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Using the notions of divisorial A-lattices for a Krull domain introduced 
in [7], we present a theory of orders over a Krull domain, which can be used 
to generalize much of the material presently available only for a noetherian 
Krull domain (i.e., a noetherian integrally closed integral domain). A brief 
outline of this article follows. 

Firstly, we show, given a Krull domain A with field of quotients K and an 
A-order in a finite dimensional central simple K-algebra, that there are 
maximal A-orders containing the given order. Furthermore, a maximal 
A-order arises as an endomorphism ring of a maximal A-order in the 
associated division ring. Tame orders are also discussed briefly. 

Secondly, we consider certain groups of divisors for a tame order and show, 
for a maximal order over a Krull domain, that these groups are isomorphic 
and depend, in a functorial sense, only on the class of the central simple 
algebra in the Brauer group of K. 

Thirdly, we discuss extensions of Krull domains and associated extensions 
of orders. In particular, we consider subintersections and polynomial 
extensions, 

We note here several conventions. If we say an algebra is central simple 
over a field K, we will always assume it to be finite dimensional. All modules 
will be unitary, (and so the rings always’have 1). We use the notation and 
terminology introduced in [7] without further comment, especially that of 
Section 5 of [7]. If A is a Krull domain, P wiI1 denote its set of height one 
prime ideals. 

1. MAXIMAL ORDERS 

Let A be a Krull domain with field of quotients K. Let Z be a central 
simple K-algebra. 

1 This research was supported by the National Science Foundation under Grant 

GP-5478. We thank L. Claborn and I. Reiner for many helpful discussions. 
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An A-order in Z is a subring A of Z satisfying the properties 

(01) ACA. 

(4 KA = .Z (i.e. A contains a K-basis of 2). 

(03) Each element of A is integral over A. 

(See [8], Definition 2, page 69). 
According to Example 4 of ([4], Chapitre VII, page 47) 2 always contains 

an A-order, which is even an A-lattice in .Z. 
Since Z is central separable over K, the reduced trace Tr : 2-t K induces 

an isomorphism t : 24 Hom,(Z, K) of K-modules, by t(x)(y) = Tr(xy), 
for x, y  E TTY. Let xi ,..., X, be a basis of Z. Let xi@,..., X$ be elements of Z such 
that Tr(x:xJ = & (Kronecker 6). I f  L denotes the free A-module generated 

by the set {xj}, denote by Lc the free A-module in Z generated by the set 
{XT>. Note that t restricted to Lc induces an isomorphism of Lc with 
L* = A : L z Hom,(L, A). 

PROPOSITION 1.1. Let A be an A-order in Z. If L is a free A-submodule of 
A, and r is an A-order in .Z which contains A, then Lc 3 r. 

Proof. Another description of Lc is Lc = {x E Z : Tr(xL) C A}. Since 
L C r we know that rL c I’. Because r is integral over A, Tr(r) CA, and 
hence Tr(rL) C A. So r C Lc. 

COROLLARY 1.2. Each A-order in Z is an A-lattice in 2. 

Proof. By condition (02), an A-order contains a K-basis of .Z, and hence 
a free A-submodule which spans .Z. By the proposition, it is hence contained 
in a free A-lattice, so it is a lattice by definition. 

We say an A-order A is maximal, if it is not properly contained in an 
A-order in Z. If  A is an A-order, it is easily verified that fipep A, is an A-order 
containing A. Conditions (01) and (02) are immediate, and condition (03) 
follows from the fact that A = &* A, . We then have as in [I] 

PROPOSITION. 1.3. Let A be an A-order in 2. A is a maximal A-order if, 
and only if, 

(i) A is a divisorial A-lattice in Z and 

(ii) AD is a maximul A,-order for each p E P. 

We can now use the results of [A, namely, that the divisorial A-lattices in a 
free A-module satisfy the maximum condition (for T,A is a noetherian 
object in the quotient category .&/&a) to prove (as in [S]) 
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THEOREM 1.4. Let A be an A-order in 2. Then there is a maximal A-order 
in 2 containing A. 

