=

View metadata, citation and similar papers at core.ac.uk brought to you by . CORE

provided by Elsevier - Publisher Connector

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Characterisation of the weak lower semicontinuity for a type of nonlocal
integral functional: The n-dimensional scalar case

Julio Munoz

Departamento de Matemadticas, Universidad de Castilla-La Mancha, Av. Carlos Il s/n, 13071 Toledo, Spain

ARTICLE INFO ABSTRACT
Article history: In this work we are going to prove the functional J defined by
Received 9 February 2009
Available online 30 June 2009 _
Submitted by H. Frankowska Jw= f W(Vu(x), Vu(y)) dxdy,
2x82
Keywords:
Optimization is weakly lower semicontinuous in WP (£2) if and only if W is separately convex.
Nonlocality We assume that £2 is an open set in R" and W is a real-valued continuous function
Semicontinuity fulfilling standard growth and coerciveness conditions. The key to state this equivalence
Equilibrium conditions is a variational result established in terms of Young measures.
Young measures © 2009 Elsevier Inc. All rights reserved.

1. Introduction

This work is devoted to study the weak lower semicontinuous property of the functional
Jw) = / W (Vu(x), Vu(y)) dxdy (1.1)
2x2

where u € W''P(2;R), £2 is a bounded regular domain in R", n>1, p>1 and W : R" x R" — R is a real continuous
function satisfying the bounds
c(IMm1P 4+ 1221P = 1) KW (r1, A2) < C(IM P + 12217 + 1) (12)

and 0 < ¢ < C. Also, due to the definition of J and without lost of generality, the integrand W is assumed to be a symmetric
function, i.e. W (A1, 12) = W (A, A1) for any (A1, A2) € R?". The main result of the paper is

Theorem 1.1. Under the above hypotheses the functional | defined by (1.1) is weak lower semicontinuous in W1-P(§2) if and only if
W is separately convex.

Even though the separate convexity of W always implies lower semicontinuity for the functional J, the reverse implica-
tion has been proved only for the case n =1 (see [4]).

The proof of Theorem 1.1 is entirely based on the optimality conditions that the minimizing sequences of the functional J
must satisfy. A similar analysis has been employed to study the existence of minimizers of the problem

min{ J(u): u —up € Wy (2;R)) (13)
where ug e WHP(2;R) and n =1 (see [9]).
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Concerning this type of problems several works have been published. In connection with variational problems of nonlocal
nature the reader can consult [5] for problems related to Ferromagnetism, [6] about the regularization of a nonconvex
problem, and [3,12] or [13] in order to analyze mechanical problems formulated in the general context of the Nonlocal
Elasticity (see also [8]). In [1] and [15] some interesting tools to obtain a full relaxation of specific nonlocal variational
problems have been analyzed, and [7] is also remarkable work for a general class of nonlocal integral functionals.

The paper is organized as follows: in Section 2 we give a characterization for the lower semicontinuous envelope of J
in terms of Young measures. Section 3 is devoted to state some basic optimality conditions for the Young measure solution
in the obtainment of the lower semicontinuous envelope. In Section 4 we prove Theorem 1.1. Finally, in Section 5 we
reexamine the procedure carried out when the integrand of | depends also on the variables (x, y, u(x),u(y)). We prove
a new characterization for the weak lower semicontinuity when the integrand has the format W = W (x, y, Vu(x), Vu(y))
(Theorem 5.1).

2. Preliminaries

Young measures [16] is a classical tool that will play a fundamental role in the study of the integral functional given
in (1.1). We start giving a basic version of the Existence Theorem on Young measures (see [2], [10, Theorem 6.2]):

Theorem 2.1. Let 1 < p < oo, §2 an open regular domain in R" and f;: 2 — R™.

(1) If {f;} is a bounded sequence in LP(£2), there exists a subsequence (not relabeled) and a family of probability measures v =
{Vx}xeg2, depending measurably on x € $2 ( for any continuous function v the map x — (¥, vx) is measurable) such that whenever
the sequence y(f;) converges weakly in L1(E) for some measurable E C £2, we have

VD= T0 =W = [ v dn.
Rm
Moreover
/ f [A|P dvg(X) dx < 00
2 Rm

(in such a case v = {vx}xeq is said to be the Young measure generated by the sequence { f;}).
(2) A family of probability measures v = {vx}xes2, depending measurably on x € £2, can be generated by a sequence of functions { f;}
such that {| f;|P} is equiintegrable, if and only if

//|)L|pdvx()u)dx<oo.

