(A)), 
the set of all probability measures on W(A) endowed with the usual (T- 
algebra, such that 

(3.4 

Conversely, if Q E W( W(A)) then the above P is in S( A”). Taking 

Q = D,.m E gA we get P,,, E SR(A”), 

In the case p =0 we have: P,,, = ON m. For the finite dimensional 
marginal distribution of P = P,,, with p > 0 and given d E A *, d = d, ,..., d n 
we get: 

where fid = Ki + E$, and E$= Ci!J i cd,. fii, is the parameter measure of the 
Dirichlet distribution corresponding to Pd, since P,(e) = P(d, e)/P(d) = 
D(t?~~,~)/D(fi~) for e E A *. From the properties of the r-function we get in 
particular for IdI = 1 

P(a) = rTz(a)/ilfil\ = m(a). 

Thus for U c A we have 

r&(U) fi(u)+E,*(u) 
Riw=~= 114 + I4 ’ 

so that P = P,,, obeys the following learning formula: 

Pd( U) = 
m(U)+P.G(U) 

1 +P- IdI 
(USA). (3.3) 
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This is also fulfilled for P = P,,, . Conversely, given p, m (p > 0, m > 0), we 
may define P’ E SR(A ’ ) as follows 

(1) P;(a) by (3.3) for SEA*, a~,4 

(2) For the definition of P’(d) use (2.1). 

We see that P = P’, since P(d) = P’(d) for every de A *. Let C E SR(A “) 
denote the class of all such P obeying (3.3) with some m > 0, p > 0 (which 
is bijectively related to gA). Note that C is closed under learning and for 
P = P,,, and cp E r(A) we have Pv = P,,,,. 

We will show that C= CR(AN) (as defined in section 2) provided that 
IAl > 3. The first part C & CR(A”) is straightforward and may be obtained 
for instance using (3.3) and (2.7). For the second part CR(A ” ) G C, we 
have to show that every LMI-measure fulfills (3.3) with some p, m. This 
was already derived from (2.8) by Johnson (1932) and Carnap (1958) in 
the special case (see section 2), allowing m only to be the equidistribution 
on A. As far as we know the proof for the general case was first given by 
Bilge (1969). Stegmuller (1973) using Carnap’s philosophical terminology, 
published independently a very complicated proof. The connection of (3.3) 
with the Dirichlet distributions was already known to Good (1965) but 
apparently not to Johnson, Carnap, and Stegmiiller. 

(3.4) PROPOSITION: Let IAl 2 3. Then CR(A”) coincides with the class C 
of measures defined by (3.3) with some m > 0, p > 0. 

Proof: It remains to show that every P E CR(A”) obeys (3.3). Let 
PE CR(A”), and define m(U) = P(U) for UC A. By m,(de A*) we denote 
the measure on A induced by Pd. By symmetry of P, m(x) m,( y) = 
m(y) m,(x). Thus m,( y)/m( y) = m,(x)/m(x) is symmetric in (x, y). By 
(2.7), for x # y the left hand side does not depend on x and the right hand 
side does not depend on y. We call this non-zero constant (1 + p)-’ (note 
p depends on P). Hence m,(x) = (I+ p) - ’ m(x) for x #a and therefore 
m,=(l +p)-’ (m+p.E,), since m,(A)= 1. (This is also true for [A( =2). 
Thus (3.3) is true for n = 1. Let it be true for n > 1, that means mda 
(proportional to) m + ps: for d = d, ,..., d, E A” with the same constant p. 
Applying our result for n = 1 to Pd instead of P we get 
md,o a m + p&d*+ p’&, where p’ = p’(d) possibly depends on d. Let 
d’ = d, ,..., d,-,. Then 

m  + P&s + P&i,+ p'(d) Ea a mda = md',u,dn 

a m  + p$ + p&, + p'(d', a) Ed, 

If (Al 2 3 and a # d,, then m + pe$ > 0, a,, &d, are linearly independent. 
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Comparing coeflicients we get p’(d) = p (and p’(d’, a) = p). Thus for all 
aeA 

md, o cc m + p&d*+ pc, = m + pc$,,. 

Finally, a suitably chosen de A* shows, that p may not be smaller than 
zero. 

