
Annals of Pure and Applied Logic 52 (1991) 155-179 
North-Holland 

155 

The density of infima in the 
recursively enumerable degrees 

Theodore A. Slaman* 
Department of Mathematics, Uniuersity of Chicago, 5734 University Avenue, Chicago, 
IL 6#637, USA 

Communicated by A. Nerode 

Received December 1989 
Revised July 1990 

Abstract 

Slaman, T.A., The density of infima in the recursively enumerable degrees, Annals of Pure and 
Applied Logic 52 (1991) 155-179. 

We show that every nontrivial interval in the recursively enumerable degrees contains an 
incomparable pair which have an infimum in the recursively enumerable degrees. 

Theorem. Zf A and E are recursively enumerable sets such that A >= E, then there 
are recursively enumerable sets B, C and D such that: 

(1) A + B, A + C. 
(2) B>,D, C>,D. 
(3) Da, E. 
(4) For sets X, if X is recursive in B and in C, then X is recursive in D. 

Let A and E be given so as to satisfy the hypotheses of the theorem. It is safe 
to assume that E is not recursive since the theorem is known otherwise, by either 
[l, Fejer] or [3, Lachlan]. Further, notice that the Sacks density theorem [4] 
implies that we may obtain strict inequality in (3). Given A strictly above E, we 
use the density theorem to obtain E* strictly between A and E and apply the 
above theorem to A and E*. 

We present the construction of B, C and D in two installments. First, we show 
how to build B, C and D satisfying (2)-(4). Then we describe a modified 
construction with the following special property. For all n and each of B, C and D 
either n is enumerated into the set or A is able to enumerate a state of the 
construction which precludes n’s subsequent enumeration. Thus, B, C and D are 

recursive in A. 

*The author’s research was supported by NSF grant DMS-8601856 and Presidential Young 
Investigator Award DMS-8451748. 
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1. The upward density of pairs with inha 

In this section, there are three sorts of requirements. Omitting indices, they 

are: 

%: The coding requirements. D aT E, B L, D and C+ D. 

These requirements have the highest priority of all. They are directly satisfied 
by coding E into D, D into B and D into C. We fix a recursive coding function c 
(such as c : n w 2n) and ensure that n is an element of E if and only if c(n) is an 
element of D. Similarly, n is an element of D if and only if c(n) is an element of 
B if and only if c(n) is an element of C. 

9: The infimum requirements. If Y(B) = G(C) = X, then D 5, X. 

We satisfy 5% by a positive strategy as in Fejer [l]. We describe the 
enumeration of a Turing functional by the recursive placement of a family of 
movable markers {r(n) 1 n E N}. Placing r(n) on position p during stage s defines 
the value of r(n, D)[s] to be the common value of Y(n, B)[s] and @(n, C)[s]. 
The computation of r(n, D)[ s uses the oracle D[s] on all numbers less than or ] 

equal to p. We ensure that the only r(n, -) computation that applies to D is the 
last one enumerated, by putting a number less than or equal to the position of 
r(n) into D each time r(n) is moved. For each n, we ensure that r(n, D) = X(n) 

by moving r(n) whenever both Y(n, B) and @(n, C) change to a new common 
value. 

Precisely, the strategy R for 5% requires that the markers will be governed by 
the following rules. For each stages, if r(n) has a position during stage s, let y(n, s) 
denote that position. 
(1) If n is less than s, Y(B)[s] 1 n + 1 = @(C)[s] 1 n + 1 and r(n) does not have 

a position then r(n) must be assigned a position y(n, s). y(n, s) must be 
larger than any number previously mentioned in the construction. (We ensure 

that the domain of T(D) appears to be at least as large as the domain on which 

Y(B) appears equal to G(C).) 

(2) If r(n) has position y(n, s) assigned during an earlier stage t and the common 
value of Y(n, B)[s] and @(n, C)[.s] is different than it was during stage t, 
then r(n) must be moved from y(n, s). Note, divergence is considered a new 
common value. (We correct T(D) when it appears to be wrong.) 

(3) If r(n) is removed from its position y(n, s) during stage s then, for each 
m > n, r(m) is also moved from its position. Further, some number less than 
or equal to y(n, s) must enter D. (We ensure that the markers stay in order 

and keep a record of the movement of the markers in D.) 
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(4) Except for finitely many exceptions, r(n) cannot be moved from position 
y(n, S) unless at least one of Y(B) or @(C) changes its computation at some 
m less than or equal to n after the stage when r(n) was assigned position 
y(n, s). Note, if one of Y(n, B)[s] or @(n, C)[S] diverges, then we treat the 
computation as having changed. (We ensure that if Y(B) and @(C) are equal 
and total then T(D) is total.) 

By the parenthetical remarks, we have the following proposition. 

1.1. Proposition. Zf B, C, D and r are constructed so as to follow the rules 
(l)-(4), then 52 is satisfied. 

The above rules do not completely determine the motion of the r markers. 
They make it necessary to move marker I’(n) when Y(n, B) and @(n, C) change 
their common value. They allow a marker to move if one of Y(n, B) or @(n, C) 
changes its computation. In Rule (4), we are allowed to let each marker be 
moved indiscriminately by a finite collection of finite outcome strategies. 

R ‘s-recovery process 

If a strategy is to respect R’s rules, when it enumerates a number x into D and 
its code into B and C, it should also examine the status of Y(B) and @i(C) to 
check whether x’s entering D has changed the computations associated with any 
of R’s markers. If so, then we must enumerate the least such marker’s position 
into D and codes into B and C to allow the computation of T(D) to recover. 
Then, the process must be iterated, since the enumeration of any number may 
require the enumeration of a smaller number in order to recover. We define R’s 
recovery process as follows. 

If there is an x such that T(X) has position y(x, s) during stage s which was 
assigned earlier but neither Y(x, B) nor @(x, C) has a current computation 
giving the same value as their common value when T(x) was assigned its 
position, then enumerate the least such y(x, s) into D, enumerate c(y(x, s)) 
into both B and C and cancel the positions of all T(y) such that y is greater 
than or equal to x. Repeat the recovery process. 

Otherwise, end the recovery process. 

One aspect of respecting R’s rules is that R’s recovery process must follow 
every enumeration of a number into B, C or D. The other aspect is that markers 
must eventually be assigned positions. This will be done by R explicitly. 

Of course, we have only described the atomic strategy to satisfy $2. Given two 
requirements Se, and S!$ where L%Jit, has higher priority than &, we will have 
several strategies for LZ& depending upon the outcome of RI. In the strategy R2 
based on the 113-outcome of RI (in which every q(n) has a limit), we dynamically 
assign a finite set of RI markers to each R2 marker and move the R2 marker each 
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time an RI marker from the assigned finite set is moved. For each R,-marker, if 
RI has the &outcome then each element of its associated RI-markers has a 
limit. In this case, the R2 motion inherited from RI is finite. Backup strategies will 
be used to satisfy 6%_,, in the event of a &-outcome in which there is an L%r 
marker that does not have a limit position. 

Sp: The inequalities. O(D) # B; O(D) # C. 

These requirements are symmetric in B and C so it is sufficient to discuss just 
the first. The strategies S to satisfy 9’ depend upon how many sets of markers are 
imposing their rules on S. 

In the trivial case, when S does not have to contend with any markers at all, the 
requirements can be satisfied by the Sacks coding/preservation strategy used in 
his proof of the Density Theorem. The more complicated strategies are built 
upon this one recursively. 

We retain the Sacks idea to ‘code’ enough of A into B and ‘preserve’ enough of 
D over E to ensure 

(1.2) O(D) = B + E zy B, O(D)=B + Bz-,A. 

The assumption that A is strictly above E makes the conjunction of the two 
consequences impossible. Thus, ensuring the two implications ensures that the 
requirement is satisfied. The interesting ingredient is E’s simulation of the 
evaluation of 0 on D to compute B. To satisfy the first implication in (1.2), E is 
required to enumerate the O(D) computations that establish O(D) = B. E’s 
problem is that a number may enter D and change the evaluation of O(D) for 
one of three reasons: it may be the V-code for an atomic fact about E, it may be 
one of a recursive set of numbers enumerated by a higher priority strategy with 
recursively described outcome or it may record the movement of some r-marker. 
The first two are recursive in E. S ensures that E can enumerate when the third 
case will not occur. 

