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Abstract

The next bit test was introduced by Blum and Micali and proved by Yao to be a universal test
for cryptographic pseudorandom generators. On the other hand, no universal test for the crypto-
graphic one-wayness of functions (or permutations) is known, although the existence of cryptographic
pseudorandom generators is equivalent to that of cryptographic one-way functions. In the quantum
computation model, Kashefi, Nishimura and Vedral gave a sufficient condition of (cryptographic)
quantum one-way permutations and conjectured that the condition would be necessary. In this paper,
we affirmatively settle their conjecture and complete a necessary and sufficient condition for quantum
one-way permutations. The necessary and sufficient condition can be regarded as a universal test
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for quantum one-way permutations, since the condition is described as a collection of stepwise tests
similar to the next bit test for pseudorandom generators.
© 2005 Published by Elsevier B.V.

Keywords:Quantum computation; Computational cryptography; One-way permutation; One-way function;
Universal test

1. Introduction

One-way functions are functionsf such that, for eachx, f (x) is efficiently computable
butf−1(y) is computationally tractable only for a negligible fraction of ally’s. While the
modern cryptography depends heavily on one-way functions, the existence of one-way
functions is one of the most important open problems in theoretical computer science. On
the other hand, Shor[14] showed that famous candidates of one-way functions such as
the RSA function or the discrete logarithm function are no longer one-way in the quantum
computation model. Nonetheless, some cryptographic applications based on quantum one-
way functions have been considered (see, e.g., [1,5]).
As a cryptographic primitive other than one-way functions, pseudorandom generators

have been studied well. Blum and Micali [3] proposed how to construct pseudorandom
generators from one-way permutations and introduced the next bit test for pseudorandom
generators. (They actually constructed a pseudorandom generator assuming the hardness of
the discrete logarithmproblem.) SinceYao [15] proved that the next bit test is a universal test
for pseudorandom generators, the Blum–Micali construction paradigm of pseudorandom
generators from one-way permutations was proved to work properly. In the case of pseu-
dorandom generators based on one-way permutations, the next bit unpredictability can be
proved by using hard-core predicates for one-way permutations. After that, Goldreich and
Levin [8] showed that there exists a hard-core predicate for any one-way function (and also
permutation) and Håstad et al. [10] showed that the existence of pseudorandom generators
is equivalent to that of one-way functions.
Yao’s result on the universality of the next bit test assumes that all bits appearing among

the pseudorandom bits are computationally unbiased. Schrift and Shamir [13] extended
Yao’s result to the biased case and proposed universal tests for non-uniform distributions.
On the other hand, no universal test for the one-wayness of a function (or a permutation)
is known, although pseudorandom generators and one-way functions (or permutations) are
closely related.
In the quantum computation model, Kashefi et al. [11] gave a necessary and sufficient

condition for the existence ofworst-casequantum one-way permutations. They also con-
sidered thecryptographic(i.e.,average-case) quantum one-way permutations and gave a
sufficient condition of (cryptographic) quantum one-way permutations, and posed a con-
jecture that the condition would be necessary. Their conditions are based on the efficient
implementability of reflection operators about some class of quantum states. Note that the
reflection operators are successfully used in the Grover algorithm [9] and the quantum
amplitude amplification technique [4]. To obtain a sufficient condition of cryptographic
quantum one-way permutations, a notion of “pseudo identity” operators was introduced
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[11]. Since the worst-case hardness of reflection operators is concerned with the worst-case
hardness of the inversion of the permutationf, we need some technical tool with which the
inversion process off becomes tolerant of some computational errors in order to obtain
a sufficient condition of cryptographic quantum one-way permutations. Actually, pseudo
identity operators permitexponentiallysmall errors during the inversion process [11].
In this paper, we complete a necessary and sufficient condition of cryptographic quantum

one-way permutations conjectured in [11]. We incorporate their basic ideas with a prob-
abilistic argument in order to obtain a technical tool to permitpolynomiallysmall errors
during the inversion process. Roughly speaking, pseudo identity operators are close to the
identity operator in a sense. The similarity is defined by an intermediate notion between
the statistical distance and the computational distance. In [11], it is “by upper-bounding
the similarity” that the sufficient condition of cryptographic quantum one-way permuta-
tions was obtained. By using a probabilistic argument, we can estimate the expectation
of the similarity and then handle polynomially small errors during the inversion of the
permutationf.
Moreover, the necessary and sufficient condition of quantum one-way permutations can

