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In this work we are going to prove the functional J defined by

J (u) =
∫

Ω×Ω

W
(∇u(x),∇u(y)

)
dx dy,

is weakly lower semicontinuous in W 1,p(Ω) if and only if W is separately convex.
We assume that Ω is an open set in R

n and W is a real-valued continuous function
fulfilling standard growth and coerciveness conditions. The key to state this equivalence
is a variational result established in terms of Young measures.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

This work is devoted to study the weak lower semicontinuous property of the functional

J (u) =
∫

Ω×Ω

W
(∇u(x),∇u(y)

)
dx dy (1.1)

where u ∈ W 1,p(Ω;R), Ω is a bounded regular domain in R
n, n � 1, p > 1 and W : R

n × R
n → R is a real continuous

function satisfying the bounds

c
(|λ1|p + |λ2|p − 1

)
� W (λ1, λ2) � C

(|λ1|p + |λ2|p + 1
)

(1.2)

and 0 < c < C . Also, due to the definition of J and without lost of generality, the integrand W is assumed to be a symmetric
function, i.e. W (λ1, λ2) = W (λ2, λ1) for any (λ1, λ2) ∈ R

2n . The main result of the paper is

Theorem 1.1. Under the above hypotheses the functional J defined by (1.1) is weak lower semicontinuous in W 1,p(Ω) if and only if
W is separately convex.

Even though the separate convexity of W always implies lower semicontinuity for the functional J , the reverse implica-
tion has been proved only for the case n = 1 (see [4]).

The proof of Theorem 1.1 is entirely based on the optimality conditions that the minimizing sequences of the functional J
must satisfy. A similar analysis has been employed to study the existence of minimizers of the problem

min
{

J (u): u − u0 ∈ W 1,p
0 (Ω;R)

}
(1.3)

where u0 ∈ W 1,p(Ω;R) and n = 1 (see [9]).
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Concerning this type of problems several works have been published. In connection with variational problems of nonlocal
nature the reader can consult [5] for problems related to Ferromagnetism, [6] about the regularization of a nonconvex
problem, and [3,12] or [13] in order to analyze mechanical problems formulated in the general context of the Nonlocal
Elasticity (see also [8]). In [1] and [15] some interesting tools to obtain a full relaxation of specific nonlocal variational
problems have been analyzed, and [7] is also remarkable work for a general class of nonlocal integral functionals.

The paper is organized as follows: in Section 2 we give a characterization for the lower semicontinuous envelope of J
in terms of Young measures. Section 3 is devoted to state some basic optimality conditions for the Young measure solution
in the obtainment of the lower semicontinuous envelope. In Section 4 we prove Theorem 1.1. Finally, in Section 5 we
reexamine the procedure carried out when the integrand of J depends also on the variables (x, y, u(x), u(y)). We prove
a new characterization for the weak lower semicontinuity when the integrand has the format W = W (x, y,∇u(x),∇u(y))

(Theorem 5.1).

2. Preliminaries

Young measures [16] is a classical tool that will play a fundamental role in the study of the integral functional given
in (1.1). We start giving a basic version of the Existence Theorem on Young measures (see [2], [10, Theorem 6.2]):

Theorem 2.1. Let 1 � p < ∞, Ω an open regular domain in R
n and f j : Ω → R

m.

(1) If { f j} is a bounded sequence in L p(Ω), there exists a subsequence (not relabeled) and a family of probability measures ν =
{νx}x∈Ω , depending measurably on x ∈ Ω ( for any continuous function ψ the map x → 〈ψ,νx〉 is measurable) such that whenever
the sequence ψ( f j) converges weakly in L1(E) for some measurable E ⊂ Ω, we have

ψ( f j) ⇀ ψ(x) = 〈ψ,νx〉 .=
∫

Rm

ψ(λ)dνx(λ).

Moreover∫
Ω

∫
Rm

|λ|p dνx(λ)dx < ∞

(in such a case ν = {νx}x∈Ω is said to be the Young measure generated by the sequence { f j}).
(2) A family of probability measures ν = {νx}x∈Ω , depending measurably on x ∈ Ω , can be generated by a sequence of functions { f j}

such that {| f j |p} is equiintegrable, if and only if∫
Ω

∫
Rm

|λ|p dνx(λ)dx < ∞.

