

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Characterisation of the weak lower semicontinuity for a type of nonlocal integral functional: The *n*-dimensional scalar case

Julio Muñoz

Departamento de Matemáticas, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 13071 Toledo, Spain

ARTICLE INFO

Article history: Received 9 February 2009 Available online 30 June 2009 Submitted by H. Frankowska

Keywords: Optimization Nonlocality Semicontinuity Equilibrium conditions Young measures

ABSTRACT

In this work we are going to prove the functional *J* defined by

$$J(u) = \int_{\Omega \times \Omega} W(\nabla u(x), \nabla u(y)) dx dy$$

is weakly lower semicontinuous in $W^{1,p}(\Omega)$ if and only if W is separately convex. We assume that Ω is an open set in \mathbb{R}^n and W is a real-valued continuous function fulfilling standard growth and coerciveness conditions. The key to state this equivalence is a variational result established in terms of Young measures.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

This work is devoted to study the weak lower semicontinuous property of the functional

$$J(u) = \int_{\Omega \times \Omega} W(\nabla u(x), \nabla u(y)) dx dy$$
(1.1)

where $u \in W^{1,p}(\Omega; \mathbb{R})$, Ω is a bounded regular domain in \mathbb{R}^n , $n \ge 1$, p > 1 and $W : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is a real continuous function satisfying the bounds

$$c(|\lambda_1|^p + |\lambda_2|^p - 1) \leqslant W(\lambda_1, \lambda_2) \leqslant C(|\lambda_1|^p + |\lambda_2|^p + 1)$$

$$(1.2)$$

and 0 < c < C. Also, due to the definition of *J* and without lost of generality, the integrand *W* is assumed to be a symmetric function, i.e. $W(\lambda_1, \lambda_2) = W(\lambda_2, \lambda_1)$ for any $(\lambda_1, \lambda_2) \in \mathbb{R}^{2n}$. The main result of the paper is

Theorem 1.1. Under the above hypotheses the functional J defined by (1.1) is weak lower semicontinuous in $W^{1,p}(\Omega)$ if and only if W is separately convex.

Even though the separate convexity of W always implies lower semicontinuity for the functional J, the reverse implication has been proved only for the case n = 1 (see [4]).

The proof of Theorem 1.1 is entirely based on the optimality conditions that the minimizing sequences of the functional *J* must satisfy. A similar analysis has been employed to study the existence of minimizers of the problem

$$\min\left\{J(u): u - u_0 \in W_0^{1,p}(\Omega; \mathbb{R})\right\}$$
(1.3)

where $u_0 \in W^{1,p}(\Omega; \mathbb{R})$ and n = 1 (see [9]).

E-mail address: julio.munoz@uclm.es.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2009.06.068

Concerning this type of problems several works have been published. In connection with variational problems of nonlocal nature the reader can consult [5] for problems related to Ferromagnetism, [6] about the regularization of a nonconvex problem, and [3,12] or [13] in order to analyze mechanical problems formulated in the general context of the Nonlocal Elasticity (see also [8]). In [1] and [15] some interesting tools to obtain a full relaxation of specific nonlocal variational problems have been analyzed, and [7] is also remarkable work for a general class of nonlocal integral functionals.

The paper is organized as follows: in Section 2 we give a characterization for the lower semicontinuous envelope of *J* in terms of Young measures. Section 3 is devoted to state some basic optimality conditions for the Young measure solution in the obtainment of the lower semicontinuous envelope. In Section 4 we prove Theorem 1.1. Finally, in Section 5 we reexamine the procedure carried out when the integrand of *J* depends also on the variables (x, y, u(x), u(y)). We prove a new characterization for the weak lower semicontinuity when the integrand has the format $W = W(x, y, \nabla u(x), \nabla u(y))$ (Theorem 5.1).

2. Preliminaries

Young measures [16] is a classical tool that will play a fundamental role in the study of the integral functional given in (1.1). We start giving a basic version of the Existence Theorem on Young measures (see [2], [10, Theorem 6.2]):

Theorem 2.1. Let $1 \leq p < \infty$, Ω an open regular domain in \mathbb{R}^n and $f_j : \Omega \to \mathbb{R}^m$.