2 Rm

In order to characterize the sequences of pairs {(Vu;(x), Vu;(y))} we have:

Theorem 2.2. (See [11].) Let 1 < p < oo and §2 an open regular domain in R". Let IT = {I1(x y)} be a family of probability measures
supported in R" x R™. IT is the Young measure generated by a sequence g;(x, y) = (Vuj(x), Vu;(y)), where {u} is a bonded sequence
in WL-P(£2) such that {IVu;|P} is weakly convergent in LY(2) if and only if

My =vx®vy, (X y)€R xS, (2.1)

where v = {Vyx}xep2 is the Young measure generated by the sequence of gradients {Vu}.

Remark 2.1. Concerning the above result it must be pointed out that we have the representation

fim [ w(vue. vue)ddy [ [ v dy Gadrdy 22)
2x2 2x82 R xR"

for any continuous v such that {¢/(Vu;(x), Vu;(y))}; converges weakly in L1(£2 x £2). In connection with the convergence

(2.2) it will be useful to recall that, a family of probability measures v = {vx}xe> can be generated by sequence of gradients

{Vu;} such that {|Vu;|P} is weakly convergent in L1(£2), if and only if

[/lepdvx(x)dkoo (2.3)

2 R"
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and there exists u € WP (£2) such that
Vu(x) = / Advx()) (2.4)

RrRmM

(see [10, Theorem 8.7]).

Remark 2.2. Another meaningful remark concerns the competing sequences of the problem
min[liminf](uj): uje W'P(2:R), uj— uin W“’(.Q)}. (2.5)
n—-oo

If {v;}; is an admissible sequence for (2.5) and u = {ix}xep is its corresponding gradient Young measure (the Young
measure generated by the sequence of gradients {Vv;};), then we can find another admissible sequence {uj}; sharing the
same underlying gradient Young measure w and such that {|Vu;|P} is weakly convergent in L1(£2) (see [10, Lemma 8.15]).

Under these circumstances, we have an essential relaxation result:

Theorem 2.3 (General relaxation). Let m be the minimum of the problem (2.5) and m the infimum of the problem

inf{ | [ woaiwdu duy o dxay: u=mx}xege71} (26)
2x 82 RMxRn

where A is the set of young measures (1 = {{ix}xes holding (2.3) and (2.4). Then

m=nm,
and m is indeed a minimum.
Proof. We realize that if v minimizes (2.6) then by Remark 2.1 we can find a sequence of gradients {Vu;}; such that
{IVu;|P} is weakly convergent in L1(£2). Thus, thanks to the bounds assumed on W (2.2) holds. This implies m < .
To see the reverse inequality we use Remark 2.2 in order to ensures the weak convergence in L!(£2) of the sequence

{W(Vu;(x), Vuj(y))}; and consequently (2.2) holds. In order to check that m is a minimum, take {Vu;};, a minimizing
sequence for (2.5). Since this sequence can be selected so that{|Vu;|P} is weakly convergent in L1(£2), then

m=liminf//W(Vuj(x),Vuj(y))dxdy.
n—oo
2x2

To conclude the proof, take the Young measure v generated by this sequence. We get

m=/ / W1, A2)dux(A1) dipy (A2) dxdy = m.
2x82 R xR?

Thus v is a minimizer to the problem (2.6). O

Within the context of Theorem 2.3 the minimization problem (2.6) is said to be a relaxation of (2.5). (2.6) is indeed an
explicit representation of sc~ J(u), the lower semicontinuous of the functional J at u.