In order to characterize the sequences of pairs {(∇u j(x),∇u j(y))} we have:

Theorem 2.2. (See [11].) Let 1 � p < ∞ and Ω an open regular domain in R
n. Let Π = {Π(x,y)} be a family of probability measures

supported in R
n ×R

n. Π is the Young measure generated by a sequence g j(x, y) = (∇u j(x),∇u j(y)), where {u j} is a bonded sequence
in W 1,p(Ω) such that {|∇u j |p} is weakly convergent in L1(Ω) if and only if

Π(x,y) = νx ⊗ νy, (x, y) ∈ Ω × Ω, (2.1)

where ν = {νx}x∈Ω is the Young measure generated by the sequence of gradients {∇u j}.

Remark 2.1. Concerning the above result it must be pointed out that we have the representation

lim
j→∞

∫
Ω×Ω

ψ
(∇u j(x),∇u j(y)

)
dx dy

∫
Ω×Ω

∫
Rn×Rn

ψ(λ1, λ2)dνx(λ1)dνy(λ2)dx dy (2.2)

for any continuous ψ such that {ψ(∇u j(x),∇u j(y))} j converges weakly in L1(Ω × Ω). In connection with the convergence
(2.2) it will be useful to recall that, a family of probability measures ν = {νx}x∈Ω can be generated by sequence of gradients
{∇u j} such that {|∇u j |p} is weakly convergent in L1(Ω), if and only if∫ ∫

n

|λ|p dνx(λ)dx < ∞ (2.3)
Ω R
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and there exists u ∈ W 1,p(Ω) such that

∇u(x) =
∫

Rm

λdνx(λ) (2.4)

(see [10, Theorem 8.7]).

Remark 2.2. Another meaningful remark concerns the competing sequences of the problem

min
{

lim inf
n→∞ J (u j): u j ∈ W 1,p(Ω;R), u j ⇀ u in W 1,p(Ω)

}
. (2.5)

If {v j} j is an admissible sequence for (2.5) and μ = {μx}x∈Ω is its corresponding gradient Young measure (the Young
measure generated by the sequence of gradients {∇v j} j), then we can find another admissible sequence {u j} j sharing the
same underlying gradient Young measure μ and such that {|∇u j |p} is weakly convergent in L1(Ω) (see [10, Lemma 8.15]).

Under these circumstances, we have an essential relaxation result:

Theorem 2.3 (General relaxation). Let m be the minimum of the problem (2.5) and m the infimum of the problem

inf

{ ∫
Ω×Ω

∫
Rn×Rn

W (λ1, λ2)dμx(λ1)dμy(λ2)dx dy: μ = {μx}x∈Ω ∈ A
}

(2.6)

where A is the set of young measures μ = {μx}x∈Ω holding (2.3) and (2.4). Then

m = m,

and m is indeed a minimum.

Proof. We realize that if ν minimizes (2.6) then by Remark 2.1 we can find a sequence of gradients {∇u j} j such that
{|∇u j |p} is weakly convergent in L1(Ω). Thus, thanks to the bounds assumed on W (2.2) holds. This implies m � m.
To see the reverse inequality we use Remark 2.2 in order to ensures the weak convergence in L1(Ω) of the sequence
{W (∇u j(x),∇u j(y))} j and consequently (2.2) holds. In order to check that m is a minimum, take {∇u j} j, a minimizing
sequence for (2.5). Since this sequence can be selected so that{|∇u j |p} is weakly convergent in L1(Ω), then

m = lim inf
n→∞

∫ ∫
Ω×Ω

W
(∇u j(x),∇u j(y)

)
dx dy.

To conclude the proof, take the Young measure ν generated by this sequence. We get

m =
∫

Ω×Ω

∫
Rn×Rn

W (λ1, λ2)dμx(λ1)dμy(λ2)dx dy = m.

Thus ν is a minimizer to the problem (2.6). �
Within the context of Theorem 2.3 the minimization problem (2.6) is said to be a relaxation of (2.5). (2.6) is indeed an

explicit representation of sc− J (u), the lower semicontinuous of the functional J at u.