Consider the last point in more detail. S cannot keep higher priority strategies 
from moving markers positioned within O(D) computations. Instead, for each 
O(D) computation, S can try to establish a configuration within the construction 
which proves to E that no strategy of higher priority than S will move the markers 
involved in the computation. The failure of S to find such a configuration will be 
linked to a &-outcome of an %-strategy of higher priority, and hence to progress 
on that n3-strategy. 

We begin by discussing the simplest case. Suppose that the only constraint on S 
is that it must obey the rules associated with R’s family of markers {T(k) 1 k E N}. 

Making O(D) recursive in E 

To reduce the question whether O(n, D) is correctly computed during stage s 
to E, S acts as follows. For each marker T(k) such that y(k, s) is less than 
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6(n, D)[s] (the use of the computation of @(n, D) during stage s), E will 
either see T(k) move, S will ensure that T(k) will not be moved by any 
strategy of higher priority than S or S will produce an n and ensure 
that R has the &-outcome for some m in. In the last case, S will produce 
an n such that for some m s n either Y(m, B) f @(m, C) or @(m, C) is not 
defined. 

R is the only strategy of higher priority than S that could move a marker. 
Focusing on a single marker, R will move T(k) if Y(k, B) and @(k, C) change 
their common value. For the sake of making B compute A, A will be coded into 
B. This puts the Y(k, B) computation more or less beyond E’s understanding. 
But S can still try to control the evaluation of @(k, C). S will reduce E’s problem 
of trying to recognize a correct D computation, that could be changed by E or R, 
to trying to recognize a correct C computation, that could only be changed by E. 
Of course, the same considerations appear; since D is coded into C, the 
movement of a r-marker causes a change in C. However, S can attempt to 
stabilize this phenomenon. This is based on the observation that a r-marker is 
only required to move to reflect an earlier change in C. Thus, R never acts to 
make the first change in C. 

1.3. Definition. A stage s C-configuration to preserve D 1 I respecting R is an 
initial segment of C[s] of length I’ such that: 

(1) 1’31. 

(2) For all m, if c(v(m, s)) <I’ then q(m, C)[s] <I’ and @(m, C)[.s] = 

W, D)bl. P ere c(y(m, s)) is the code of the stage s position of r(m); 
r(m, D)[s] is the mutual value of Y(m, B)[t] and @(m, C)[t] during the stage t 

when r(m) was assigned position y(m, s).) 

If C[s] 11’ is a C-configuration to preserve D r I, C[s] r I’ is preserved with 
priority S and E does not change after stage s to cause a code to be enumerated 
into D and from there into C below I’, then C 11’ will equal C[s] r 1’. The reason 
is that a marker r(m) with code below 1’ will only move if both Y(B) and G(C) 
first change their values at some number less than or equal to m. This requires a 
change in C below I’ to initiate r-marker movement by R’s recovery process 
since the uses of all of the relevant @(m, C) computations are less than 1’. Hence, 
the first number below I’ to enter C after stage s does so to reflect some number’s 
entering E below I’. 

Thus, being a permanent C-configuration is recursive in E. S implements the 
Sacks preservation strategy by attempting to find a permanent C-configuration for 
each compoutation @(n, D) where B 1 n is equal to O(D) 1 n. 

Let n be fixed. S acts as follows to ensure that if O(D) r n is equal to B 1 II, 

O(n, D) converges and Y(B) = G(C) then there is a permanent C-configuration 
preserving D r 6(n, D). 
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(1) S waits for a stage s such that O(D)[s] 1 n is equal to B[s] 1 n and @(n, D)[s] 
is defined. 

(2) Given a stage as in (l), S takes control of a marker Qm,), that has not yet 
been assigned a position and hence will have position greater than 

sup({fl(n’, D&l I It’ in}), and keeps the code of its position clear of the 
C-computation &n,, C) and hence clear of a C-configuration preserving 

D r sup({qt’, D&l 1 n’ in}). S moves r(m,) every time the approxima- 
tion to the computation of @(m,, C) changes, enumerates its former position 
into D, enumerates the code of that position into B and C, and follows all by 
R’s recovery process. 

(3) If the computation of @(n, 0) changes then S releases control of all r(m) 
where m is greater than or equal to m,. A new and larger value for m, will be 
chosen the next time that S reaches (2). 

Notice that this action of S does not violate the rules of R. Each time that S 
moves Qm,) is in response to a change in the computation of @(n, C). This 
change in @(C) grants R-permission for a movement of r(m,) according to Rule 
(4). Further, if O(D) 1 n = B 1 n and Q(n, D) converges, then S will settle on a 
final value for m, and maintain the inequality y(m,, s) > rp(m,, C)[s]. Thus, S 
ensures that during each stage s, either S moves r(m,) or C[s] 1 y(mn, s) is a 
C-configuration to preserve D r sup({ 6(n’, D)[.s] 1 n’ S n}). 

For the sake of strategies of lower priority than S, we will show that S imposes 
a finite amount of permanent control, or Y(b) and @(C) are not equal, or one of 
Y(B) or @(C) is not total. In each case, the permanent restraint due to S is 
finite. 

The coding of A into B 

We use a minor variation on the Sacks coding method to ensure the second 
implication in (1.2): O(D) = B j B aT A. 

In the Sacks coding strategy, the use function of a Turing functional which is 
provably partial determines the coding locations in a set under construction (such 
as B), for the atomic facts about a given set (such as A). We apply the same 
strategy using the length of C-configurations to determine the coding locations. 
The Sacks contradiction will prove that the function mapping n to the length of 
the nth C-configuration is also partial. 

We code the information whether n E A at a location in B that is greater than 
the stage s when O(D)[s] 1 n = B[.s] 1 n and there is a permanent C-configuration 
preserving D 1 sup({#(n’, D)[s] 1 n’ s n}): So, if there is an n such that @(n, D) 
is not equal to B(n) or there is no permanent C-configuration preserving 

D 1 sup({6(n’, D)[sl 1 n’ sn}), then S codes a recursive set into. B. The same 
feature ‘appears in the Sacks density construction. The only difference between 
the two situations is that Sacks could directly preserve an initial segment of his set 
where we can only preserve an initial segment of D by preserving a larger initial 
segment of C. 
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The formal three requirement construction %, 9, Y 

Before describing the full construction, we describe the rudimentary version 
implementing the direct coding strategies together with one strategy for each of 
the requirements $49 and 9’. The three strategy construction operates by recursion, 
as dictated by the stage by stage actions of the following strategies. 

We adopt the following conventions. For each functional under consideration, 
if the computation of that functional changes between consecutive stages in 
execution of a strategy, then the strategy regards the functional as divergent 
during the second of these stages. Also, we regard the use functions of all Turing 
functionals as strictly increasing. That is to say that the evaluation of a functional 
at m involves first computing its values on all arguments less than m. 

Coding: If n has been enumerated into E and c(n) has not been enumerated 
into D(n), then Coding enumerates c(n) into D. Similarly, Coding enumerates 
c(n) into both C and D if n has been enumerated into D. Further, Coding 
restrains c(n) from entering any set except in response to n’s entering a set being 
coded. Of course, we choose the recursive function c so that the complement of 
the range of c is an infinite recursive set. 

R: During stage s, R first implements its recovery process to correct Z(D) 
from the effects of Coding according to Rules (2) and (3). Then R assigns 
positions according to Rule (l), following the convention that markers are 
assigned positions in increasing order of argument. 

S: As described above, the stage s activity of S is divided into ensuring the two 
implications in (1.2). For the first of these, S implements its version of the Sacks 
preservation strategy. Formally, we let n = 0, m-, = -1, and r(-1, s) = 0 and 
start the cycle for n = 0. 