3. The basic optimality conditions
Assume £2 is a regular open set in R" and {u;} is a sequence solution of the problem
min[lglrgicgfj(uj): uje W'P(2:R), uj— uin w“’(:z)}. (3.1)
Let v = {vy}xee be the Young measure generated by {Vu;(x)};. Let us consider any Young measure o generated by
a sequence of gradients {Vv;(x)}; such that {v;}; is admissible for the minimization principle (3.1) (without lost of gen-

erality we can assume that {|Vv;|P} is weakly convergent in L1(£2)). For each t > 0 we define the new Young measure
t ¢
M= {lylxe as

Wy =tox + (1 — vy,
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where o = {oy}xes is the Young measure generated by the sequence {Vvy(x)}i. Since the action of each p! on any func-
tion ¥ is given by the formula

(e 9) = f PR dplo) =t f V(0 dow() + (1= 1) / V() (),
Rn Rn Rn

then it is clear that u! satisfies (2.3) and (2.4), and therefore u! € A. Let g be the function

gt = / / / / W (M, A2) dpay (1) ', (02) dxdy,  t>0.
2x2 RMxR!

Then, thanks to the fact that {u;}; minimizes (3.1) we have %[g(t)]t:m >0, which read as

%[tz // // W (A1, A2) dox (A1) doy(X2) + 2t(1 —t)// // W (X1, A2) dox (A1) dvy(A2) dxdy

2x82 RPxRn 2x 2 RxRn
+(1—1t)? f f f / W(xl,xz)dvx(M)dvy(xz)] > 0.
2% RxRN t=0*

After differentiation we find
// // W (A1, 22) dox(rq) dvy(h2) dxdy > // // W (h1, X2) dvx(A1) dvy(Xp) dxdy. (3.2)
2x£2 RUxR! 2x8£2 RixR?

The inequality (3.2) automatically guarantees the thesis of the following proposition:

Proposition 3.1. If v = {vx}xep2 is the Young measure generated by a minimizing sequence {Vu;}; for the principle (3.1), then v =
{vx}xes2 is a minimizer for the problem

min{ //G(A1)dyx(xl)dx: ¥ = {¥x}xen satisfying (2.3) and (2.4)} (3.3)
Q2 Rr
where
C(M)ﬁ//.W(M,?xz)dvy()wz)d%
Q Rn

Moreover, the sequence {Vu }; minimizes the functional I : W1LP(2) — R defined as

Iw) zliminf{ /G(sz(x)) dx: zj e WI'P(2; R), such that z; — u in W“’(Q)}. (34)
n—oo
2

To prove this result it must be taken into account that G : R" — R is a real continuous function such that
c(IMP =1) <G < C(IMP +1).

The proof is obtained following the same lines of the proof of Theorem 2.3. We factually can state that problem (3.3) is
a relaxation of (3.4).

We use the generalized Weierstrass condition on the minimum principle (3.3) to assert the following result about gen-
eralized optimality conditions (see [14]):

Proposition 3.2. Let v = {vx}xes2 be a Young measure solution for (3.3). Then

divF(x)=0 inw 1P/P=D(2) (3.5)
and

f(G(M) — F(x) - A1) dvg(nq) = ?Qﬂi& H(x, s) (3.6)

]RH

fora.e. x € 2, where

3G
f(x):/m(xl)dux(xl)eLP/(P*”(Q;]R“)
Rﬂ



J. Mufioz / J. Math. Anal. Appl. 360 (2009) 495-502 499

and

H(x,s) =G(s) — F(x) -s. (3.7)
Moreover

supp vx C Argmin H(x, -) (3.8)
forae xe $2.

From (3.6) we have

//(W(s,kz)—f(X)~S)dvy(kz)dy2///(W(M,Az)—f(X)~M)dvy(kz)dydvx(kl)
2 R R 2 R

for any s € R™. In particular

///W(s,kz)dvy(kz)dydyx(s)2///W(M,Az)dvy(xz)dydvx(h) (3.9)
R" 2 Rn R 2 R0

where y4 is any probability measure such that

Vu(x):/sdyx(s), ae.xes2, //lsl”dyx(s)dx<oo.
R" 2 Rn

We are in position to state the main result of this section.