3. The basic optimality conditions

Assume Ω is a regular open set in R
n and {u j} is a sequence solution of the problem

min
{

lim inf
n→∞ J (u j): u j ∈ W 1,p(Ω;R), u j ⇀ u in W 1,p(Ω)

}
. (3.1)

Let ν = {νx}x∈Ω be the Young measure generated by {∇u j(x)} j . Let us consider any Young measure σ generated by
a sequence of gradients {∇v j(x)} j such that {v j} j is admissible for the minimization principle (3.1) (without lost of gen-
erality we can assume that {|∇v j |p} is weakly convergent in L1(Ω)). For each t � 0 we define the new Young measure
μt = {μt

x}x∈Ω as

μt
x = tσx + (1 − t)νx,
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where σ = {σx}x∈Ω is the Young measure generated by the sequence {∇vk(x)}k . Since the action of each μt
x on any func-

tion ψ is given by the formula

〈
μt

x,ψ
〉 =

∫
Rn

ψ(λ)dμt
x(λ) = t

∫
Rn

ψ(λ)dσx(λ) + (1 − t)

∫
Rn

ψ(λ)dνx(λ),

then it is clear that μt satisfies (2.3) and (2.4), and therefore μt ∈ A. Let g be the function

g(t)
.=

∫ ∫
Ω×Ω

∫ ∫
Rn×Rn

W (λ1, λ2)dμt
x(λ1)dμt

y(λ2)dx dy, t � 0.

Then, thanks to the fact that {u j} j minimizes (3.1) we have d
dt [g(t)]t=0+ � 0, which read as

d

dt

[
t2

∫ ∫
Ω×Ω

∫ ∫
Rn×Rn

W (λ1, λ2)dσx(λ1)dσy(λ2) + 2t(1 − t)

∫ ∫
Ω×Ω

∫ ∫
Rn×Rn

W (λ1, λ2)dσx(λ1)dνy(λ2)dx dy

+ (1 − t)2
∫ ∫

Ω×Ω

∫ ∫
Rn×Rn

W (λ1, λ2)dνx(λ1)dνy(λ2)

]
t=0+

� 0.

After differentiation we find∫ ∫
Ω×Ω

∫ ∫
Rn×Rn

W (λ1, λ2)dσx(λ1)dνy(λ2)dx dy �
∫ ∫

Ω×Ω

∫ ∫
Rn×Rn

W (λ1, λ2)dνx(λ1)dνy(λ2)dx dy. (3.2)

The inequality (3.2) automatically guarantees the thesis of the following proposition:

Proposition 3.1. If ν = {νx}x∈Ω is the Young measure generated by a minimizing sequence {∇u j} j for the principle (3.1), then ν =
{νx}x∈Ω is a minimizer for the problem

min

{ ∫
Ω

∫
Rn

G(λ1)dγx(λ1)dx: γ = {γx}x∈Ω satisfying (2.3) and (2.4)

}
(3.3)

where

G(λ1)
.=

∫
Ω

∫
Rn

W (λ1, λ2)dνy(λ2)dy.

Moreover, the sequence {∇u j} j minimizes the functional l : W 1,p(Ω) → R defined as

l(u) = lim inf
n→∞

{ ∫
Ω

G
(∇z j(x)

)
dx: z j ∈ W 1,p(Ω;R), such that z j ⇀ u in W 1,p(Ω)

}
. (3.4)

To prove this result it must be taken into account that G : R
n → R is a real continuous function such that

c
(|λ|p − 1

)
� G(λ) � C

(|λ|p + 1
)
.

The proof is obtained following the same lines of the proof of Theorem 2.3. We factually can state that problem (3.3) is
a relaxation of (3.4).