be regarded as a universal test for the quantum one-wayness of permutations. To discuss
universal tests for the one-wayness of permutations, we briefly review the universality of
the next bit test for pseudorandom generators. Letg(x) be a length-regular deterministic
function such thatg(x) is of length�(n) for any x of lengthn. The universality of the
next bit test says that we have only to check a collection of stepwise polynomial-time tests
T1, . . . , T�(n) instead of considering all the polynomial-time tests that try to distinguish the
truly random bits from output bits fromg, where eachTi is the test whether, given the
(i − 1)-bit prefix ofg(x) (and the value of�(|x|)), the ith bit of g(x) is predictable or not
with probability non-negligibly higher than12. Our necessary and sufficient condition of
quantum one-way permutations says that the quantum one-wayness of a given permutation
f can be checked by a collection of stepwise testsT ′

1, . . . , T
′
n instead of considering all the

tests of polynomial-size quantum circuit, where eachT ′
i is the test whether, given some

quantum stateqi−1 that can be defined by using the(i − 1)-bit prefix off (x), some other
quantityti is computable with polynomial-size quantum circuit or not and the next stateqi
can be determined fromqi−1 andti . In this sense, our universal test for quantum one-way
permutations is analogous to the universal test (i.e., the next bit test) for pseudorandom
generators.

2. Preliminaries

Since our study is an extension of the results by Kashefi et al. [11], we use the same
notions, definitions and notations. In this section, we describe them and review the results
in [11].

2.1. Notations and basic operators

We say that a unitary operatorU (on n qubits) iseasyif there exists a quantum circuit
implementingU of size polynomial inn. Similarly, a setF of unitary operators iseasyif
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Fig. 1. Reflection operator.

everyU ∈ F is easy. Throughout this paper, we assume thatf : {0,1}∗ → {0,1}∗ is a
length-preserving permutation unless otherwise stated. Namely, for anyx ∈ {0,1}n, f (x)
is ann-bit string and the set{f (x) : x ∈ {0,1}n} is of cardinality 2n for everyn. First,
we mention some useful operators for describing the previous and our results. Thetagging
operatorsOj are defined as follows:

Oj |x〉|y〉 =
{−|x〉|y〉 if f (y)(2j+1,2j+2) = x(2j+1,2j+2),

|x〉|y〉 if f (y)(2j+1,2j+2) 
= x(2j+1,2j+2),

wherey(i,j) denotes the substring from theith bit to thejth bit of the bit stringy if i�j
and the null string otherwise. Note that these unitary operatorsOj are easy iff is efficiently
computable. Next, we consider thereflectionoperatorsQj(f ) as follows:

Qj(f ) = ∑
x∈{0,1}n

|x〉〈x| ⊗ (2|�j,x〉〈�j,x | − I ),

where

|�j,x〉 = 1√
2n−2j

∑
y:f (y)(1,2j)=x(1,2j)

|y〉.

Fig.1 illustrates the intuitive image of the reflection operator.We sometimes use the notation
Qj instead ofQj(f ).
Actually, these reflection operators are somewhat special for our purpose. In general,

reflection operators are commonly and successfully used in the Grover algorithm [9] and
the quantum amplitude amplification technique [4].

2.2. Review of previous results

Informally speaking, a functionf is said to be worst-case quantum one-way iff can be
computed by an efficient quantum machine andf−1 cannot be computed by any efficient
quantummachine. One of the results in [11] is the following characterization of worst-case
quantum one-way permutations.
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Theorem 1(Kashefi et al.[11] ). Let f : {0,1}n → {0,1}n be a permutation. Then f is
worst-case quantum one-way if and only if the setFn = {Qj(f )}j=0,1,...,n/2−1 of unitary
operators is not easy.