(1) If $\{f_j\}$ is a bounded sequence in $L^p(\Omega)$, there exists a subsequence (not relabeled) and a family of probability measures $v = \{v_x\}_{x \in \Omega}$, depending measurably on $x \in \Omega$ (for any continuous function ψ the map $x \to \langle \psi, v_x \rangle$ is measurable) such that whenever the sequence $\psi(f_j)$ converges weakly in $L^1(E)$ for some measurable $E \subset \Omega$, we have

$$\psi(f_j) \rightharpoonup \overline{\psi}(x) = \langle \psi, \nu_x \rangle \doteq \int_{\mathbb{R}^m} \psi(\lambda) \, d\nu_x(\lambda).$$

Moreover

$$\int_{\Omega}\int_{\mathbb{R}^m}|\lambda|^p\,d\nu_x(\lambda)\,dx<\infty$$

(in such a case $v = \{v_x\}_{x \in \Omega}$ is said to be the Young measure generated by the sequence $\{f_i\}$).

(2) A family of probability measures $v = \{v_x\}_{x \in \Omega}$, depending measurably on $x \in \Omega$, can be generated by a sequence of functions $\{f_j\}$ such that $\{|f_j|^p\}$ is equiintegrable, if and only if

$$\int_{\Omega}\int_{\mathbb{R}^m}\left|\lambda\right|^pd\nu_x(\lambda)\,dx<\infty.$$

In order to characterize the sequences of pairs $\{(\nabla u_j(x), \nabla u_j(y))\}$ we have:

Theorem 2.2. (See [11].) Let $1 \le p < \infty$ and Ω an open regular domain in \mathbb{R}^n . Let $\Pi = \{\Pi_{(x,y)}\}$ be a family of probability measures supported in $\mathbb{R}^n \times \mathbb{R}^n$. Π is the Young measure generated by a sequence $g_j(x, y) = (\nabla u_j(x), \nabla u_j(y))$, where $\{u_j\}$ is a bonded sequence in $W^{1,p}(\Omega)$ such that $\{|\nabla u_j|^p\}$ is weakly convergent in $L^1(\Omega)$ if and only if

$$\Pi_{(x,y)} = \nu_x \otimes \nu_y, \quad (x,y) \in \Omega \times \Omega, \tag{2.1}$$

where $v = \{v_x\}_{x \in \Omega}$ is the Young measure generated by the sequence of gradients $\{\nabla u_i\}$.

Remark 2.1. Concerning the above result it must be pointed out that we have the representation

$$\lim_{j \to \infty} \int_{\Omega \times \Omega} \psi \left(\nabla u_j(x), \nabla u_j(y) \right) dx dy \int_{\Omega \times \Omega} \int_{\mathbb{R}^n \times \mathbb{R}^n} \psi(\lambda_1, \lambda_2) d\nu_x(\lambda_1) d\nu_y(\lambda_2) dx dy$$
(2.2)

for any continuous ψ such that $\{\psi(\nabla u_j(x), \nabla u_j(y))\}_j$ converges weakly in $L^1(\Omega \times \Omega)$. In connection with the convergence (2.2) it will be useful to recall that, a family of probability measures $\nu = \{\nu_x\}_{x \in \Omega}$ can be generated by sequence of gradients $\{\nabla u_j\}$ such that $\{|\nabla u_j|^p\}$ is weakly convergent in $L^1(\Omega)$, if and only if

$$\int_{\Omega} \int_{\mathbb{R}^n} |\lambda|^p \, d\nu_x(\lambda) \, dx < \infty \tag{2.3}$$

and there exists $u \in W^{1,p}(\Omega)$ such that

$$\nabla u(x) = \int_{\mathbb{R}^m} \lambda \, d\nu_x(\lambda) \tag{2.4}$$

(see [10, Theorem 8.7]).

Remark 2.2. Another meaningful remark concerns the competing sequences of the problem

$$\min\left\{\liminf_{n\to\infty} J(u_j): u_j \in W^{1,p}(\Omega; \mathbb{R}), \ u_j \rightharpoonup u \text{ in } W^{1,p}(\Omega)\right\}.$$
(2.5)

If $\{v_j\}_j$ is an admissible sequence for (2.5) and $\mu = \{\mu_x\}_{x \in \Omega}$ is its corresponding gradient Young measure (the Young measure generated by the sequence of gradients $\{\nabla v_j\}_j$), then we can find another admissible sequence $\{u_j\}_j$ sharing the same underlying gradient Young measure μ and such that $\{|\nabla u_j|^p\}$ is weakly convergent in $L^1(\Omega)$ (see [10, Lemma 8.15]).