We use the generalized Weierstrass condition on the minimum principle (3.3) to assert the following result about gen-
eralized optimality conditions (see [14]):

Proposition 3.2. Let ν = {νx}x∈Ω be a Young measure solution for (3.3). Then

div F (x) = 0 in W −1,p/(p−1)(Ω) (3.5)

and ∫
Rn

(
G(λ1) − F (x) · λ1

)
dνx(λ1) = min

s∈Rn
H(x, s) (3.6)

for a.e. x ∈ Ω, where

F (x) =
∫

n

∂G

∂λ1
(λ1)dνx(λ1) ∈ Lp/(p−1)

(
Ω;R

n)

R
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and

H(x, s) = G(s) − F (x) · s. (3.7)

Moreover

suppνx ⊂ Arg min H(x, ·) (3.8)

for a.e. x ∈ Ω.

From (3.6) we have∫
Ω

∫
Rn

(
W (s, λ2) − F (x) · s

)
dνy(λ2)dy �

∫
Rn

∫
Ω

∫
Rn

(
W (λ1, λ2) − F (x) · λ1

)
dνy(λ2)dy dνx(λ1)

for any s ∈ R
n. In particular∫

Rn

∫
Ω

∫
Rn

W (s, λ2)dνy(λ2)dy dγx(s) �
∫
Rn

∫
Ω

∫
Rn

W (λ1, λ2)dνy(λ2)dy dνx(λ1) (3.9)

where γx is any probability measure such that

∇u(x) =
∫
Rn

s dγx(s), a.e. x ∈ Ω,

∫
Ω

∫
Rn

|s|p dγx(s)dx < ∞.

We are in position to state the main result of this section.

Theorem 3.3. If the sequence {u j} ∈ W 1,p(Ω), u j ⇀ u, is a solution to the minimization problem (3.1) then

C1

( ∫
Ω

∫
Rn

W
(∇u(x), λ2

)
dνy(λ2)dy

)
=

∫
Rn

( ∫
Ω

∫
Rn

W (λ1, λ2)dνy(λ2)dy

)
dνx(λ1) (3.10)

a.e. x ∈ Ω, where ν is the Young measure generated by {∇u j} and the l.s.t. of (3.10) is the convex envelope of the function

λ1 →
∫
Ω

∫
Rn

W (λ1, λ2)dνy(λ2)dy

evaluated upon λ1 = ∇u(x).

Proof. The proof is just formula (3.9). �
Note that if m denotes the minimum of problem (3.1) then

m =
∫
Ω

C1

( ∫
Ω

∫
Rn

W
(∇u(x), λ2

)
dνy(λ2)dy

)
dx. (3.11)

4. Lower semicontinuity

If J is l.s.c in W 1,p(Ω) then the sequence {un}, where un = u for any n, solves the minimization problem

sc− J (u)
.= min

{
lim inf
n→∞ J (u j): u j ∈ W 1,p(Ω), u j ⇀ u in W 1,p(Ω)

}

and therefore (3.10) ensures that

C1

( ∫
Ω

W
(∇u(x),∇u(y)

)
dy

)
=

∫
Ω

W
(∇u(x),∇u(y)

)
dy. (4.1)

Regarding the lower semicontinuity on affine function we have the following result:

Theorem 4.1. J is weak lower semicontinuous at the affine function u0(x) ≡ γ · x, where γ is any vector from R
n if and only if

C1
(
W (γ ,γ )

) = W (γ ,γ ). (4.2)
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Proof. In view of (4.1) C1(W (γ ,γ )) = W (γ ,γ ) is a necessary condition. In order to check (4.2) is a sufficient condition
we consider any sequence {v j} from W 1,p(Ω) such that v j ⇀ γ · x in W 1,p(Ω). Then, due to (3.10) and (3.11), we have

lim
j

J (v j) � min
{

lim inf
n→∞ J (u j): u j ∈ W 1,p(Ω), u j ⇀ γ · x in W 1,p(Ω)

}
= |Ω|C1

( ∫
Ω

∫
Rn

W (γ ,λ2)dνy(λ2)dy

)

where ν = {νx}x∈Ω is any Young measure solution of (3.1) generated by a minimizing sequence {u j}, and such that
u j ⇀ γ · x in W 1,p(Ω). Now, let ν be the probability measure, with barycenter γ , obtained from the homogenization of
ν = {νx}x∈Ω , i.e.

〈ν, g〉 =
∫
Rn

g(λ)dν(λ)
.= 1

|Ω|
∫
Ω

∫
Rn

g(λ2)dνy(λ2)dy.