As a part of the proof of Theorem1, Kashefi et al. [11] give a quantum algorithm, which
we call AlgorithmINV in what follows, that computesf−1(x) by using unitary operators
Oj andQj . The initial input state toINV is assumed to be

1√
2n

|x〉 ∑
y∈{0,1}n

|y〉 (= |x〉|�0,x〉).

ThenINV performs the following steps:
foreach j = 0 ton/2− 1

(step W.j.1) Apply Oj to the first and the second registers;

(step W.j.2) ApplyQj to the first and the second registers.

After each step, we have the following:(
the state after
step W.j.1

)
= 2j√

2n
|x〉
(√

2n−2j |�j,x〉 − 2
∑

y:f (y)(1,2j+2)=x(1,2j+2)
|y〉
)

;

(
the state after
step W.j.2

)
= 2j+1√

2n
|x〉 ∑

y:f (y)(1,2j+2)=x(1,2j+2)
|y〉.

The above properties are with respect to “worst-case” (i.e., non-cryptographic) quantum
one-way permutations, but they also play essential roles in the case of “average-case” (i.e.,
cryptographic) quantum one-way permutations. Before reviewing a known sufficient condi-
tion of cryptographic quantum one-way permutations, we define two types of cryptographic
“one-wayness” in the quantum computational setting.

Definition 2. A permutationf isweakly quantum one-wayif the following conditions are
satisfied:
(1) f can be computed by a polynomial-size quantum circuit (and whenever inputs are

classical the corresponding outputs must be classical) with certainty;1

(2) there exists a polynomialp(·) such that for every polynomial-size quantum circuitA
and all sufficiently largen’s,

Pr[A(f (Un)) 
= Un ] > 1/p(n),
whereUn is the uniform distribution over{0,1}n.

1 There are several ways to define what is the efficient computation off. We may replace “a polynomial-size
quantum circuit” in the definition by “a polynomial-size classical circuit”. This choice does not harm our results in
this paper.We note that this footnote is also applicable to our definition of strongly quantumone-way permutations.
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Definition 3. A permutationf is strongly quantum one-wayif the following conditions are
satisfied:
(1) f can be computed by a polynomial-size quantum circuit (and whenever inputs are

classical the corresponding outputs must be classical) with certainty;
(2) for every polynomial-size quantum circuitA and every polynomialp(·) and all suffi-

ciently largen’s,

Pr[A(f (Un)) = Un ] < 1/p(n).

As in the classical one-way permutations, we can show that the existence of weakly quan-
tumone-waypermutations isequivalent to thatof stronglyquantumone-waypermutations.2

Thus, we consider the weakly quantum one-way permutations in this paper. While Theo-
rem 1 is a necessary and sufficient condition ofworst-casequantum one-way permutations,
Kashefi et al. [11] also gave a sufficient condition ofcryptographicquantum one-way per-
mutations by using the following notion.

Definition 4. Let d(n)�n be a polynomial inn andJn be ad(n)-qubit unitary opera-
tor. Jn is called(a(n), b(n))-pseudo identityif there exists a setXn ⊆ {0,1}n such that
|Xn|/2n�b(n) and for everyz ∈ {0,1}n \Xn

|1− (〈z|1〈0|2)Jn(|z〉1|0〉2)|�a(n),
where|z〉1 is then-qubit basis state for eachzand|0〉2 corresponds to the ancillae ofd(n)−n
qubits.

The closeness between a pseudo identity operator and the identity operator is measured
by a pair of parametersa(n) andb(n). The first parametera(n) is a measure of a statistical
property and the second oneb(n) is the ratio of “ill-behaved” elements. Note that we do
not care where eachz ∈ Xn is mapped by the pseudo identity operatorJn. While we will
give a necessary and sufficient condition of quantum one-way permutations by using the
notion of pseudo identity, we introduce a new notion, which may be helpful to understand
intuitions of our and previous conditions, in the following.