This proves that CR(A”) is bijectively related to BA and hence the 
Dirichlet distributions are characterized by means of the principle of 
Learn-Merge Invariance. In the case ) Al = 2 we have CR( A”) = SR( A”), 
and hence (3.4) is not true. 

For p > 0 Carnap used I = p ’ = IlGll instead of p as a parameter. A+ has 
the nice property to become A’ = i + 1 after a further observation. Johnson 
(1932) used a parameter similar to p and interpreted it as the “weight” 
which is given to the observation relative to the prior guess. We prefer p, 
since with p it is easy to formulate (3.3) also in the degenerate case p =O. 

4. THE CASE OF A GENERAL MEASURABLE SPACE 

We first consider the case of a non regular measure on A” with A finite, 
where we define the set of symmetric LMI-measures on AN as the set 
C(A”) of all measures P for which a subset A + c A with P E CR(A y ) 
exists, namely A + = {aEA: P(a)>O}. Thus CR(AN)=C(A”)nR(AN), 
and, by prop. (3.4), C( AN) consists of the set C’( AN ) of all measures P 
defined by (2.1) and (3.3) with arbitrary p > 0 and probability measure 
m > 0 on A, and the set of all other symmetric probability measures P on 
some A: with @ # A + c A and I A + / 6 2. C’(AN) will be called the set of 
all refinable symmetric LMI-measures, because it can also be defined as 
follows: 

C’(AN) consists of all measures which are equal to P’+’ for 
arbitrary large finite B, some map cp: B -+ A and some 
PE CR(BN). 

From this last definition C’(A N, c C( A N, follows, because for P’ E C’( A N, 
and A+={~EA:P’(~)>O)=~~(B)EA, we have P’EC’R(A~):= 
C’(A~)nR(A~)sCR(A~)cC(A”) by (2.5). Moreover, using the results 
of the last section, since P fulfills (3.3) with some ~20, m>O, it follows 
that P’ fulfills (3.3) with this p and m’ =m9 20. We get all of these. 

In the above definition we may equivalently replace “arbitrary large 
finite B” by “some finite B with 1 Bj > 3”. Further note: 

C’R(A”) = CR(A”) for IA1>3. (4.1) 

P@ E C’(($A)N) for PE C’(AN), $ E T(A) (4.2) 
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To cover the general case of an arbitrary set A (endowed with a a-algebra) 
we define the set C’(A”) of refinable symmetric LMI-measures as the set of 
all measures P on A” with P* E C’(($A)“) for all measurable $ such that 
$A is finite. In the finite case this reduces to the usual definition; 
PE C’(A”) follows with Ic/ = idA, the converse by (4.2). If m is induced on A 
by P, then P@ obeys (3.3) with m’ = rn@ 3 0, where p 3 0 does not depend 
on $. Thus for p = 0 P = mN while for p > 0 P (using (3.2)) belongs to the 
distribution Q of the Dirichlet process with parameter measure ti = p ~ ‘m, 
as is well-known (see Ferguson (1973)). Conversely for each such Q the 
corresponding P belongs to C’(A N ). 

5. OUTLOOK 

It is shown that only the Dirichlet distributions are Learn-Merge 
invariant for all mergers. Therefore Dirichlet distributions appear as a 
satisfactory recommendation, if the categories are on a truly nominal level. 
However, in practice we are often faced with some structure on the obser- 
vation set, e.g. a natural ordering of the categories, and a Dirichlet prior 
will not take account of any “proximity” relation. This has been critizised 
by several authors, c.f. Good ( 1965, 1967) Lindley ( 1970), and Lochner 
(1975). As an approach to this problem within the thinking of LMI, we 
may state the postulate (2.2) for such mergers, which are in some sense 
compatible with the structure of the observation categories. This might 
result in larger classes of priors fitted to the given structure. Some work has 
already been done in this direction, concerning ordering-structures (R. 
Tremmel ( 1971)), unweighted-undirected graphs and finite Cartesian 
products (J. Mocks/M. Stiickel (1972), Kursetz (1973)). We should note 
that no enlargement was achieved in the case of ordering-structures. The 
results just mentioned will be communicated in forthcoming papers. 
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