Then ∫
Ω

∫
Rn

W (γ ,λ2)dνy(λ2)dy = |Ω|〈ν, W (γ , ·)〉 = |Ω|
∫
Rn

W (γ ,λ)dν(λ) � |Ω|C2W (γ ,γ )

where C2W (γ ,γ ) is the convex envelope of W (γ , ·) at γ . By using C1(W (γ ,γ )) = W (γ ,γ ) twice we have

lim
j

J (v j) � |Ω|C1
(|Ω|C2W (γ ,γ )

) = |Ω|2C1
(
W (γ ,γ )

) = |Ω|2W (γ ,γ ) = J (γ · x).

This completes the proof. �
Corollary 4.2. The affine function u0(x) = γ · x is a solution to the minimization problem

min
{

J (u): u − u0 ∈ W 1,p
0 (Ω;R)

}
(4.3)

if and only if C1(W (γ ,γ )) = W (γ ,γ ).

Proof. We recall (see [10, Theorem 8.3]) that for any weakly convergent sequence {u j} j such that u j ⇀ u0 in W 1,p(Ω)

we can find a new sequence {v j} j such that v j − u0 ∈ W 1,p
0 (Ω), v j ⇀ u0 in W 1,p(Ω) and such that the two sequences of

gradients, {∇u j} j and {∇v j} j , have the same underlying Young measure. Thus, if we assume u0 is a solution to problem (4.3)
then {u j}, where u j = u0 for all j, is a minimizing sequence for (3.1) with u = u0. Then by (4.1) we get C1(W (γ ,γ )) =
W (γ ,γ ). To prove the only if part assume ν = {νx}x∈Ω is the Young measure given by a minimizing sequence {∇u j} such
that u is the weak limit of {u j} j in W 1,p(Ω). Now, let ν be the probability measure obtained from the homogenization
of ν = {νx}x∈Ω . Then there exists a sequence v j , bounded in W 1,p(Ω) with the same boundary values, such that the
corresponding Young measure is ν . In such a case the infimum m of the minimization problem (4.3) is

m =
∫
Rn

( ∫
Rn

W (λ1, λ2)dν(λ2)

)
dν(λ1).

Let μ = tσ + (1 − t)ν be any convex variation of the homogeneous Young measure solution ν . By performing the same
analysis from the beginning of Section 3 we arrive at the analogous inequality of (3.2):∫ ∫

Rn×Rn

W (λ1, λ2)dν(λ2)dσ(λ1) �
∫ ∫

Rn×Rn

W (λ1, λ2)dν(λ2)dν(λ1)

for any homogeneous Young measure σ such that
∫

Rn λdσ(λ) = γ and
∫

Rn |λ|p dσ(λ) < ∞. This implies

m = C1

( ∫
Rn

W (γ ,λ2)dν(λ2)

)
.

Since
∫

Rn W (γ ,λ2)dν(λ2) � C2W (γ ,γ ) and C1(W (γ ,γ )) = W (γ ,γ ) we have

m � C1
(
C2W (γ ,γ )

) = W (γ ,γ ) = J (u0). �
As in the previous results the proof of Theorem 1.1 only requires the optimality condition (4.1).

Proof of Theorem 1.1. The proof is elementary: assume J is weak lower semicontinuous at any u ∈ A. Let A and B be
any couple of vectors from R

n and apply (4.1) to any piecewise linear function u such that ∇u(x) = A in Ωα and = B in
Ω − Ωα where α = |Ωα | ∈ (0,1) is arbitrary. Then
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C1

( ∫
Ω

W
(∇u(x),∇u(y)

)
dy

)
= C1

(
αW

(∇u(x), A
) + (1 − α)W

(∇u(x), B
))

= αW
(∇u(x), A

) + (1 − α)W
(∇u(x), B

)
.

Since ∇u can be A or B , we have the identities

C1
(
αW (A, A) + (1 − α)W (A, B)

) = αW (A, A) + (1 − α)W (A, B),

C1
(
αW (B, A) + (1 − α)W (B, B)

) = αW (B, A) + (1 − α)W (B, B).