Definition 5. Let d ′(n)�n be a polynomial inn andPn be ad ′(n)-qubit unitary operator.
Pn is called(a(n), b(n))-pseudo reflection(with respect to|�(z)〉) if there exists a setXn ⊆
{0,1}n such that|Xn|/2n�b(n) and for everyz ∈ {0,1}n \ Xn and everyn-dimensional
vectorw∣∣∣∣∣1−

(
〈z|1 ⊗ 〈w|2

( ∑
y∈{0,1}n

|y〉〈y|1⊗(2|�(y)〉〈�(y)|−I )2
)

⊗〈0|3
)
Pn(|z〉1|w〉2|0〉3)

∣∣∣∣∣�a(n).

2 Theorem 2.3.2 in[6] states the equivalence between the existence of weakly one-way functions and that
of strongly one-way functions and holds even in the quantum case. In case of classical one-way permutations,
Theorem 2.6.2 in[6] mentions a tighter connection. You may also see[7] for the tight connection.
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Fig. 2. Pseudo reflection operator.

The above definition of pseudo reflection operators is somewhat complicated. Fig.2
illustrates a geometrical intuition of the pseudo reflection operator, which may be helpful
to understand the underlying idea of Definition 5. LetJn be ad(n)-qubit (a(n), b(n))-
pseudo identity operator. Then(In ⊗ Jn)

†(Qj ⊗ Id(n)−n)(In ⊗ Jn) is a (d(n) + n)-qubit
(a′(n), b′(n))-pseudo reflection operator with respect to|�j,x〉, wherea′(n)�2a(n) and
b′(n)�2b(n). These estimations ofa′(n) andb′(n) are too rough to obtain a necessary and
sufficient condition. Rigorous estimation of these parameters is a main technical issue in
this paper.
Now, we are ready to mention results with respect to “average-case” quantum one-way

permutations shown in [11].

Theorem 6(Kashefi et al.[11] ). Let f be a permutation that can be computed by a
polynomial-size quantum circuit. If f is not(weakly) quantum one-way, then for all polyno-

mials p’s and infinitely many n’s, there exist a polynomialrp(n) and anrp(n)-qubit(12
p(n)

,

1/p(n))-pseudo identity operatorJn such that the family of pseudo reflection
operators

Fp,n(f ) = {(In ⊗ Jn)
†(Qj (f )⊗ Irp(n)−n)(In ⊗ Jn)}j=0,1,...,n/2−1

is easy.

Note that the second parameter 1/p(n) of the pseudo identity operator stated in Theorem
6 comes from the error bound of inverting algorithms for weakly one-way quantum permu-
tations. Kashefi et al. [11] conjectured that the converse of Theorem 6 should still hold and
proved a weaker version (with respect to the error bound of pseudo identity operators) of
the converse as follows.
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Theorem 7(Kashefi et al.[11] ). Let f be a permutation that can be computed by a
polynomial-size quantumcircuit. If for all polynomials p’s and infinitelymany n’s there exist

a polynomialrp(n) and anrp(n)-qubit(
1
2
p(n)

, p(n)/2n)-pseudo identity operator family3

{Jj,n}j=0,1,...,n/2−1 such that the family of pseudo reflection operators

Fp,n(f ) = {(In ⊗ Jj,n)
†(Qj (f )⊗ Irp(n)−n)(In ⊗ Jj,n)}j=0,1,...,n/2−1

is easy, then f is not(weakly) quantum one-way.

Note that pseudo identity operators stated in Theorem7 permit “exponentially” small
errors while pseudo identity operators that will appear in our statement permit “polyno-
mially” small errors. We mention why it is difficult to show the converse of Theorem
6 (or, equivalently, the resulting statement by replacing “p(n)/2n” of Theorem 7 with
“1/p(n)”). To prove it by contradiction, all we can assume is the existence of a pseudo
identity operator. This means that we cannot know how the pseudo identity operator is
close to the identity operator. To overcome this difficulty, we introduce a probabilistic
technique and estimate the expected behavior of the pseudo identity operator. Eventu-
ally, we give a necessary and sufficient condition of the existence of cryptographic quan-
tum one-way permutations in terms of reflection operators. This affirmatively settles their
conjecture. We stress that results with respect to cryptographic functions are obtained by
generalizing ones with respect to non-cryptographic functions, since there are few connec-
tions between cryptographic and non-cryptographic functions in the classical computation
model.