The nth cycle works as follows. Fix an infinite recursive set P for S’s exclusive 
use. 

(I) If fw)bl r n is equal to B[s] r n and O(n, D)[s] is defined, then go to (2). 
Otherwise, preserve C 1 r(n - 1, s); for each i greater than or equal to n, 
cancel the value of mi; end stage s activity of S with tentative outcome 

(4 n, r(n - I, s)). (d is an abbreviation for ‘disagree’. Zf S stops at step (1) in 
the nth cycle infinitely often, then either @(n - 1, D) converges with value 
unequal to B(n - 1) or the approximation to the computation of @(n, D) does 
not have a limit. Either of these implies that O(D) is not equal to B. The limit 
on s of r(n - 1, s) is the restraint on C needed to preserve the first n 
C-configurations.) 

(2) If m, is defined then go to (3). Otherwise, let m, be the least number greater 
than any number previously mentioned in the construction and not in the 
range of the direct coding function c. (Zn particular, Z(m,) has never been 
assigned a position.) 

(3) If r(m,) does not have a position or if the computation of @(C) 1 m, + 1 has 
changed between s and the stage when Z(m,) was assigned its current 
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position, then proceed as follows. Enumerate y(m,, s) into D and 
c(y(m,, s)) into B and C, if r(n) has a position; for each y greater than or 
equal to m,, cancel the position of T(y); for each n’ greater than n, cancel 
the values of m,. and s(n’) (the coding locations for the coding half of S’s 
activity); preserve C r r(n - 1, s); end stage s activity with the tentative 
outcome (c, m,, r(n - 1, s)). (Zf this outcome is repeated infinitely often, S is 
never able to preserve a C-configuration to preserve D 1 s(n, D) because 
G(C) is not total.) 

Otherwise, define r(n, s) to be y(m,)[s]. If 6(n) does not have a value, 
define o(n, s) to be the least element of P that is larger than any number 
previously mentioned in the construction. Begin the n + 1st cycle in step (1). 
(Note,. C[s] 1 r(n, s) is a C-configuration to preserve D’s computation of 
O(D) r n + 1. By our convention, q(m,, s) is greater than m,, hence greater 
than sup{ti(m, D)[s] 1 m < n}. Further, since we also take Q, to be monotone, 
for any marker positioned less than q(m,, C)[s] during stage s, that marker 
has argument less than m,. Hence, since we have assumed that Q, is monotone, 
there is a C-computation of length less than q(m,, C)[s] that keeps R from 
moving it. This is the reason that S takes steps to ensure y(m,,, s) > 

Y(m,, Wsl.> 
During stage s, S’s coding mechanism acts as follows. 

If 6(k, s) is defined, let t be the stage when 6(k) was assigned its current 
value 6(k, s). If k is an element of A[s] -A[t] but B[s] r6(k, s) + 1 = 
B[t] 1 6(k, s) + 1, then enumerate 6(k, s) into B, cancel the values of 6 on 
all numbers greater than or equal to n, and invoke R’s recovery process. 

Suppose that B, C and D are constructed while respecting the above strategies. 
Suppose that O(D) is equal to B and for every n, S finds a permanent 
C-configuration preserving D 1 6(n, D). Then, we can conclude that A is 
recursive in E. First note that E can enumerate the collection of permanent 
C-configurations found by S to preserve O(D) = B. This implies that B is 
recursive in E. Now, to compute whether n is an element of A, we use E to 
compute S’s first n permanent C-configurations and the stage s when these are 
first preserved by S. The value of s(n, s) can only be reassigned in response to a 
change in a C-configuration associated with the computation of @(m, D) for 
some m less than or equal to n. By the choice of s, there are no such changes. By 
the action taken in the coding strategy in (2), n is an element of A if and only if n 
has been enumerated into A by the stage s1 when B[S,] r 6(n, s) + 1 is equal to 
B r 6(n, s) + 1. Since B is recursive in E, we can uniformly compute s1 and read 
off the value of A at n. 

For our theorem, we may assume that A is not recursive in E. Thus, either 
O(D) is not equal to B or there is an n such that O(D) 1 n = B 1 n and O(n, D) 
converges but S is not able to preserve a permanent C-configuration preserving 

D r sup({%, D) ( m G n}). In either case, there are only finitely many C- 
configurations permanently preserved by S. At worst, there is an n such that 
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S(n, s) is reassigned infinitely often and lim,,, 6(n, s) = 03. This implies that the 

set of coding locations enumerated into B by S is recursive. 

Outcomes in the three strategy construction 

In the first type of outcome (d, n, r), r is the limit of the lengths of the 
C-configurations which preserve the computation of O(D) on arguments less than 
n and for infinitely many s, O(D)[s] 1 n + 1 # B[s] r n + 1. In this case, 9’ is 
satisfied since O(D) is not equal to B. S imposes a permanent restraint on C of 
size r. S has permanent control only over the finite set of markers {r(mi) 1 i < n} 

and each of these has a limiting position. Thus, the behavior of the R markers is 
permanently modified only on a finite set. 

The second type of infinitary outcome is (c, m,, r). Here, there are 
permanent computations establishing equality between O(D) and B below II, a 
permanent computation for @(n, 0) and permanent C-configurations to preserve 
the computation of O(D) on arguments less than n but S is unable to preserve a 
C-configuration to preserve the computation of @(n, D). Then, it must be the 
case that either S encounters infinitely many stages during which r(m,,) does not 
have a position or infinitely many stages during which the computation of 
Q(C) 1 m, + 1 has changed, in which case S moves Qm,) infinitely often. Given 
that the construction respects R’s rules, either of these conditions implies that 
@(C) is not total. Thus, 92 is satisfied. Let m be the least number less than or 
equal to m, such that its rmarker has no limit position. Either there is a stage in 
the construction after which r(m) is never assigned a position or r(m) is moved 
infinitely often, temporarily occupying each of an increasing recursive sequence of 
positions. Thus, the effect of R is actually recursive, described by the finite 
motion of the markers that have a limiting position and the recursive motion of 
those above m. This opens the way for later strategies to ignore the complexity of 
9. S does not ensure the satisfaction of 9, but provides the witness to the fact 
that R has a &-outcome. 

If we were to continue with the three requirement construction, the most 
natural next strategy to follow this outcome would be the pure Sacks strategy, 
reducing D to E (plus the recursive input of R) and coding A into B. This strategy 
would be guaranteed to satisfy 9’. 

Depth-n strategies 

The injury of a strategy by the action of one of higher priority was seen in a 
primitive form in the way that a .&-strategy S could fail to satisfy 9, by showing 
that 92 was satisfied in a trivial way and reducing R to a recursively describable 
&-outcome. Injury between fl,-strategies appears when we introduce more than 
one R strategy. Of particular interest is the strategy S designed to work on 9’ 
while respecting RI, . . . , Rk. 

Let Ri be the ith strategy that S must respect; Ri uses markers c(n) to ensure 

Yi(B)= @i(C)=Xi j DaTXi. 
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Inductively, Ri is based on the assumption that for all j less than i and for each n, 
q(n) has a limiting position. 

We define the RI,. . . , Rk recovery process in the natural way. We iterate all 
the individual recovery processes until each of them terminates without enumera- 
ting any numbers into D. 

1.4. Definition. A C-configuration for the preservation of D r 1 respecting 

RI, . . . , Rk is an initial segment of C[S] of length 1’ together with placement of 
markers for &, i 6 k, such that: 

(1) 1’31. 
(2) For all i G k and for all m, if c(y,(m, s)) is less than I’, then rpi(m, C)[s] < 

1’. (Here, yi(m, s) b the position of c(m) during stage s.) 