In particular the first of the above equations serves to assert the function

f (s)
.= αW (s, A) + (1 − α)W (s, B), s ∈ R

n,

is convex at s = A. Then for any A1, A2 from R
n and β ∈ (0,1) such that β A1 + (1 − β)A2 = A we have

f (A) � β
(
αW (A1, A) + (1 − α)W (A1, B)

) + (1 − β)
((

αW (A2, A) + (1 − α)W (A2, B)
))

= α
(
βW (A1, A) + (1 − β)W (A2, A)

) + (1 − α)
(
βW (A1, B) + (1 − β)W (A2, B)

)
.

By letting α ↓ 0 we obtain

W (A, B) � βW (A1, B) + (1 − β)W (A2, B).

Since B is arbitrary, from the above inequality follows that W (·, A) is convex. Proceeding analogously with the second
identity we prove W (B, ·) is convex. �
5. Lower semicontinuity and inhomogeneity

The procedure we have developed in Section 3 applies without major changes when the functional is non-homogeneous,1

i.e.

J (u) =
∫

Ω×Ω

W
(
x, y, u(x), u(y),∇u(x),∇u(y)

)
dx dy.

If the sequence {u j} ∈ W 1,p(Ω), u j ⇀ u, is a solution to the minimization problem

min
{

lim inf
n→∞ J (u j): u j ∈ W 1,p(Ω), u j ⇀ u in W 1,p(Ω)

}

then

C1

( ∫
Ω

∫
Rn

W
(
x, y, u(x), u(y),∇u(x), λ2

)
dνy(λ2)dy

)

=
∫
Rn

( ∫
Ω

∫
Rn

W
(
x, y, u(x), u(y), λ1, λ2

)
dνy(λ2)dy

)
dνx(λ1) (5.1)

a.e. x ∈ Ω , where ν is the Young measure generated by {∇u j}. In particular, if u j = u is a minimizing sequence then (5.1)
give rise to

C1

( ∫
Ω

W
(
x, y, u(x), u(y),∇u(x),∇u(y)

)
dy

)
=

∫
Ω

W
(
x, y, u(x), u(y),∇u(x),∇u(y)

)
dy. (5.2)

Unfortunately, from (5.2) we were not able to deduce separate convexity for the integrand W (x, y, u, v, A, B) in the variables
A and B . Nevertheless, (5.2) is again the key point to state the following characterization result of the lower semicontinuity:

1 W is assumed to verify the following property of symmetry:

W
(
x, y, u(x), u(y),∇u(x),∇u(y)

) = W
(

y, x, u(y), u(x),∇u(y),∇u(x)
)
.
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Theorem 5.1. Assume W = W (x, y,∇u(x),∇u(y)) is the integrand in the definition of J . Then, J is weak lower semicontinuous if
and only if the function

G : (A, B) ∈ R
n × R

n → G(A, B)
.=

∫
Ω

W (x, y, A, B)dx

is separately convex, for any y ∈ Ω.

Proof. If G is separately convex then

Gν(B)
.=

∫
Ω

∫
Rn

W (x, y, λ1, B)dνx(λ1)dx, y ∈ Ω,

H(A)
.=

∫
Ω

W (x, y, A, B)dy, x ∈ Ω
(
for any fixed B ∈ R

n)

and

Hν(A)
.=

∫
Ω

∫
Rn

W (x, y, A, λ2)dνy(λ2)dy, x ∈ Ω,

are convex and consequently we can proceed as follows:∫
Ω

( ∫
Ω

W
(
x, y,∇u(x),∇u(y)

)
dx

)
dy �

∫
Ω

( ∫
Rn

( ∫
Ω

W
(
x, y,∇u(x), λ2

)
dx

)
dνy(λ2)

)
dy

=
∫
Ω

( ∫
Rn

∫
Ω

W
(
x, y,∇u(x), λ2

)
dνy(λ2)dy

)
dx

�
∫
Ω

∫
Rn

( ∫
Rn

∫
Ω

W
(
x, y,∇u(x), λ2

)
dνy(λ2)dy

)
dνx(λ1)dx

which means W is lower semicontinuous. The if part follows along the same lines of the proof of Theorem 1.1. �
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