2.3. Universal tests

In this subsection, we explain what universal tests mean. Pseudorandom bitsw’s, which
are drawn according to some probability distribution, can be defined as ones that pass
“all” polynomial-time computable statistical tests. Sincew passes “all” polynomial-time
computable statistical tests ifw passes thenext bit test, the next bit test is said to be
universalfor (unbiased) pseudorandom generators. On the other hand, “passing through
the next bit test” means that the next bit is computationally unpredictable from the pre-
vious bits read so far and theunpredictability is defined for “all” polynomial-time al-
gorithms. In this sense, “passing through the next bit test” is just a necessary and suffi-
cient condition for pseudorandom generators. Furthermore, it is worthwhile to mention
that the next bit test is a family of sub-tests which are uniformly defined. Namely, the
next bit test means a family that consists of the 2nd bit test, the 3rd bit test, and so
on. After all, the advantage of the next bit test for pseudorandom generators is not only
its universality but also the fact that it is defined in terms of more primitive uniform
components.

3 In the corresponding statement in[11], “single” pseudo identity operator rather than pseudo identity operator
“family” is used. On the other hand, their actual proof in[11] is for “family”, which is as strong a statement as
Theorem7.
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We now move to universal tests for quantum one-way permutations. To test the quan-
tum one-wayness for given a permutationf, we have to consider all the polynomial-time
quantum algorithms. Theorem1 provides a universal test for worst-case quantum one-way
permutations. Namely,f has an efficient implementation of all reflection operatorsQj ’s
with respect tof if and only if f is not one-way. The efficient implementability of allQj ’s
also means the next quantum state computability, which we have mentioned in Section 1.
Thus, we call the universal testnext quantum state computability test. Note that the next
quantum state computability test for worst-case quantum one-way permutations is also de-
fined in terms of more primitive uniform components as the next bit test for pseudorandom
generators is.
In this paper, we give a universal test for “cryptographic” quantum one-way permutations

by generalizing the next quantum state computability test for worst-case quantum one-way
permutations. Since, in our universal test, we do not have to compute exactly the next
quantum state, we may call our testnext quantum state approximability test. Note that the
next quantum state approximability test for average-case quantum one-way permutations
is also defined in terms of more primitive uniform components.

3. Necessary and sufficient condition of quantum one-way permutations

We have a necessary and sufficient condition of cryptographic quantum one-way permu-
tations as follows.

Theorem 8. The following statements are equivalent:
(1) there exists a weakly quantum one-way permutation,
(2) there exists a polynomial-time computable function f satisfying that there exists a poly-

nomial p such that for all sufficiently large n’s, all polynomialsrp(n)’s and allrp(n)-

qubit(12
p(n)

,1/p(n))-pseudo identity operator families{Jj,n}j=0,1,...,n/2−1, the family
of pseudo reflection operators

Fp,n(f ) = {(In ⊗ Jj,n)
†(Qj (f )⊗ Irp(n)−n)(In ⊗ Jj,n)}j=0,1,...,n/2−1

{Jj,n}j=0,1,...,n/2−1, the family of pseudo reflection operators is not easy.

To grasp the intuition of Theorem8, Fig. 3 may be helpful. Theorem 8 can be proved as
the combination of Theorem 6 and the following theorem.

Theorem 9. Let f be a permutation that can be computed by a polynomial-size quantum
circuit. If for all polynomials p’s and infinitely many n’s there exist a polynomialrp(n) and

an rp(n)-qubit (
1
2
p(n)

,1/p(n))-pseudo identity operator family{Jj,n}j=0,1,...,n/2−1 such
that the family of pseudo reflection operators

Fp,n(f ) = {Q̃j (f )} = {(In ⊗ Jj,n)
†(Qj (f )⊗ Irp(n)−n)(In ⊗ Jj,n)}j=0,1,...,n/2−1

is easy, then f is not(weakly) quantum one-way.
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We devote the rest of this section to the proof of Theorem9.