Under these circumstances, we have an essential relaxation result:

Theorem 2.3 (General relaxation). Let m be the minimum of the problem (2.5) and \overline{m} the infimum of the problem

$$\inf\left\{\int_{\Omega\times\Omega}\int_{\mathbb{R}^n\times\mathbb{R}^n} W(\lambda_1,\lambda_2) \, d\mu_x(\lambda_1) \, d\mu_y(\lambda_2) \, dx \, dy: \, \mu = \{\mu_x\}_{x\in\Omega} \in \overline{\mathcal{A}}\right\}$$
(2.6)

where \overline{A} is the set of young measures $\mu = {\{\mu_x\}_{x \in \Omega} \text{ holding (2.3) and (2.4). Then}}$

$$m = \overline{m}$$

and \overline{m} is indeed a minimum.

Proof. We realize that if ν minimizes (2.6) then by Remark 2.1 we can find a sequence of gradients $\{\nabla u_j\}_j$ such that $\{|\nabla u_j|^p\}$ is weakly convergent in $L^1(\Omega)$. Thus, thanks to the bounds assumed on W (2.2) holds. This implies $m \leq \overline{m}$. To see the reverse inequality we use Remark 2.2 in order to ensures the weak convergence in $L^1(\Omega)$ of the sequence $\{W(\nabla u_j(x), \nabla u_j(y))\}_j$ and consequently (2.2) holds. In order to check that \overline{m} is a minimum, take $\{\nabla u_j\}_j$, a minimizing sequence for (2.5). Since this sequence can be selected so that $\{|\nabla u_j|^p\}$ is weakly convergent in $L^1(\Omega)$, then

$$m = \liminf_{n \to \infty} \iint_{\Omega \times \Omega} W \left(\nabla u_j(x), \nabla u_j(y) \right) dx dy.$$

To conclude the proof, take the Young measure v generated by this sequence. We get

$$m = \int_{\Omega \times \Omega} \int_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\mu_x(\lambda_1) \, d\mu_y(\lambda_2) \, dx \, dy = \overline{m}.$$

Thus v is a minimizer to the problem (2.6). \Box

Within the context of Theorem 2.3 the minimization problem (2.6) is said to be a relaxation of (2.5). (2.6) is indeed an explicit representation of $sc^{-} J(u)$, the lower semicontinuous of the functional J at u.

3. The basic optimality conditions

Assume Ω is a regular open set in \mathbb{R}^n and $\{u_i\}$ is a sequence solution of the problem

$$\min\left\{\liminf_{n\to\infty} J(u_j): u_j \in W^{1,p}(\Omega; \mathbb{R}), \ u_j \rightharpoonup u \text{ in } W^{1,p}(\Omega)\right\}.$$
(3.1)

Let $v = \{v_x\}_{x \in \Omega}$ be the Young measure generated by $\{\nabla u_j(x)\}_j$. Let us consider any Young measure σ generated by a sequence of gradients $\{\nabla v_j(x)\}_j$ such that $\{v_j\}_j$ is admissible for the minimization principle (3.1) (without lost of generality we can assume that $\{|\nabla v_j|^p\}$ is weakly convergent in $L^1(\Omega)$). For each $t \ge 0$ we define the new Young measure $\mu^t = \{\mu_x^t\}_{x \in \Omega}$ as

$$\mu_x^t = t\sigma_x + (1-t)\nu_x,$$

where $\sigma = \{\sigma_x\}_{x \in \Omega}$ is the Young measure generated by the sequence $\{\nabla v_k(x)\}_k$. Since the action of each μ_x^t on any function ψ is given by the formula

$$\langle \mu_x^t, \psi \rangle = \int_{\mathbb{R}^n} \psi(\lambda) \, d\mu_x^t(\lambda) = t \int_{\mathbb{R}^n} \psi(\lambda) \, d\sigma_x(\lambda) + (1-t) \int_{\mathbb{R}^n} \psi(\lambda) \, d\nu_x(\lambda),$$

then it is clear that μ^t satisfies (2.3) and (2.4), and therefore $\mu^t \in \overline{\mathcal{A}}$. Let g be the function

$$g(t) \doteq \iint_{\Omega \times \Omega} \iint_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\mu_x^t(\lambda_1) \, d\mu_y^t(\lambda_2) \, dx \, dy, \quad t \ge 0$$

Then, thanks to the fact that $\{u_j\}_j$ minimizes (3.1) we have $\frac{d}{dt}[g(t)]_{t=0^+} \ge 0$, which read as

$$\frac{d}{dt} \left[t^2 \iint_{\Omega \times \Omega} \iint_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\sigma_{\mathbf{x}}(\lambda_1) \, d\sigma_{\mathbf{y}}(\lambda_2) + 2t(1-t) \iint_{\Omega \times \Omega} \iint_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\sigma_{\mathbf{x}}(\lambda_1) \, d\nu_{\mathbf{y}}(\lambda_2) \, dx \, dy \right. \\ \left. + (1-t)^2 \iint_{\Omega \times \Omega} \iint_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\nu_{\mathbf{x}}(\lambda_1) \, d\nu_{\mathbf{y}}(\lambda_2) \right]_{t=0^+} \ge 0.$$