Theorem 3.3. If the sequence {u;} € WP (), uj — u, is a solution to the minimization problem (3.1) then

c1<//W(Vu(x),xz)dvy(xz)dy> :f(//W(k1,A2)dvy(A2)dy> dvx(A1) (3.10)
QR n

R* 2R

a.e. x € 2, where v is the Young measure generated by {Vu ;} and the Ls.t. of (3.10) is the convex envelope of the function

?»1—>//W()»1,)»2)dvy()»2)dy
2 R

evaluated upon A1 = Vu(x).
Proof. The proof is just formula (3.9). O

Note that if m denotes the minimum of problem (3.1) then

m:/a(ffW(Vu(x),xz)duy(xz)dy) dx. (3.11)

2 2 Rn
4. Lower semicontinuity
If J is Ls.c in W1P(£2) then the sequence {uy}, where u, =u for any n, solves the minimization problem
sc” J () = min{liminf J (u)): u; e WP (), u; = uin W' (2)]

and therefore (3.10) ensures that

C1</W(Vu(x),Vu(y))dy> =/W(Vu(x),Vu(y))dy. (4.1)
2 2

Regarding the lower semicontinuity on affine function we have the following result:

Theorem 4.1. | is weak lower semicontinuous at the affine function ug(x) = y - x, where y is any vector from R" if and only if

GQWW.v)=W(y.p). (4.2)
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Proof. In view of (4.1) C1(W(y,y)) = W(y, y) is a necessary condition. In order to check (4.2) is a sufficient condition
we consider any sequence {v;} from W1P(£2) such that vi—1y-xin W1P(£2). Then, due to (3.10) and (3.11), we have

lim J(v}) >min[liminfj(uj): uje WHP(2), uj—~y -xin W”’(.Q)] =|52|C1(//W(y,kz)dvy(kz)dy)
j n—oo
2 R

where v = {vx}xee is any Young measure solution of (3.1) generated by a minimizing sequence {u;}, and such that
uj—y-xin W1P(£2). Now, let U be the probability measure, with barycenter y, obtained from the homogenization of
V = {Vx}xen2, L&

1
(ﬁ,g>=/g(k)d\7(k)ﬁ @//g(kz)dvy(xz)dy.

R £ R
Then

[ [woianeaay =12 we.)=121 [ wo.ndo > 2w e.y)
Q2 Rn R1
where C; W (y, y) is the convex envelope of W(y,-) at y. By using C1(W (y, y)) = W(y, y) twice we have

li}n Jp = 121G (IR1GW (r, 1)) = 1R2PCI(W(Y, ) = 12FPW (Y, y) = ] (¥ ).
This completes the proof. O

Corollary 4.2. The affine function ug(x) = y - x is a solution to the minimization problem
min{ J(u): u —ug € Wé’p(.Q; R)} (4.3)
ifand only if CL(W (y, y)) =W (¥, ).

Proof. We recall (see [10, Theorem 8.3]) that for any weakly convergent sequence {u;}; such that uj; — ug in WLP(2)

we can find a new sequence {v;}; such that vj —ug € Wé’p(.Q), Vj— U in W1P(£2) and such that the two sequences of
gradients, {Vu;}; and {Vv;};, have the same underlying Young measure. Thus, if we assume ug is a solution to problem (4.3)
then {u;}, where uj =ug for all j, is a minimizing sequence for (3.1) with u = ug. Then by (4.1) we get C{(W(y,y)) =
Wy, y). To prove the only if part assume v = {vx}xee is the Young measure given by a minimizing sequence {Vu;} such
that u is the weak limit of {u;}; in W1P(£2). Now, let D be the probability measure obtained from the homogenization

of v = {Vx}xe. Then there exists a sequence v;, bounded in W1LP(£2) with the same boundary values, such that the
corresponding Young measure is V. In such a case the infimum m of the minimization problem (4.3) is

T?l:/(fW(k],kz)dlj(kz)> dv(r).
Rn Rn

Let £t =t& + (1 —t)V be any convex variation of the homogeneous Young measure solution ¥. By performing the same
analysis from the beginning of Section 3 we arrive at the analogous inequality of (3.2):

/ / W (A1, 22)dD02) 45 O1) > / / W (h1, 22) AP (h2) dD (A1)
R xR R xRn

for any homogeneous Young measure & such that fRn Ado (L) =y and fRn AP d& (L) < oo. This implies

m=_Cq (/ W(y, )\.Z)dlj()\.z)).
Rn
Since f]R" Wy, )dv(xy) > CW(y,y) and C1(W(y, y)) = W(y, y) we have
m=Ci(CW(y,y)=W(.,y)=Juo). O
As in the previous results the proof of Theorem 1.1 only requires the optimality condition (4.1).
Proof of Theorem 1.1. The proof is elementary: assume J is weak lower semicontinuous at any u € A. Let A and B be

any couple of vectors from R" and apply (4.1) to any piecewise linear function u such that Vu(x) = A in £, and = B in
2 — 2, where o = |£24] € (0, 1) is arbitrary. Then
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C1</W(Vu(x),Vu(y))dy> =Ci(aW (Vu), A) + (1 — )W (Vu(x), B))
2
=aW(Vux),A)+ (1 —a)W(Vu(x), B).