Proof. Suppose that for every polynomialsp(n), infinitely manyn’s, and some(12
p(n)

,

1/p(n))-pseudo identity operator family{Jj,n}j=0,1,...,n/2−1, the familyFp,n of unitary
operators is easy. Moreover, letf be a weakly quantum one-way permutation. By a prob-
abilistic argument, we show that a contradiction follows from this assumption. For more
detail, we construct an efficient inverter forf usingFp,n and then, if we choose a poly-
nomial p(n) appropriately, this efficient inverter can computex from f (x) for a large
fraction of inputs, which violates the assumption thatf is a weakly quantum one-way
permutation.
We first construct a polynomial-size algorithmav-INV to invertf by using unitary opera-

tions inFp,n. Algorithm av-INV is similar to AlgorithmINV except the following change:
the operatorQj is now replaced withQ̃j . The initial input state toav-INV is also assumed
to be

1√
2n

|x〉1 ∑
y∈{0,1}n

|y〉2|0〉3,

where|z〉1 (resp.,|z〉2 and|z〉3) denotes the firstn-qubit (resp., the secondn-qubit and the
last(rp(n)− n)-qubit) register.
Algorithm av-INV performs the following steps:

foreach j = 0 ton/2− 1

(step j.1) Apply Oj to the first and the second registers;

(step j.2) Apply Q̃j to all the registers.

For analysis of Algorithmav-INV, we use the following functionally equivalent description:

foreach j = 0 ton/2− 1

(step A.j.1) Apply Oj to the first and the second registers;

(step A.j.2) Apply Jj,n to the second and third registers;

(step A.j.3) ApplyQj to the first and the second registers;

(step A.j.4) Apply J †j,n to the second and third registers.

Then, we can prove the following two claims.
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Claim 10. Suppose that f is a weakly quantum one-way permutation, i.e., there exists a
polynomialr(n)�1 such that for every polynomial-size quantum circuit A and all suffi-
ciently large n’s, Pr[A(f (Un)) 
= Un ] > 1/r(n). Then, for every polynomialq(n) >
r1/2(n), there are at least2n(1/r(n) − 1/q2(n))/(1 − 1/q2(n)) x’s such that A cannot
compute x fromf (x) better than with probability1− 1/q2(n).

Claim 11. Let q(n) = p1/4(n)/
√
2n. There are at most2n/q(n) x’s such that Algorithm

av-INV cannot compute x fromf (x) with probability at least1− 1/q2(n).

The proof of Claim11 is delayed and that of Claim 10 follows immediately from the
definition of a weakly quantum one-way permutation by a counting argument.
Recall that we assume thatf is a weakly quantum one-way permutation at the beginning

of this proof. Now, we can setp(n) = 4n2(r(n) + 1)4, that is,q(n) = r(n) + 1�2. It
follows that(1/r(n) − 1/q2(n))/(1− 1/q2(n)) > 1/q(n), which is a contradiction since
av-INV is an inverter violating the assumption of a weakly quantum one-way permutation
f. This implies thatf is not weakly quantum one-way.�

In what follows, we present a proof of Claim 11 to complete the proof of Theorem 9.

Proof of Claim 11. Let Jn be a(12
p(n)

,1/p(n))-pseudo identity operator. From the def-
inition of pseudo identity operators, there exists a setXn ⊆ {0,1}n with |Xn|�2n/p(n)
such that for everyy ∈ Yn = {0,1}n \Xn,

Jn|y〉2|0〉3 = �y |y〉2|0〉3 + |�y〉23, (1)

where|�y〉23⊥|y〉2|0〉3 and|1− �y |�1/2p(n).
InAlgorithmav-INV, weapplyJj,n beforeandafterstep A.j.3 for eachj. Eachapplication

of a pseudo identity operatorJn ∈ {Jj,n} makes an error in computation off−1. We call
the vectorJn|�〉 − |�〉 theerror associated to|�〉. To measure the effect of this error, we
use the following lemmas. (Lemma13 itself was stated in [11].) We note, in the sequel, the
norm over vectors is Euclidean.�

Lemma 12. Assume thatT ⊆ S ⊆ {0,1}n. Then lengthl(S, T ) of the error associated to
the state

|�(S, T )〉 = 1√|S|

( ∑
y∈S\T

|y〉|0〉 − ∑
y∈T

|y〉|0〉
)

satisfies that

l(S, T )�2
√

|S ∩Xn|
|S| + �(n),

where�(n) is a negligible function in n.
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Proof. First, we show a property of the length of the error associated to the state|y〉|0〉.
The property is that the length is at most 2/2p(n)/2 if y ∈ Yn. From Eq. (1), if y ∈ Yn,
1− |�y |� |1− �y |�1/2p(n) and hence

||�y〉|2 = 1− |�y |2 = (1− |�y |)(1+ |�y |)�2/2p(n).