As in its atomic version, S threatens to make the computation of O(D) 
recursive in E by finding a permanent C-configuration of length y(mn, C) for 
each permanent computation establishing O(D) r n + 1 = B 1 n + 1. Earlier, S 
took control of a marker I’(m,) and ensured that if @i(C) were total, O(D) r n 

were equal to B 1 n and @(n, D) were convergent, then there would have been a 
permanent C-configuration to preserve this convergence. S kept r(m,) clear of 
any interaction with D 1 6(n, D) by moving it to stay clear of the computation of 
@(m,, C). When there are at least two sets of markers, q and r, written in order 
of priority, our problem becomes a little more subtle due to their interaction. 
G(m) cannot be moved when the computation for @,(m, C) changes. This is 
because RI does not depend on the outcome of R2. In short, we cannot move all 
of the markers whenever a computation for one of the @‘s changes. 

Instead, S keeps a sequence of markers G(m,,i) clear of the configuration. But 
the elements of the sequence change depending on the apparent convergence or 
divergence of the relevant @j(m,,j, C). Whenever &(m,,i) is without position or 
the evaluation of @i(m,,i, C) changes, S acts as follows. For all j less than i, S 
releases control of q(m,,j) and cancels the values of m,,j. Larger values are 
assigned for these parameters when a new computation for @(m,,i, C) is found. 
For all j greater than or equal to i, S moves q(m,,j) from its current position, if 
any, and enumerates the least such position into D, enumerates its code in B and 
C and invokes the RI,. . . , Rk recovery process. Thus, all of these markers will 
go to infinity if Qi(rn,+ C) diverges. This ordering of events is consistent with the 
heuristic principle that the strategies of higher priority than Ri are not effected by 
the outcome of Ri but all of the lower priority Rj are canceled when Ri is seen to 
have a &-outcome. 

The preservation of C by S 

We implement the preservation strategy as follows. Let P be an infinite 
recursive set reserved for the sole use of S. First, let n = 0 and let r(-1, S) = 0. 
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Proceed through the construction by recursion on cycles, starting with the cycle 
for 0. The nth cycle operating during stage s of the construction consists of the 
following steps. 

(1) If @(D)[sl r n = ml r n and @(n, D&s] is defined, go to (2). Otherwise, for 
all i less than or equal to k and for all n’ greater than or equal to n, cancel the 

values Of I12,,,i and 6(n); preserve C 1 r(n - 1, s). End the stage s activity of 
S with tentative outcome (d, n, r ). 

(2) If for each j less than or equal to k, m,,j is defined, then go to (3). Otherwise, 
by recursion on j assign a value to each m,,j that is not defined. In the 
recursion step, let i be the minimal j such that m,,j is not defined. Define m,,i 
to be the least element of P that is greater than any number previously 
mentioned in the construction. In particular, when m,,i is defined Z(m,,i) has 
never been assigned a position. 

(3) Proceed by recursion on i, starting from k and working down. If &(mn,i) does 
not have a position, if the computation of @i(C) 1 m,,i + 1 has changed 
between stage s and the stage when &(m,) was assigned its current position 
or if there is a j greater than i such that yj(m,,j, s) < q(m,,i, C)[s], then 
proceed as follows. Enumerate the least element of { y(m,,j, S) 1 j 2 i} into D 
and its code into B and into C, if any such q(m,,j) has a position, followed by 

RI,. . . , R,‘s recovery process; for each j greater than or equal to i and each 
y greater than or equal to m,,i, cancel the position of q(y); for each j less 
than i, cancel the value of m,,j; for each n’ greater than n and j less than or 
equal to k, cancel the values of m,,,j; for each n’ greater than or equal to n, 
cancel the value of 6(n); preserve C 1 r(n - 1, s); end stage s activity with 
the tentative outcome (c, m,,i, i, r(n - 1,s)). (Zf this outcome is repeated 
infinitely often, S can trace its inability to preserve a C-configuration to 
preserve D 1 6(n, D) to @ii(C not being total.) 

None of the above cases hold, then define r(n, s) by 

r(n, s) = inf({yi(m,,i, S) 1 i G k}). 

If 6(n) does not have a value, let 6(n, s) be the least element of P that is 
larger than any number previously mentioned in the construction. Begin the 
n + 1st cycle in step (1). (Note, as before, C[s] 1 r(n, s) is a C-configuration to 
preserve D’s computation of O(D) 1 n + 1 respecting RI, . . . , Rk. The only 
complication is that we have to ensure that all of the markers &(m,,,) are clear 

of the supremum of the computations qj(mn,j, C)[s].) 

The coding of A into B by S 

The coding of A into B by S is the same as in the atomic strategy. The only 
difference is that the coding location for the nth atomic fact about A is greater 
than the nth k-fold C-configuration to preserve D up to sup({rY(n’, D)[s] ( n’ s 

4). 
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1.5. Proposition. In the context of a construction in which S acts infinitely often, 
suppose that 

(1) S can restrain all numbers from entering B, C or D except the complete 
enumeration into B, C and D of fixed sets recursive in E and the coding of the 
movement of markers associated with R,, . . . , Rk; 

(2) S can restrain any strategy from moving a marker except for the RI, . . . , Rk 
recovery process. 

Then, during any stage S’s activity is finite, S works with numbers greater than 
the stage when S was first implemented and one of (I) or (II) hola’s. 

(I) There is an n such that S fina3 C configurations preserving 

D 1 w({W’, D)bl ( n’ < n}) and either @(n - 1, D) converges and is not equal 
to B(n - 1) or the computation of @(n, D) changes infinitely often. Let sO be the 
stage after which the first n many C-configurations have stabilized and let r be the 
supremum of their lengths. There will be infinitely many stages s after so when S is 
active, during which either @(n - 1, D) appears unequal to B(n - 1) or @(n, D) 
appears to diverge (using convention that a change in computation between S 
active stages is viewed as divergence). During any such stage, S has tentative 
outcome (d, It, r) and the only constraint due to S is to restrain numbers less than 
or equal to r from being enumerated. This restraint r is also imposed by S during 
every stage after so. The only markers over which S maintains permanent control 
are the ZJm,,,i) with n’ <It. During the stages when S has tentative outcome 
(d, n, r), the only markers with positions that will ever later be controlled by S are 
those that S permanently controls. 

(II) There is an n such that O(D) r n = B r n, O(n, D) has a permanent 
computation and S finds permanent C-configurations preserving 

D 1 sup({@(n’, D)bl 1 n’<n>) but no C-configuration preserving 

D r q.${~(n’, D)bl ) n’ =S n}). Then, there is an i less than or equal to k with the 
following properties. Let so be the stage after which the first n many C- 
configurations have stabilized and the computation of O(n, D) has reached its 
limit. For all j greater than or equal to i, m,,i has a limit value. Let s, be a stage 
after so when these are achieved. For all j > i, there are permanent computations of 
Qj(C) r m,,j + 1 but there is no permanent computation of @i(C) r m,,i + 1. 

During the stages s after sl, when c&(C) 1 m,,i does not converge by means of a 
computation with qi(mn,it C)[s] < inf({ Yj(mn,j, S) 1 j 2 i}), S has tentative outcome 
(c, m,,i, i, r), where r is equal to r = inf({ yj(m,_l,j) 1 j =S k}); for each j less than i, 
S releases all control over markers q(m) with m greater than m,_l,j; for each j 
greater than or equal to i, if q(m,,j) has a position during stage s, then S moves 
q(m,,j); the only negative constraint due to S on strategies of lower priority than S 
is to restrain numbers less than or equal to r from being enumerated. The 
prohibition against enumerating numbers less than r is also in effect during every 
stage after sl. 

In either case, S’s coding apparatus enumerates a recursive set into B. 
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Proof. Assume (1) and (2). Let W be the E-recursive set which is enumerated 
into C, not subject to S restraint and not due the strategies R,, . . . , Rk. Since 
every marker appearing in a C-configuration is kept from being moved by its 
associated R-strategy by a computation of length less than or equal to the 
configuration, the only way that a C-configuration respecting RI, . . . , Rk which is 
preserved by S can change is if a number enters W. Since W is recursive in E, the 
set of permanent C-configurations is recursive in E. If for each n, the 
computation of @(n, D) were preserved by a permanent C-configuration then the 
evaluation of O(D) could be recursively simulated by E. If also O(D) were equal 
to B then B would be recursive in E. But if these would both occur then the 
coding of A into B would converge on every argument and so A would be 
recursive in B. This would contradict the assumption that E does not compute A. 