After differentiation we find

$$\iint_{\Omega \times \Omega} \iint_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\sigma_x(\lambda_1) \, d\nu_y(\lambda_2) \, dx \, dy \ge \iint_{\Omega \times \Omega} \iint_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\nu_x(\lambda_1) \, d\nu_y(\lambda_2) \, dx \, dy. \tag{3.2}$$

The inequality (3.2) automatically guarantees the thesis of the following proposition:

Proposition 3.1. If $v = \{v_x\}_{x \in \Omega}$ is the Young measure generated by a minimizing sequence $\{\nabla u_j\}_j$ for the principle (3.1), then $v = \{v_x\}_{x \in \Omega}$ is a minimizer for the problem

$$\min\left\{\int_{\Omega}\int_{\mathbb{R}^n} G(\lambda_1) \, d\gamma_x(\lambda_1) \, dx: \, \gamma = \{\gamma_x\}_{x \in \Omega} \text{ satisfying (2.3) and (2.4)}\right\}$$
(3.3)

where

$$G(\lambda_1) \doteq \int_{\Omega} \int_{\mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\nu_y(\lambda_2) \, dy$$

Moreover, the sequence $\{\nabla u_i\}_i$ minimizes the functional $l: W^{1,p}(\Omega) \to \mathbb{R}$ defined as

$$l(u) = \liminf_{n \to \infty} \left\{ \int_{\Omega} G(\nabla z_j(x)) \, dx: \, z_j \in W^{1,p}(\Omega; \mathbb{R}), \, \text{such that } z_j \rightharpoonup u \text{ in } W^{1,p}(\Omega) \right\}.$$
(3.4)

To prove this result it must be taken into account that $G: \mathbb{R}^n \to \mathbb{R}$ is a real continuous function such that

$$c(|\lambda|^p-1) \leq G(\lambda) \leq C(|\lambda|^p+1).$$

The proof is obtained following the same lines of the proof of Theorem 2.3. We factually can state that problem (3.3) is a relaxation of (3.4).

We use the generalized Weierstrass condition on the minimum principle (3.3) to assert the following result about generalized optimality conditions (see [14]):

Proposition 3.2. Let $v = \{v_x\}_{x \in \Omega}$ be a Young measure solution for (3.3). Then

div
$$\mathcal{F}(x) = 0$$
 in $W^{-1, p/(p-1)}(\Omega)$ (3.5)

and

$$\int_{\mathbb{R}^n} \left(G(\lambda_1) - \mathcal{F}(x) \cdot \lambda_1 \right) d\nu_x(\lambda_1) = \min_{s \in \mathbb{R}^n} \mathcal{H}(x, s)$$
(3.6)

for a.e. $x \in \Omega$, where

$$\mathcal{F}(x) = \int_{\mathbb{R}^n} \frac{\partial G}{\partial \lambda_1}(\lambda_1) \, d\nu_x(\lambda_1) \in L^{p/(p-1)}(\Omega; \mathbb{R}^n)$$

and

$$\mathcal{H}(\mathbf{x}, \mathbf{s}) = \mathbf{G}(\mathbf{s}) - \mathcal{F}(\mathbf{x}) \cdot \mathbf{s}. \tag{3.7}$$

Moreover

$$\sup v_x \subset \operatorname{Arg\,min} \mathcal{H}(x,\cdot) \tag{3.8}$$

for a.e. $x \in \Omega$.

From (3.6) we have

$$\int_{\Omega} \int_{\mathbb{R}^n} \left(W(s,\lambda_2) - \mathcal{F}(x) \cdot s \right) d\nu_y(\lambda_2) \, dy \ge \int_{\mathbb{R}^n} \int_{\Omega} \int_{\mathbb{R}^n} \left(W(\lambda_1,\lambda_2) - \mathcal{F}(x) \cdot \lambda_1 \right) d\nu_y(\lambda_2) \, dy \, d\nu_x(\lambda_1)$$

for any $s \in \mathbb{R}^n$. In particular

$$\int_{\mathbb{R}^n} \int_{\Omega} \int_{\mathbb{R}^n} W(s,\lambda_2) \, d\nu_y(\lambda_2) \, dy \, d\gamma_x(s) \ge \int_{\mathbb{R}^n} \int_{\Omega} \int_{\mathbb{R}^n} W(\lambda_1,\lambda_2) \, d\nu_y(\lambda_2) \, dy \, d\nu_x(\lambda_1)$$
(3.9)

where γ_x is any probability measure such that

$$\nabla u(x) = \int_{\mathbb{R}^n} s \, d\gamma_x(s), \quad \text{a.e. } x \in \Omega, \qquad \int_{\Omega} \int_{\mathbb{R}^n} |s|^p \, d\gamma_x(s) \, dx < \infty.$$

We are in position to state the main result of this section.