Thus, we obtain the following:

|Jn|y〉|0〉 − |y〉|0〉| = |(�y − 1)|y〉|0〉 + |�y〉|

=
√

|�y − 1|2 + ||�y〉|2

�
√
1/22p(n) + 2/2p(n)

� 2/2p(n)/2.

Using this property, we have a tight bound ofl(S, T ):

l(S, T ) = |Jn|�(S, T )〉 − |�(S, T )〉|

= 1√|S|

∣∣∣∣∣(Jn−I )
( ∑
y∈Yn∩(S\T )

|y〉|0〉− ∑
y∈Yn∩T

|y〉|0〉+ ∑
y∈Xn∩(S\T )

|y〉|0〉− ∑
y∈Xn∩T

|y〉|0〉
)∣∣∣∣∣

� 1√|S|

∣∣∣∣∣(Jn−I )
( ∑
y∈Yn∩(S\T )

|y〉|0〉− ∑
y∈Yn∩T

|y〉|0〉
)∣∣∣∣∣

+ 1√|S|

∣∣∣∣∣(Jn − I )

( ∑
y∈Xn∩(S\T )

|y〉|0〉− ∑
y∈Xn∩T

|y〉|0〉
)∣∣∣∣∣

� 1√|S|

( ∑
y∈Yn∩(S\T )

|Jn|y〉|0〉−|y〉|0〉|+ ∑
y∈Yn∩T

|Jn|y〉|0〉−|y〉|0〉|
)

+ 1√|S|

(∣∣∣∣∣Jn
( ∑
y∈Xn∩(S\T )

|y〉|0〉− ∑
y∈Xn∩T

|y〉|0〉
)∣∣∣∣∣+

∣∣∣∣∣ ∑
y∈Xn∩(S\T )

|y〉|0〉− ∑
y∈Xn∩T

|y〉|0〉
∣∣∣∣∣
)
.

The first term in the above is bounded by

2

2p(n)/2
|S ∩ Yn|√|S| <

2n+1

2p(n)/2
<
1

2n

and negligible. Since any unitarity transformations preserve the Euclidean norm, the second
term is rewritten as

2√|S|

∣∣∣∣∣ ∑
y∈Xn∩(S\T )

|y〉|0〉 − ∑
y∈Xn∩T

|y〉|0〉
∣∣∣∣∣
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and equal to

2√|S|
√
(|Xn ∩ (S \ T )| + |Xn ∩ T |) = 2

√
|S ∩Xn|

|S| .

These imply that the statement of Lemma12 holds. �

Lemma 13. LetJn|�(S, T )〉 = �|�(S, T )〉 + |�(S, T )⊥〉,where|�(S, T )〉⊥ |�(S, T )⊥〉.
Then, ||�(S, T )⊥〉|� l(S, T ).

By using Lemmas12 and 13, we consider the effect of the additional applications of
pseudo identity operators toINV in order to analyze Algorithmav-INV.
For eachj, we letSx,j = {y : f (y)(1,2j) = x(1,2j)} andTx,j = {y : f (y)(1,2j+2) =

x(1,2j+2)}. We assume that the state beforestep A.j.2 is

|x〉1|�(Sx,j , Tx,j )〉23 = |x〉1 2
j

√
2n

( ∑
y∈Sx,j \Tx,j

|y〉2 − ∑
y∈Tx,j

|y〉2
)

|0〉3.

Note that the above state is the same as the one beforestep W.j.2 in Algorithm INV.
In step A.j.2, Jj,n is applied to the state. From Lemma12 and a probabilistic argument,

we have the following.

Lemma 14. For each j,

E[ l(Sx,j , Tx,j ) ]� 2√
p(n)

+ �(n),

where the expectation is overx ∈ {0,1}n and�(n) is a negligible function in n.