Since Vu can be A or B, we have the identities

Cq (on(A, A+ 1 —-a)W(A, B)) =aW(A,A+ (1 —-a)W(A,B),
Ci(«W(B,A)+ (1 —a)W(B,B)) =aW(B,A) + (1 —a)W (B, B).

In particular the first of the above equations serves to assert the function
fs)=aW(s, A)+ (1 —a)W(s,B), seR",

is convex at s = A. Then for any Aq, Az from R" and 8 € (0, 1) such that A1 + (1 — B)A2, = A we have

F(A) < B(aW (A1, A) + (1 — )W (A1, B)) + (1 — B)((@W (A2, A) + (1 — @) W (A2, B)))
=a(BW (A1, A) + (1 = B)W (A2, A)) + (1 — ) (BW (A1, B) + (1 — )W (A2, B)).
By letting o | O we obtain
W(A,B) < BW (A1, B) + (1 — BYW (A2, B).

Since B is arbitrary, from the above inequality follows that W (-, A) is convex. Proceeding analogously with the second
identity we prove W (B, -) is convex. O

5. Lower semicontinuity and inhomogeneity

The procedure we have developed in Section 3 applies without major changes when the functional is non-homogeneous,’

ie.

Ju) = / W (x, y, ux), u(y), Vu), Vu(y)) dxdy.
N2x82

If the sequence {u;} € WP (), uj — u, is a solution to the minimization problem
min[liminf](uj): uje WP (), uj—uin W”’(.Q)]
n—-oo

then

C1<//W(x,y,u(x),u(y),Vu(x),Az)dvy(Az)dy>
2 Rn

=/<[[W(x,y,u(X),u(y),M,Az)dvy(kz)dy) dvx (A1) (5.1)

RT 2 R?

a.e. x € £2, where v is the Young measure generated by {Vu;}. In particular, if uj =u is a minimizing sequence then (5.1)
give rise to

C1</W(X,y,u(x),u(y),Vu(x),Vu(y))dy) :/W(x,y,u(x),u(y),Vu(x),Vu(y))dy. (5.2)
2 2

Unfortunately, from (5.2) we were not able to deduce separate convexity for the integrand W (x, y, u, v, A, B) in the variables
A and B. Nevertheless, (5.2) is again the key point to state the following characterization result of the lower semicontinuity:

1 W is assumed to verify the following property of symmetry:

W (X, y, u@), u(y), Vu®), Vuy)) = W (y, x, u(y), u(x), Vu(y), Vu®).
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Theorem 5.1. Assume W = W (x, y, Vu(x), Vu(y)) is the integrand in the definition of J. Then, ] is weak lower semicontinuous if
and only if the function

G:(A B)eR"xR" — G(A,B)i/W(x,y,A,B)dx
2

is separately convex, for any y € £2.

Proof. If G is separately convex then

G,,(B)i//W(x,y,M,B)dvx(M)dx, yes,
2 Rn

H(A)£/W(x,y,A,B)dy, x € £ (for any fixed B € R")
2

and

HU(A)ﬁf/W(x,y,A,kz)dvy(Az)dy, Xe 2,
2 R

are convex and consequently we can proceed as follows:

/(/W(x,y,Vu(x),Vu(y)) dx) dyg/(/(/w(x,y, Vu(x),kz)dx) dvy(k2)> dy
2 @ 2

R 2

=/<//W(x,y, Vu(x),kz)dvy(xz)dy> dx

2 R

g//(//w("’y’ V”(")’AZ)dVy(Az)dy>de(xl)dx

2 R" R Q2

which means W is lower semicontinuous. The if part follows along the same lines of the proof of Theorem 1.1. O
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