Thus, S is ensured of having a &outcome. There is an n such that for all n’ 
less than n the equality between O(n’, D) and B(n’) is preserved by a permanent 
C-configuration and either O(D) 1 n + 1 #B 1 n + 1 is seen during infinitely 
many stages of the construction or the computation of O(D) r n + 1 is not 
permanently preserved by any C-configuration found by S. These two possibilities 
correspond to case (I) with outcome (d, n, r) and case (II) with one of the 
outcomes (c, mnsi, i, r), respectively. 

(d, n, r). Let n be the least number such that either O(D) 1 n - 1 = B r n - 1 
and @(n - 1, D) converges but is not equal to B(n - 1) or O(D) 1 n = B 1 II and 
@(n, D) diverges. Assume that permanent C-configurations are eventually found 
to preserve O(D) 1 n. Let r be the infimum of {rj(m,_r,j) ( j 6 k}, as calculated 
after the stage t when the associated configurations have stabilized. For all s L t, 
n’sn and jsk, m,*,j is not canceled nor is r(m,,,j) moved during stage s. 

Say that s is S-correct if during stage s S’s tentative outcome is (d, n, r). By 
clause (1) in the specification of S, any stage after t during which @(n - 1, D) 
appears to disagree with B(n - l), in the first case, or the computation of 
@(n, D) appears to diverge, in the second case, will be S-correct. By convention, 
any change in the evaluation of @(n, D) causes a momentary divergence. Thus, 
there will be infinitely many S-correct stages. 

During any S-correct stage s, all of the values of mnv,j for n’ 3 n are canceled. 
Thus S will not move any marker with argument less than s after stage s. 
Secondly, S only imposes restraint on C to preserve the C-configurations to 
preserve the computations of O(D) up to an including the first disagreement with 
B. Thus, during an S-correct stage, S will only preserve C on the numbers less 
than or equal to r. Lastly, any (temporary) C-configuration that appears after 
stage s will have length greater than s due to the position of markers r(m,,j) 
where m,,j is greater than s. Thus, any coding by S after stage s will either involve 
the finite coding of A r n or will contribute only numbers larger than s to D. 
These remarks verify that the action of S satisfies (I) and contributes a recursive 
set to B, if S has outcome (d, n, r ). 
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(c, m,,i, i, r). Let n be least such that O(D) 1 n = B r n and @(n, D) is 
defined but there is no permanent C-configuration to preserve D 1 fi(n, D). Let i 

be minimal such that m,,i has a limiting value but @i(mn,i, C) has no final 
computation. Such an i will exist since m,,k could not be canceled without a 
change in D 1 6(n, D) or a change in the C-configuration associated with a 
smaller argument. This contribution to cancellation is bounded, showing that m,,+ 

has a limiting value. Now show by induction that if Ilt,,i has a limiting value m 

and @i(m, C) converges then m,,i_r has a limiting value. Finally, if all of the 
@i(mn,i, C) converge, then S finds and preserves a permanent C-configuration 
contrary to the assumption of this case. 

Say that a stage s is S-correct in this outcome if s is large enough so that m,,i 

has achieved its final value and @(m,,i, C)[s] is not defined or there is a j such 
that j is greater than or equal to i and yi(mn,+ s) is less than or equal to 
qi(m,,i, C)[s]. Again there will be infinitely many S-correct stages during which S 
has tentative outcome (c, m,,i, i, r). During each such stage, step (3) will be 
executed for m,,i. Then, the only restraint imposed by S is r, defined as above. r 
has a limiting value by the choice of n and i. 

Every time the evaluation of @i(mn,i, C) changes, the locations for S to code A 

into B are increased on all numbers greater than or equal to n. As above, S’s 
coding of A into B contributes a recursive set to B. 

Finally, during each S-correct stage s, S cancels the values of m,,j for all j less 
than i and cancels the values of m,,,j for all n’ > n and all j G k. Any subsequent 
assignment of values to these parameters will involve only numbers greater than 
s. Thus, for each Rj with j< i, S will not move any of the first s markers 
associated with Rj after stage s. For j 2 i, S moves all markers q(m) where m is 
greater than or equal to m,,j. 

Finally consider the stage by stage construction. Assuming that the construction 
is finite up to the point when S is invoked, there are only finitely many markers 
q(m) that have been assigned positions. If the activity of S is not curtailed for any 
other reason, then S will be eventually define a value for m,,j so large that q(m,,j) 
does not have a position. Then S will end activity in step (3ii). Thus, S’s action 
during any stage is finite. 0 

Examining cases (I) and (II) gives us: 

1.6. Corollary. Working in the same context as in Proposition 1.5, S ensures that 

either 9’ is satisfied or that some higher priority S$ is satisfied. 

The above analysis verifies the inductive properties needed to combine 
strategies to construct sets satisfying all of the requirements. It ensures that given 
an appropriate environment each strategy is guaranteed to make some progress 
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toward satisfying one of the requirements of its or higher priority. Further, the 
effect of each strategy is to produce an appropriate environment. 

2. Producing sets recursive in A 

In the construction outlined in the previous section, there are three possible 

ways for a number to enter one of B, C or D. 
(1) A number is enumerated into E and this fact is reflected by the %-codings 

of E into D and of D into both B and C. 
(2) A number enters A and this is coded into one of B or C for the sake of 

some diagonal strategy S. 
(3) A marker r(m) is moved and its former position p is enumerated into D ; 

then the code for p enters both B and C. 
The first two of these are the possibilities that appear in the density theorem. A 

can compute with little difficulty whether a strategy will want to enumerate a 
number for one of these two reasons. (3) is a new case. 

Let us consider R in isolation. Suppose that R is the only strategy and r(n) has 
position p. R will move r(n) if and only if both Y(n, B) and @(n, C) are seen to 
have simultaneously changed their values at n. Note, the evaluation of Y(n, B) 
could change while ending with the same answer. If during the period of Y(B) 
change at II, @(n, C) did not change, then R would not be triggered to move 
r(n). There is even the possibility that both ?P(n, B) and @(n, C) could be 
undefined in the limit without r(n)‘s ever moving. There is no way that A could 
recursively predict this infinitary behavior in the construction. Luckily, the ability 
of the construction to exhibit this behavior is in no way related to the satisfaction 
of its requirements. 

The density requirement for a marker r(n) and position p is that either r(n) 
moves past p without occupying it, r(n) occupies position p and is later removed 
from that position or A can enumerate a permanent configuration for a 
computation of either Y(n, B) or @(n, C) which keeps R from moving r(n). The 
first two are recursively enumerable possibilities; the third will make essential 
reference to A and use of a density strategy MP invoked during the construction. 

We also make a modest modification in R so that if both Y(n, B) and &r, C) 
diverge in the limit, then R will eventually be triggered to move r(n) from 
position p. Mp ensures that either R moves r(n) or there is a permanent 
B/C-configuration (to be defined) which keeps r(n) from moving. As in S, we 
keep a collection of markers clear and impose restraint so that if a permanent 
computation for either of Y(n, B) or @(n, C) exists then A will recognize it. The 
only difference between what we do here and what we did with S is that the 

density strategy can use B or C computations. 
In the final analysis, the strategy to enable A to enumerate the fact that r(n) 

will never move again must result in a finite A-computation. Therefore, it itself 
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must have a finite outcome. Given that all of its activity will be finitely bounded, 
an M-strategy can be allowed to move any marker at will, by Rule (4). 

The modification of R 

The modification of R uses the fact that E is not recursive to ensure that if 
Y(n, B) diverges and @(n, C) diverges, then R will eventually want to move 
r(n). We define max-min(n, s) to be the maximum of lengths of the shortest 
computations that have kept R from moving r(n) during the stages between t, 

when I’(n) was assigned its position and stage s. As a function of s, max-min(n, s) 
is non-decreasing and goes to infinity if and only if both Y(n, B) and @(n, C) 
diverge. We modify r by adding another rule. 
(5) If r(n) has a position during stage s, max-min(n, s) is defined and E has 

changed below max-min(n, s) between stage s and the stage when max- 
min(n, s) first achieved its current value, then r(n) must be removed from its 
stage s position. 