Theorem 3.3. If the sequence $\{u_j\} \in W^{1,p}(\Omega), u_j \rightarrow u$, is a solution to the minimization problem (3.1) then

$$C_1\left(\int_{\Omega}\int_{\mathbb{R}^n} W\left(\nabla u(x),\lambda_2\right) d\nu_y(\lambda_2) dy\right) = \int_{\mathbb{R}^n} \left(\int_{\Omega}\int_{\mathbb{R}^n} W(\lambda_1,\lambda_2) d\nu_y(\lambda_2) dy\right) d\nu_x(\lambda_1)$$
(3.10)

a.e. $x \in \Omega$, where v is the Young measure generated by $\{\nabla u_i\}$ and the l.s.t. of (3.10) is the convex envelope of the function

$$\lambda_1 \to \int_{\Omega} \int_{\mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\nu_y(\lambda_2) \, dy$$

evaluated upon $\lambda_1 = \nabla u(x)$.

Proof. The proof is just formula (3.9). \Box

Note that if \overline{m} denotes the minimum of problem (3.1) then

$$\overline{m} = \int_{\Omega} C_1 \left(\int_{\Omega} \int_{\mathbb{R}^n} W \left(\nabla u(x), \lambda_2 \right) d\nu_y(\lambda_2) dy \right) dx.$$
(3.11)

4. Lower semicontinuity

If J is l.s.c in $W^{1,p}(\Omega)$ then the sequence $\{u_n\}$, where $u_n = u$ for any n, solves the minimization problem

$$sc^{-}J(u) \doteq \min\left\{\liminf_{n \to \infty} J(u_{j}): u_{j} \in W^{1,p}(\Omega), u_{j} \rightharpoonup u \text{ in } W^{1,p}(\Omega)\right\}$$

and therefore (3.10) ensures that

$$C_1\left(\int_{\Omega} W\left(\nabla u(x), \nabla u(y)\right) dy\right) = \int_{\Omega} W\left(\nabla u(x), \nabla u(y)\right) dy.$$
(4.1)

Regarding the lower semicontinuity on affine function we have the following result:

Theorem 4.1. *J* is weak lower semicontinuous at the affine function $u_0(x) \equiv \gamma \cdot x$, where γ is any vector from \mathbb{R}^n if and only if

$$C_1(W(\gamma,\gamma)) = W(\gamma,\gamma). \tag{4.2}$$

Proof. In view of (4.1) $C_1(W(\gamma, \gamma)) = W(\gamma, \gamma)$ is a necessary condition. In order to check (4.2) is a sufficient condition we consider any sequence $\{v_j\}$ from $W^{1,p}(\Omega)$ such that $v_j \rightharpoonup \gamma \cdot x$ in $W^{1,p}(\Omega)$. Then, due to (3.10) and (3.11), we have

$$\lim_{j} J(v_{j}) \ge \min\left\{\liminf_{n \to \infty} J(u_{j}): u_{j} \in W^{1,p}(\Omega), u_{j} \rightharpoonup \gamma \cdot x \text{ in } W^{1,p}(\Omega)\right\} = |\Omega| C_{1}\left(\int_{\Omega} \int_{\mathbb{R}^{n}} W(\gamma, \lambda_{2}) dv_{y}(\lambda_{2}) dy\right)$$

where $v = \{v_x\}_{x \in \Omega}$ is any Young measure solution of (3.1) generated by a minimizing sequence $\{u_j\}$, and such that $u_j \rightharpoonup \gamma \cdot x$ in $W^{1,p}(\Omega)$. Now, let \overline{v} be the probability measure, with barycenter γ , obtained from the homogenization of $v = \{v_x\}_{x \in \Omega}$, i.e.

$$\langle \overline{\nu}, g \rangle = \int_{\mathbb{R}^n} g(\lambda) d\overline{\nu}(\lambda) \doteq \frac{1}{|\Omega|} \int_{\Omega} \int_{\mathbb{R}^n} g(\lambda_2) d\nu_y(\lambda_2) dy.$$