Proof. Sincef is a permutation, by the definition ofSx,j , |Sx,j | = 2n−2j . Also, y ∈ Sx,j
for somex if and only if f (y)(1,2j) = x(1,2j). Then,

Pr[ y ∈ Sx,j ] = 2n−2j

2n
= 1

22j
,

where the probability is taken overx ∈ {0,1}n uniformly. Thus we have, for every(1/2p(n),
1/p(n))-pseudo identity,

E[ |Xn ∩ Sx,j | ] = |Xn|
22j

, |Sx,j | = 2n−2j and
|Xn|
2n

= 1

p(n)
.
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It follows that

E
[ |Xn ∩ Sx,j |

|Sx,j |
]

= 1

p(n)
,

where the expectation is overx ∈ {0,1}n. By Lemma12,

E
[
l(Sx,j , Tx,j )

]
� 2E

[√
|Xn ∩ Sx,j |

|Sx,j |

]
+ �(n)

� 2

√
E
[ |Xn ∩ Sx,j |

|Sx,j |
]

+ �(n)

= 2√
p(n)

+ �(n)

for some negligible function� as required. �

From Lemmas 13 and 14, we obtain a vectorv = v1 + v2 wherev1/|v1| is the unit
vector corresponding to the state beforestep W.j.2 in Algorithm INV andv2 is a vector of
expected length at most 2/

√
p(n) orthogonal tov1. (For simplicity, we neglect a negligible

term�(n).) The vectorv2 corresponds to an error that happens whenJj,n is applied before
step A.j.3.
Next, we consider the state after stepA.j.3. We assume that the state afterstep A.j.3 is

|x〉1|�(Sx,j+1,�)〉23 = |x〉1 2
j

√
2n

( ∑
y∈Sx,j+1

|y〉2
)

|0〉3.

Note that the above state is the same as the one afterstep W.j.2 in Algorithm INV. In order
to analyze the effect of the application ofJ †j,n after step A.j.3, we need another lemma
similar to Lemma14. (The proof is omitted since its proof is also similar.)

Lemma 15. For each j,

E[ l(Sx,j+1,�) ]� 2√
p(n)

+ �(n),

where the expectation is overx ∈ {0,1}n and�(n) is a negligible function in n.

By a similar argument to the above, we obtain a vectorv = v1 + v2 wherev1/|v1| is
the unit vector corresponding to the state afterstep W.j.2 in Algorithm INV andv2 is a
vector of expected length at most 2/

√
p(n) orthogonal tov1. (For simplicity, we neglect

a negligible term�(n).) The vectorv2 corresponds to an error that happens whenJ
†
j,n is

applied afterstep A.j.3.
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From the above analysis, we can see that after the completion of Algorithmav-INV on
inputx the final state becomesv(x) = v1(x)+ v2(x) wherev1(x) is parallel to

|x〉1|f−1(x)〉2|0〉3,
andv2(x) is a vector orthogonal tov1. By Lemmas14, 15 and the linearity of expectation,

we have

E[ |v2(x)| ]�2 · n
2

· 2√
p(n)

= 2n√
p(n)

� 1

q2(n)
,

for q(n) = p1/4(n)/
√
2n, where the expectation is overx ∈ {0,1}n. It follows that the

number ofx such that|v2(x)| > 1/q(n) is at most 2n/q(n), i.e.,av-INV can invertf (x) for
at least 2n(1− 1/q(n)) x’s with probability at least 1− 1/q2(n). �

4. Conclusion

By giving a proof of the conjecture posed by Kashefi et al.[11], we have completed
a necessary and sufficient condition of cryptographic quantum one-way permutations in
terms of pseudo identity and reflection operator in this paper.
The necessary and sufficient condition of quantumone-way permutations can be regarded

as a universal test for the quantum one-wayness of permutations. As far as the authors know,
this is, classical or quantum, the first result on the universality for one-way permutations,
although the next bit test is a universal test for pseudorandom generators in the classical
computation model. We believe that our universal test for quantum one-way permutations
may help to find good candidates for them, which are currently not known.

5. Uncited reference

[2].
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