If Y(B) and @(C) are defined and equal on all n E N, then for all n, 
max-min(n, s) has a finite limit. Thus, (5) can only introduce a finite number of 
movements for any marker. This implies that the modified version of R still 
ensures the satisfaction of 9% Secondly, as in a simple permitting argument, if 

lim,,, max-min(n, s) = ~0, then there must be a number x that enters E during a 
stage s with max-min(n, s) > x. If not, we could compute whether x is an element 
of E by checking whether x is an element of E[s] for the least s such that 
max-min(n, s) >x. Thus, if @(n, B) and Y(n, C) diverge, then (5) will eventually 
ensure that r(n) is moved by R. 

The modification of S 

Of course, introducing (5) to R makes it more difficult for S to preserve D. We 
must ensure that the notion of configuration includes assurance against an 
invocation of (5). We modify the definition of B or C-configuration as follows. 

2.1. Definition. (1) Define max-min(i, n, s) to be the value of max-min(n, s) 
associated with Ri’S marker c(n). 

(2) A stage s C-configuration to preserve D r 1 respecting RI, . . . , Rk is an 
initial segment of C[s] of length I’ such that during stage s: 

(i) 1’31. 
(ii) For all i 6 k, for all n, if yi(n, s) < I’ then qi(n, C)[s] <I’ and max- 

min(i, n, s) < I ‘. 
(3) A stage s B-configuration is defined similarly. 

As before, E can be recursively enumerate the permanent configurations. We 
leave it to the reader to observe that this modification does not change the 
validity of Propositon 1.5, which describes the possible outcomes of an S-strategy. 
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The density strategies 

We consider the reasonably general case when there is only one strategy R of 
higher priority. The job of M, is to allow A to recognize the stage when all of B, 
C and D have settled down on the numbers less than or equal to 1. In particular, 
if r(n) reaches a permanent position below I, then A must be able to recursively 
enumerate this condition. MI operates similarly to an S-strategy in that it attempts 
to preserve a configuration showing that R will not initiate any change below 1. 
Then the only remaining source of change below I would have to come from the 
coding strategies, whose effects are uniformly recursive in A. M, has an advantage 
over S in that M, does not need to enumerate any numbers into B or C for the 
sake of making these sets complicated. Thus M, can preserve both B and C 
computations. Further, the fact that r(n) has not been moved by R implies that 
there is a computation relative to one of these sets to be preserved. 

2.2. Definition. A stage s B/C-configuration for 1 respecting R is an initial 
segment of B[s] and C[s] of length 1’ such that I’ is greater than or equal to I and 
for all it, if c(r(n, s)) < I’, then max-min(n, s) is less than I’. 

If A and E do not introduce a change after stage s in one of B, C or D below 1’ 
through a coding strategy, then B 1 I’ = B[s] 1 I’, C r 1’ = C[s] 1 l’, and D r 1’ = 

D[s] 11’. 
MI acts to ensure that only a fixed finite set of markers become involved in the 

minimal B/C-configuration for 1. Its action is both positive and negative. MI fixes 
a number move/ in advance. If the shortest B/C-configuration for 1 changes or 
involves the position of QmoveJ, M, moves all of the markers T(y) for y greater 
than or equal to move1 and records this movement by enumerating a number into 
D. Otherwise, M, preserves the shortest available B/C-configuration. Note, there 
will be a B/C-configuration since there are only finitely many markers with 
positions during any stage and any marker without an associated B or C 
computation can be removed from its position, see R’s Rule (2). 

By modifying R, we have ensured that each r-marker is either without position 
for all but finitely many stages, moved infinitely often or assigned a permanent 
position with a permanent B or C computation keeping it from being moved. 
Consider the first moveI markers. Suppose that some initial subset of these 
reaches its limit position with associated final computations during stage s. Let 
max-conv be the maximum value less than move1 for which r has a limit. The 
markers for arguments greater than max-conv will have moved beyond the 
computations for the smaller markers by stage s. Further, r(move[) is clear of 
these computations by the action of M!. Thus, there is a permanent configuration 
for 1 established during stage s. After stage s, the only effect of Ml is to preserve 
this configuration. Thus, MI is a &strategy, i.e. finite action. 

This simple strategy implements the general plan to ensure that B, C and D are 
fixed below 1 as soon as no strategy of higher priority than MI initiates any change 
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below I’. During the course of the construction, MI can recognize a configuration 
in which any change would have to be initiated by a change in A. M, preserves the 
shortest such configuration. 

The general strategy My 

In general, there are finitely many requirements of higher priority than .M,. For 
each sequence CJ of strategies and their outcomes associated with these higher 
priority requirements, there is a strategy My associated with A,. 

A sequence u will be a finite string of nodes of the form (Rf), 
(Sf, c, m$, i, rS), (Sf, d, nB, rS) or (Mf, rS). The value of Y@ is the restraint 
imposed by the strategy Sf or Mf. The other parameters describe the possible 
outcomes of their associated strategies. /3 represents the initial segment of u up to 
and not including the strategy indexed by j3. 

2.3. Definition. A stage s B/C-configuration for 1 respecting u is an I’ greater 
than or equal to 1 such that I’ passes the following test. 

The test is defined by induction on m along 0. Assume that 1’ has not failed the 
test before m nor has it passed the test. 
(1) a(m) = (Rf). Th e markers associated with Rf are denoted by rf. 

(a) If for all x such that r;(x) is located at position yf(~, s) such that 
c(y& s)) is less than l’, max-min(i, X, s) is defined and is also less 
than I’, then 1’ passes the test at step m. 

(b) Otherwise, 1’ fails the test. 
(2) a(m) is one of the other possibilities. 

(a) If 1’ is less than r O, then 1’ fails the test. 
(b) If 1’ is equal to r @, then 1’ passes the entire test. 
(c) Otherwise, 1’ passes the test at step m. 

Say that 1’ passes the test if either there is a step during which 1’ passes the 
entire test or if 1’ passes the test during all steps less than or equal to the length of 
0. 

The strategy My 

During a stage when all of the strategies on CJ act with tentative outcomes as 
specified by a, My acts as follows. By recursion on l’, Mj’ applies the test. If Mj’ 
finds 1’ that passes the test but there is a /IO contained in o such that yp(rnoueI, s) 
is less than I’, then Mi’ enumerates the least position of such a marker into D, 
enumerates its code into B and C, moves all markers Y?(n) associated with 
strategies appearing on o with n greater than or equal to movel and applies the 
recovery process for the sequence of R-strategies that appear on o. After 
recovery, Mj’ starts over with the above recursion on 1’. 

Note, no markers are assigned positions during the action of Mj’ so there are 
only finitely many ways by which Mi’ might be required to initialize its recursion. 
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Ultimately, Mj’ computes the least 1’ that passes the test for 1 and this 1’ is less 
than the positions of the markers rs(movel) for all /3 contained in o. Then, My 
restrains all strategies of lower priority from enumerating any numbers less than 
1’ into B, C or D. 

2.4. Lemma. Suppose that 1’ passes the test for My during stage s, all of the 
strategies on o act with tentative outcomes as specified by o and 

(1) A 11’ + 1 = A[s] 11’ + 1 and E 11’ + 1 = E[s] 11’ + 1; 
(2) if n is less than the length of a, then the only strategies that can be the first to 

enumerate a number less than ra In into B, C or D are the basic coding strategies 

and those mentioned before n in o. 
Then B r 1’ = B[s] r I’, C 11’ = C[s] 11’ and D r 1’ = D[s] 11’. 

Proof. By the explicit application of coding and the recovery process following 
the enumeration of any number into B, C or D by any of the strategies on a, 
neither Coding nor any of the R-strategies indexed by nodes along o will require 
that numbers below 1’ be enumerated to record events that occurred between 
their implementation during stage s and the implementation of Mr. 