Then

$$\int_{\Omega} \int_{\mathbb{R}^n} W(\gamma, \lambda_2) \, d\nu_y(\lambda_2) \, dy = |\Omega| \langle \overline{\nu}, W(\gamma, \cdot) \rangle = |\Omega| \int_{\mathbb{R}^n} W(\gamma, \lambda) \, d\overline{\nu}(\lambda) \ge |\Omega| C_2 W(\gamma, \gamma)$$

where $C_2W(\gamma, \gamma)$ is the convex envelope of $W(\gamma, \cdot)$ at γ . By using $C_1(W(\gamma, \gamma)) = W(\gamma, \gamma)$ twice we have

$$\lim_{i} J(v_{j}) \ge |\Omega| C_{1} (|\Omega| C_{2} W(\gamma, \gamma)) = |\Omega|^{2} C_{1} (W(\gamma, \gamma)) = |\Omega|^{2} W(\gamma, \gamma) = J(\gamma \cdot x).$$

This completes the proof. \Box

Corollary 4.2. The affine function $u_0(x) = \gamma \cdot x$ is a solution to the minimization problem

$$\min\left\{J(u): u - u_0 \in W_0^{1,p}(\Omega; \mathbb{R})\right\}$$

$$\tag{4.3}$$

if and only if $C_1(W(\gamma, \gamma)) = W(\gamma, \gamma)$.

Proof. We recall (see [10, Theorem 8.3]) that for any weakly convergent sequence $\{u_j\}_j$ such that $u_j \rightarrow u_0$ in $W^{1,p}(\Omega)$ we can find a new sequence $\{v_j\}_j$ such that $v_j - u_0 \in W_0^{1,p}(\Omega)$, $v_j \rightarrow u_0$ in $W^{1,p}(\Omega)$ and such that the two sequences of gradients, $\{\nabla u_j\}_j$ and $\{\nabla v_j\}_j$, have the same underlying Young measure. Thus, if we assume u_0 is a solution to problem (4.3) then $\{u_j\}$, where $u_j = u_0$ for all j, is a minimizing sequence for (3.1) with $u = u_0$. Then by (4.1) we get $C_1(W(\gamma, \gamma)) = W(\gamma, \gamma)$. To prove the only if part assume $v = \{v_x\}_{x \in \Omega}$ is the Young measure given by a minimizing sequence $\{\nabla u_j\}$ such that u is the weak limit of $\{u_j\}_j$ in $W^{1,p}(\Omega)$. Now, let \overline{v} be the probability measure obtained from the homogenization of $v = \{v_x\}_{x \in \Omega}$. Then there exists a sequence v_j , bounded in $W^{1,p}(\Omega)$ with the same boundary values, such that the corresponding Young measure is \overline{v} . In such a case the infimum \overline{m} of the minimization problem (4.3) is

$$\overline{m} = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\overline{\nu}(\lambda_2) \right) d\overline{\nu}(\lambda_1).$$

Let $\overline{\mu} = t\overline{\sigma} + (1-t)\overline{\nu}$ be any convex variation of the homogeneous Young measure solution $\overline{\nu}$. By performing the same analysis from the beginning of Section 3 we arrive at the analogous inequality of (3.2):

$$\iint_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\overline{\nu}(\lambda_2) \, d\overline{\sigma}(\lambda_1) \geqslant \iint_{\mathbb{R}^n \times \mathbb{R}^n} W(\lambda_1, \lambda_2) \, d\overline{\nu}(\lambda_2) \, d\overline{\nu}(\lambda_1)$$

for any homogeneous Young measure $\overline{\sigma}$ such that $\int_{\mathbb{R}^n} \lambda d\overline{\sigma}(\lambda) = \gamma$ and $\int_{\mathbb{R}^n} |\lambda|^p d\overline{\sigma}(\lambda) < \infty$. This implies

$$\overline{m} = C_1 \left(\int_{\mathbb{R}^n} W(\gamma, \lambda_2) \, d\overline{\nu}(\lambda_2) \right)$$

Since $\int_{\mathbb{R}^n} W(\gamma, \lambda_2) d\overline{\nu}(\lambda_2) \ge C_2 W(\gamma, \gamma)$ and $C_1(W(\gamma, \gamma)) = W(\gamma, \gamma)$ we have

$$\overline{m} \ge C_1(C_2W(\gamma,\gamma)) = W(\gamma,\gamma) = J(u_0). \quad \Box$$

As in the previous results the proof of Theorem 1.1 only requires the optimality condition (4.1).