Assumption (1) implies that neither the direct coding of E into D nor any 
coding of A into B or C by an S-strategy can cause a number less than 1’ to enter 
B, C or D after stage s. It is enough to prove the claim: No strategy in u is the 
first to cause a marker located below 1’ to move. 

Proceed by induction along u to prove the claim. Suppose the claim is true for 
all strategies in /3 c o. In the case that /I is empty, let r equal 0. If /3 is not empty, 
let r be the supremum of the restraints due to elements of /3. Let a(m) be the 
next element of 0. 

The first cast is when o(m) is (R?). R. f will only move a marker r?(n) located 
below 1’ when either E changes below max-min(i, n, s) or both of Rg’s 
computations Yi(B) and 4$(C) change value at an argument below n + 1. Since 1’ 

passes the test for (Rf), the value of max-min(i, n, s) is less than 1’. Thus, 
assumption (1) implies that Rjs will not move r?(n) for the sake of a change in E. 
Similarly, since max-min(i, n, s) is less than I’, there is a computation of length 
less than 1’ for one of Yi(B) 1 n + 1 or @i(C) r n + 1 which has the same value as 
the one in effect during the stage when T?(n) was assigned its current position. 
Thus, Rf will not require the movement of r;(n) for the sake of recording a new 
common value without a number first being enumerated below 1’ to destroy the 
computation available during stage s. 

For the remaining types of strategies, there are two possibilities. First, 1’ could 
pass the entire test at step m by clause (b). In this case, 1’ is equal to the restraint 
imposed by the mth strategy in o. If this strategy is of the form My”“, then we 
can conclude the result by induction, since rorm is the least number that passed 
the test for Mprm. Otherwise, the mth strategy is of the form Sprm. This strategy 
enumerates numbers to code A into one of B or C and moves markers in an 
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attempt to produce configurations. Sprm does not enumerate numbers or move 
markers below its imposed restraint unless prompted to do so by a change in one 
of A or E below this restraint (see Proposition 1.5). Assumption (1) ensures that 
neither A nor E will prompt any such action by Sprm. Thus, by induction, no 
strategy above SF Irn will enumerate a number less than I’, the restraint imposed 
by Syfm, Spr”’ itself will not enumerate any numbers less than 1’ and no strategy 

below Sp Irn can enumerate any such numbers because they are all restrained from 
doing so by Sprm. In this case, the lemma is proven. 

The final case is when for every m less than the length of u, 1’ passes the test at 
step m by clause (c). If the mth strategy is R”‘“, we have already seen that it will 
not initiate the enumeration of any number less than 1’. If the mth strategy is of 
the form My’“, then by induction this strategy is restraining a permanent 
B/C-configuration for i. Thus, its activity is completed. Otherwise, the mth 
strategy is of the form Sprm with tentative outcome either (d, nB, rS) or 
(c, mt,, i, rS). In either case, the markers that Sprm would move to infinity do 
not have a position when 1’ is tested. When next assigned positions, those 
positions will be larger than I’. Thus, subsequent movement of those markers or 
any other markers later chosen by Sprm will only result in the enumeration of 
numbers greater than 1’. Then the only way that Sprm could cause the 
enumeration of a number less than 1’ would be to move a marker associated with 
a smaller value of n. This will not happen, because assumptions (1) and (2) imply 
that the B or C configurations preserved by Sprm during stage s are permanent. 
The claim follows. Cl 

2.5. Corollary. In the same context as in the previous lemma, any restraint 
imposed by the strategies appearing in o is permanent. 

2.6. Lemma. For all o and for all 1 and s there is a stage s configuration for 1 
respecting u. 

Proof. As we argued above, since no markers are assigned positions during the 
execution of My, My can only remove finitely many markers to restart its 
recursion. Once MP stops moving markers, any 1’ that is greater than any 
computation associated with a marker that is indexed by an initial segment of u 
and associated with a marker that has a position will pass the test. 0 

2.7. Lemma. Suppose that 
(1) The strategies in o play infinitely often in some construction with tentative 

outcomes as indicated by o. 
(2) The restraints appearing in the outcomes listed in u are respected after they 

are imposed by the strategies in u. 
(3) Mj’plays whenever the strategies in u have the tentative outcomes listed in u. 
Then, there is a stage s and a 1’ such that for every t as, 1’ is a stage t 

configuration for 1 respecting u. 
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Proof. Let so be large enough that the restraints appearing in the outcomes listed 
in (T have all been imposed by the strategies in o. 

If some restraint imposed by a strategy mentioned in 0 passes the entire test for 
My, then it will do so during every stage when u’s outcomes are the tentative 
outcomes of the strategies mentioned in u. In this case, the claim is proven. 

Otherwise, the proof is the same as in the special case when u is equal to 
( ( Ri ) ) . Because Mj’ moves all markers with argument greater than or equal to 
movep whenever the shortest configuration for I changes, there is a fixed set of 
markers F; which can be involved in any B/C-configuration. By Rule (5), these 
either have a permanent position and a permanent B or C computation keeping 
them in position or have no limiting position. Choose s so that so is less than s and 
for each member T:‘(n) of F,, if r?‘(n) has a limiting position, then max- 
min(i, IZ, s) is equal to the limit of max-min(i, n, -) and the computation keeping 
r:‘(n) from moving is permanent. 

Let 1’ be the minimum number greater than or equal to 1 and the supremum of 
all the restraints imposed by the strategies appearing in (7 in the outcomes 
mentioned in o such that 1’ is greater than or equal to sup({max- 
min(i, n, s) 1 r:‘(n) E 4)). Note, any marker that does not have a limit position 
will have position greater than 1’ after stage s. 

Since 1’ is explicitly chosen to be sufficiently large, 1’ cannot fail the MP test by 
being strictly less than a restraint appearing in o. Similarly by the choice of I’, for 
each strategy RF’” appearing in a, 1’ cannot fail the test by being between a 
marker’s position and its associated max-min. Then 1’ passes the MP test during 
every stage greater than or equal to s in which o seems to correctly predict the 
eventual behavior of the construction. 0 

2.8. Proposition. Suppose, in the context of some construction, that the strategies 
in (I play infinitely often with tentative outcomes specified in o. Also, suppose that 
the only strategies which do not respect the restraint imposed by the strategies in u 
are their predecessors in u. Zf My is played after every play of u, then the following 
conditions hold: 

(1) Mj’ initiates only finitely many movements of markers. 
(2) M,“s eventual activity is to preserve some permanent B/C-configuration for 1 

respecting u. 
(3) The least A and E correct BIGconfiguration for 1 respecting u which is 

preserved by MT is permanent. 

Proof. The proposition follows from the earlier lemmas. Note that Lemma 2.7 is 
needed to show that during stage s, Mj’ eventually decides on some action during 
stage s. Cl 
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3. The tree of strategies and the construction 

The strategies used to fulfill the requirements are organized with their 
outcomes so as to form a tree T. For each strategy, there is an implicit well 
ordering of its outcomes generated from the following rules. 
(1) The /3th strategy is R?. (R?) represents Rf and its unambiguous outcome. 
(2) The /3th strategy is Sf. 

(a) (SB, 4 n, rl> < (SB, 4 n, G), if rl < r2; 
(b) (Sf, d, n, rl) < (@, C, m,,i, i, r2), for all values of m,,i, r,, r2 and i; 

(4 (S?, c, %,i,, il, 4 < W, c, m,,j,, i2, r2), if iI > i2, iI = i2 8~ m,,i, < 

m,,i, or il = i2 & m,,i, = m,,jz & rl < l-2; 

(d) (Sf, C, m,+, i, t-1) < (Sf, d, n + 1, r2), for all value of m,,i, i, r and r,. 
By comparing least difference, there is an implicit notion of cy’s being to the left 

of /Z?. 
The activity involved in stage s of the construction is to determine a finite path 

a[s] in T and to allow the strategies mentioned in a[s] to take action. 
If a node /I lies to the right of a[~], then all of the work taken by X6, the 

strategy indexed by /3, during previous stages will be canceled during stage s. For 
example, values for rB, rn$ or movef will be erased. The strategy X6 will start in 
its initial state the next time that it plays. 

If p lies to the left of a[.~], then all of the work done by XB will be left intact 
during stage s. In particular, if XB imposed a restraint at an earlier stage which 
has not been canceled, then that restraint will be replaced during stage s. 

Definition of T 

The set of nodes o in T is defined by induction on the length of CT. Also, some 
auxiliary notions are needed to keep the induction going. 
(1) If o E T, say that C@ is satisfied in o if there are m, r and i such that 

a(m) = (Sy’“, C, m,,i, i, ratm). 
(2) If (T E T and a(m) = (RP’“), say that Rj’ tm is injured in o if there is an m’ 

greater than m and a k less than i, such that there are j, n, m,,k and r with 
o(m’) = (sy’“‘, c, mn,k, k, R). 

(3) Say that Sq. is satisfied in (T if there are m and r such that o(m) = 
(SF rm, d, r). 

Suppose that “0 E T” has been defined for all sequences o of length k. Let u be 
an element of T of length k. We follow u with an implementation of a strategy for 
the first requirement in the priority list 

that does not seem to be satisfied by an element of u. Let i be minimal so that 
either %!i has not been satisfied in u and every strategy RP’“’ appearing in u is 
injured in a, or Yi is not satisfied in u or there is no strategy for 4 in CT. 
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Case 1. gi is not satisfied in u and every strategy RP”” appearing in o is 
injured in o. The only immediate successor of u in T is a-( RP). 

Case 2. Case 1 does not hold and Yi is not satisfied in CT. Let 

Active-index(a) = {i ( j s i and 9j is not satisfied in a}. 

Let 

Outcome = {(c, m,,j, j, r), (d, n, r) 1 j E Active-index(u) & {n, Ill,,i, r} c N}. 

The immediate successors of u in T are the sequences of the form a^(,!$‘, o ) 
where o E Outcome. 

Case 3. u does not fall into either of the first two cases. The immediate 
successors of u in T are of the form a^( My, r) where r E N. 

The construction 

We uniformly assign infinite disjoint recursive sets PO to the nodes in T. During 
the construction, the strategy associated with the immediate successors of u will 
only use numbers taken from PO. 

The construction takes place in stages. During each stage s there are s many 
substages. We begin substage m with a value for u[s] 1 m, lying in T. In the 
definition of T, every immediate successor of u[s] 1 m in T is associated with the 
same strategy X9 

3.1. Definition. Suppose that u E T. Let Active-strategy(u) be defined by 

Active-strategy(u) = { RP tmj ( j E Active-index(u) & RP Irni is not injured in a}. 

We modify the description of the strategies given in the earlier sections so that 
X” only uses numbers from PO greater than any restraint imposed by a strategy on 
or to the left of u[s] r m. Further, X” only works with the markers associated 
with strategies in Active-strategy(u) and whenever X” enumerates a number it 
applies the Active-strategy(u) recovery process. 

We play X” until it completes its activity with tentative outcome o. Then 
u[s](m) is defined to be (Xc, 0). 

If during stage s, u[s] is to the left of #I in T, then the history of the activity of 
the strategy associated with /3 is canceled. 

Following Harrington [2], the leftmost path visited infinitely often by u[s] in T 
is called the true path TP of the construction. The requirements are seen to be 
satisfied by a finite injury analysis along TP. 

3.2. Proposition. (1) Zf y is right of TP, then the strategy Xy associated with y 
moves any particular marker only finitely often. 

(2) Suppose s1 is less than s2 and for each stage t in [sl, sz), u[t] lies on or to the 
right of u[sJ. Zf a strategy X enumerates a number into B, C or D during stage s2 
violating a restraint imposed by an element of a[~,], then X is associated with a 
node on or to the left of a[~~]. 
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(3) Let o E TP. For all m, there is a stage s such that for all t > s the following 
conditions hold. Zf Rf is a member of Active-strategy(a), then the only strategy 
mentioned in u which ever moves F;(m) during stage t is Rf, in the context of an 
application of Rys recovery process. Further, if X is the strategy named in the 
immediate successors of o and X acts to move F:(m) during stage t, then Y!(m) is 
moved by X during every stage when X’s tentative outcome is equal to its true 
outcome and Z;(m) has a position. 

(4) The numbers enumerated in B or C by strategies on or strictly to the right of 
o which are not members of Active-strategy(a) form a set that is recursive in E. 

(5) TP is infinite. 

Proof. (1) holds because Xy starts over infinitely often. Each time that it does so, 
Xy chooses new markers to move in its attempt to find a permanent configura- 
tion. The choices are always larger than any number previously mentioned in the 
construction, in particular larger than any argument of a marker previously 
moved by X7 

(2) holds because strategies on o respect the restraint of their predecessors. 
Strategies to the right of u start over after stage s1 and hence use only numbers 
that are larger than any number mentioned during stage si. 

Conditions (3) and (4) are proven by induction on TP. Assume that u is in TP 

and (3) and (4) are true along o. Let X be the strategy associated with the 
immediate successors of u in T. We must show that the action of X satisfies (3) 
and (4). To conclude (5), we also show that there is a leftmost immediate 
successor of u that acts infinitely often. 

Suppose that X = Ry. In this case the lemma is clear. RP only moves its own 
markers. u’s unique immediate successor a-(RP) lies on u[s] during every stage 
s greater than its length during which u lies on a[~]. 

In the other two cases, X = Sp and X = ME, the inductive hypotheses (l)-(4) 
imply that Propositions 1.5 and 2.8 apply respectively. These imply that the 
inductive hypotheses are preserved by the actions of their respective 

strategies. 0 

It is implicit in Proposition 3.2 that the outcomes paired with strategies on TP 
are actually their true outcomes. 

3.3. Proposition. For all i, pi is satisfied. 

Proof. Each Mk appears exactly once on TP. Each Ri can appear no more than j 
times, reappearing each time it is injured by the &outcome of a higher priority 
Rip. Similarly, an Sj can appear no more than j + 1 times, reappearing each time it 
is injured by an Rj, such that j’ d j. Eventually, some SFprr appears on TP that is 
not injured. Then Proposition 1.5, Case I must apply to SzTpr’. So, Sq. is satisfied 
by the action of SFpr’. Cl 
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2.4. Proposition. For all i, 59& is satisfied. 

Proof. The strategies RTp Irn on TP can be injured only finitely often since each 
injury involves eliminating some Rj, where j’ is less than i. Applying Proposition 
1.5, if there are k, m and r such that TP(m) is equal to (SEpfm, c, m,,i, i, r), then 
%i is satisfied. Otherwise, there is an m and an r such that (R,” Im, I) is not 
injured on TP. We use Propositions 1.1, 1.5, 2.8 and 3.2 to show that the actions 
of RTp Irn satisfy 9?i. Proposition 1.1 implies that RTp’” will satisfy 9Zi provided 
that fts rules are respected. Since strategies R fp I’ do not move markers associated 
with RTp Im, these strategies respect RTpr”’ 
of the iules of R Tp Irn 

s rules. Proposition 1.5 states that all 

I are respected by any strategy SF’ Ir. By Proposition 2.8, any 
strategy MEp Ir makes only finitely many moves of any particular marker; 
Proposition 3.2 implies the same for strategies off of TP. Thus, Proposition 1.1 
can be applied and %!i is satisfied. 0 

3.5. Proposition. B, C and D are recursive in A. 

Proof. A computes B 1 k, C r k and D 1 k by finding the least A and E correct 
B/C-configuration for k preserved by some strategy in the construction. Since 
there is an m such that A4Fprm appears on TP, we can apply Lemma 2.7 to see 
that there is such a configuration. Moreover, by Proposition 2.8 and Proposition 
3.2, if there is a o such that o E a[s] and Mz preserves an A and E correct 
B/C-configuration, then o is an element of TP or u lies to the left of TP. Thus 
the restraint imposed by o is permanent and the computation of B, C and D is 
correct. 0 
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