Proof of Theorem 1.1. The proof is elementary: assume *J* is weak lower semicontinuous at any $u \in A$. Let *A* and *B* be any couple of vectors from \mathbb{R}^n and apply (4.1) to any piecewise linear function *u* such that $\nabla u(x) = A$ in Ω_{α} and = B in $\Omega - \Omega_{\alpha}$ where $\alpha = |\Omega_{\alpha}| \in (0, 1)$ is arbitrary. Then

$$C_1\left(\int_{\Omega} W\left(\nabla u(x), \nabla u(y)\right) dy\right) = C_1\left(\alpha W\left(\nabla u(x), A\right) + (1-\alpha)W\left(\nabla u(x), B\right)\right)$$
$$= \alpha W\left(\nabla u(x), A\right) + (1-\alpha)W\left(\nabla u(x), B\right).$$

Since ∇u can be *A* or *B*, we have the identities

 $C_1(\alpha W(A, A) + (1 - \alpha)W(A, B)) = \alpha W(A, A) + (1 - \alpha)W(A, B),$ $C_1(\alpha W(B, A) + (1 - \alpha)W(B, B)) = \alpha W(B, A) + (1 - \alpha)W(B, B).$

In particular the first of the above equations serves to assert the function

$$f(s) \doteq \alpha W(s, A) + (1 - \alpha) W(s, B), \quad s \in \mathbb{R}^n,$$

is convex at s = A. Then for any A_1 , A_2 from \mathbb{R}^n and $\beta \in (0, 1)$ such that $\beta A_1 + (1 - \beta)A_2 = A$ we have

$$f(A) \leq \beta (\alpha W(A_1, A) + (1 - \alpha) W(A_1, B)) + (1 - \beta) ((\alpha W(A_2, A) + (1 - \alpha) W(A_2, B)))$$

= $\alpha (\beta W(A_1, A) + (1 - \beta) W(A_2, A)) + (1 - \alpha) (\beta W(A_1, B) + (1 - \beta) W(A_2, B)).$

By letting $\alpha \downarrow 0$ we obtain

$$W(A, B) \leq \beta W(A_1, B) + (1 - \beta) W(A_2, B).$$

Since *B* is arbitrary, from the above inequality follows that $W(\cdot, A)$ is convex. Proceeding analogously with the second identity we prove $W(B, \cdot)$ is convex. \Box

5. Lower semicontinuity and inhomogeneity

The procedure we have developed in Section 3 applies without major changes when the functional is non-homogeneous,¹ i.e.

$$J(u) = \int_{\Omega \times \Omega} W(x, y, u(x), u(y), \nabla u(x), \nabla u(y)) dx dy.$$

If the sequence $\{u_i\} \in W^{1,p}(\Omega)$, $u_i \rightarrow u$, is a solution to the minimization problem

$$\min\left\{\liminf_{n\to\infty} J(u_j): u_j \in W^{1,p}(\Omega), u_j \rightharpoonup u \text{ in } W^{1,p}(\Omega)\right\}$$

then

$$C_{1}\left(\int_{\Omega}\int_{\mathbb{R}^{n}}W(x, y, u(x), u(y), \nabla u(x), \lambda_{2})d\nu_{y}(\lambda_{2})dy\right)$$

=
$$\int_{\mathbb{R}^{n}}\left(\int_{\Omega}\int_{\mathbb{R}^{n}}W(x, y, u(x), u(y), \lambda_{1}, \lambda_{2})d\nu_{y}(\lambda_{2})dy\right)d\nu_{x}(\lambda_{1})$$
(5.1)

a.e. $x \in \Omega$, where v is the Young measure generated by $\{\nabla u_j\}$. In particular, if $u_j = u$ is a minimizing sequence then (5.1) give rise to

$$C_1\left(\int_{\Omega} W(x, y, u(x), u(y), \nabla u(x), \nabla u(y)) dy\right) = \int_{\Omega} W(x, y, u(x), u(y), \nabla u(x), \nabla u(y)) dy.$$
(5.2)

Unfortunately, from (5.2) we were not able to deduce separate convexity for the integrand W(x, y, u, v, A, B) in the variables A and B. Nevertheless, (5.2) is again the key point to state the following characterization result of the lower semicontinuity:

 $W(x, y, u(x), u(y), \nabla u(x), \nabla u(y)) = W(y, x, u(y), u(x), \nabla u(y), \nabla u(x)).$

 $^{^{1}}$ W is assumed to verify the following property of symmetry:

Theorem 5.1. Assume $W = W(x, y, \nabla u(x), \nabla u(y))$ is the integrand in the definition of *J*. Then, *J* is weak lower semicontinuous if and only if the function

$$G: (A, B) \in \mathbb{R}^n \times \mathbb{R}^n \to G(A, B) \doteq \int_{\Omega} W(x, y, A, B) dx$$

is separately convex, for any $y \in \Omega$.

Proof. If *G* is separately convex then

$$G_{\nu}(B) \doteq \int_{\Omega} \int_{\mathbb{R}^{n}} W(x, y, \lambda_{1}, B) d\nu_{x}(\lambda_{1}) dx, \quad y \in \Omega,$$

$$H(A) \doteq \int_{\Omega} W(x, y, A, B) dy, \quad x \in \Omega \text{ (for any fixed } B \in \mathbb{R}^{n}\text{)}$$

and

$$H_{\nu}(A) \doteq \int_{\Omega} \int_{\mathbb{R}^n} W(x, y, A, \lambda_2) \, d\nu_y(\lambda_2) \, dy, \quad x \in \Omega,$$

are convex and consequently we can proceed as follows:

$$\begin{split} \int_{\Omega} \left(\int_{\Omega} W(x, y, \nabla u(x), \nabla u(y)) \, dx \right) dy &\leq \int_{\Omega} \left(\int_{\mathbb{R}^n} \left(\int_{\Omega} W(x, y, \nabla u(x), \lambda_2) \, dx \right) d\nu_y(\lambda_2) \right) dy \\ &= \int_{\Omega} \left(\int_{\mathbb{R}^n} \int_{\Omega} W(x, y, \nabla u(x), \lambda_2) \, d\nu_y(\lambda_2) \, dy \right) dx \\ &\leq \int_{\Omega} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \int_{\Omega} W(x, y, \nabla u(x), \lambda_2) \, d\nu_y(\lambda_2) \, dy \right) d\nu_x(\lambda_1) \, dx \end{split}$$

which means W is lower semicontinuous. The *if part* follows along the same lines of the proof of Theorem 1.1. \Box

Acknowledgment

This research has been supported by MTM2007-62945.

References

- [1] G. Alberti, G. Belletini, A nonlocal anisotropic model for phase transitions, Part I: The optimal profile problem, Math. Ann. 310 (1998) 527-560.
- [2] J.M. Ball, A version of the fundamental theorem for Young measures, in: M. Rascle, D. Serre, M. Slemrod (Eds.), PDE's and Continuum Models of Phase Transitions, in: Lecture Notes in Phys., vol. 344, Springer, 1989, pp. 207–215.
- [3] Z.P. Bazant, M. Jirasek, Nonlocal integral formulation of plasticity and damage: Survey of progress, J. Engrg. Mech. (2002) 1119-1149.
- [4] J. Bevan, P. Pedregal, A necessary and sufficient condition for the weak lower semicontinuity of one-dimensional nonlocal variational integrals, Proc. Roy. Soc. Edinburgh Sect. A 4 (2005) 701–708.
- [5] D. Brandon, R. Rogers, The coercivity and nonlocal ferromagnetism, Contin. Mech. Thermodyn. 4 (1992) 1–21.
- [6] D. Brandon, R. Rogers, Nonlocal regularization of L.C. Young's tacking problem, Appl. Math. Optim. 25 (1992) 287-301.
- [7] M. Chipot, W. Gangbo, B. Kawohl, On some nonlocal variational problems, Anal. Appl. 4 (4) (2006) 1-12.
- [8] D.G.B. Edelen, N. Laws, On the thermodynamics of systems with nonlocality, Arch. Ration. Mech. 43 (1971) 24-35.
- [9] J. Muñoz, Some aspects about the existence of minimizers for a nonlocal integral functional in dimension one, submitted for publication.
- [10] P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, 1997.
- [11] P. Pedregal, Nonlocal variational principles, Nonlinear Anal. Theory Methods Appl. 29 (12) (1997) 1379–1392.
- [12] C. Polizzotto, Nonlocal elasticity and related variational principles, Internat. J. Solids Structures 38 (2001) 7359-7380.
- [13] A.A. Pisano, P. Fuschi, Closed form solution for a nonlocal elastic bar in tension, Internat. J. Solids Structures 40 (2003) 13-23.
- [14] T. Roubícek, Optimality conditions for nonconvex variational problems relaxed in terms of Young measures, Kybernetika 34 (3) (1998) 335–347.
- [15] E. Stepanov, A. Zdrovtsev, Relaxation of some nonlocal integral functional in weak topology of Lebesgue spaces, Manuscript, 2001.
- [16] L.C. Young, Lectures on Calculus of Variations and Optimal Control Theory, W.B. Saunders, Philadelphia, 1969.