Proof. Let L be a free A-submodule of A generated by a K-basis of Z. 
In the set of divisorial A-orders which are contained in Lc and which contain 
A, pick a maximal such A-order. That there is always a divisorial A-order 

containing A follows from the remarks in the paragraph immediately 
preceding Proposition 1.3. The order picked must be a maximal order, for 
by Proposition 1.1, any order containing A is contained in LG. Now if r is a 
maximal divisorial A-order in Lc containing A, then r, is a maximal AD-order. 
For if not, we can find for each p E P, a maximal A,-order T(p) containing 
r and contained in LCD (=L,$ and with r(p) = LCD for all but a finite 
n:mber of prime ideals p E P. Then r’ = fir(p) is a divisorial A-lattice 
containing l7 It is a subring of Z, and it is clear that (03) is satisfied, so r’ is 
a divisorial A-order, and hence r’ = r. Thus, r, = r(p) for each p E P. 

Hence by Proposition 1.3, r is a maximal A-order. 
Because the integral closure of a Krull domain in a finite extension of its 

field of quotients is again a Krull domain ([4], Chapter VII, Section l), we can 
discuss maximal orders in a finite dimensional semi-simple algebra. 

Let B be an integrally closed integral domain with field of quotients L. 
Let T be a finite dimensional, semi-simple, L-algebra, with simple components 
Zi , I < i < n, so T = &in.& . Let Ki be the center of & , and let Ai be 
the integral closure of B in Ki . Then A = & “Ai is the integral closure of B 
in the center, n Ki , of T. If  Ai is a B-order in Zi (i.e. conditions (ol), (02) and 
(03) are satisfied), then A = n Ai is a B-order in T, and A n K, = Ai r\ Ki 
is a B-order in Ki, and thus contained in Ai . I f  A is a B-order in T, then 
Ai = A,A is a B-order in & , and n Ai is a B-order in T containing A. If  A 
is a maximal B-order in T, then A = n Ai , A r\ Ki = Ai , and Ai is a 
maximal &order in & . Thus to build a maximal B-order r in T containing 
a given B-order A in T, it is necessary and sufficient to build in each ,Zi a 
maximal B-order containing Ai = A,A. But Ai is a maximal B-order in ,& if, 
and only if, Ai is a maximal Ai-order in Zi . 

THEOREM 1.5. (a) Let B be a Krull domain with$eld of quotients L. Let T 
be a Jinite dimensional semi-simple L-algebra, and let A be a B-order in T. Then 
there is a maximal B-order r in T which contains A. 

(b) r is a maximal B-order in T if, and only if, r is a divisorial B-order in T, 
and r, is a maximal B,-order in T, for each prime ideal p in B with htp = 1. 

Proof. We retain the notation introduced prior to the statement of the 
theorem. As noted previously, each Ai is then a Krull domain, so we may 
apply Theorem 1.4 to conclude that each .Zi admits a maximal A,-order ri 
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containing AJ. Hence r = n I’i is the desired maximal order. This proves 
(CZ) and (b) follows, as did Proposition 1.3. 

This slight digression serves to show that it is usually sufficient to consider 
orders in a central simple algebra. The advantage of the treatment of orders 
over a Krull domain is seen in the fact that this class of integral domains is 
closed under the integral closure operation, (in finite extensions of the ground 
field). Thus one can make the transition from a semi-simple algebra to its 
central simple components with no fear of losing hold of a Krull domain. 

Since noetherian integrally closed integral domains are Krull domains 

we have 

COROLLARY 1.6. Let B be a noetherian integrally closed integral domain. 
Let T be a$nite dimensional semi-simple algebra over its Jield of quotients. Then 
any B-order in T is contained in a maximal B-order in T. 

Suppose again that A is a Krull domain, and Zis a central simple K-algebra. 
When A is noetherian, and ZI = Hom,(V, V) for a finite dimensional vector 
space V over K, it is shown in ([I], Proposition 4.29) that an A-order A in Z is 
maximal if, and only if, A = HomA(E, E) for some divisorial A-lattice E in V. 

In [9] we mentioned that this structure theorem has the obvious generalization: 
If  2 = Hom,(V, V), where D is a central division K-algebra, V a finite 
dimensional right D-vector space, then an A-order A in Z is maximal if, and 
only if, there are a maximal A-order Fin D and a right r-submodule E of V, 
which is a divisorial A-lattice such that A = Hom,(E, E). No proof was offered 
in [9], as the method given in [I] can be used to obtain this result. We have the 
same result when A is a Krull domain, and we give a proof since the method 
varies slightly from [I]. 

THEOREM 1.7. Let A be a Krull domain with field of quotients K. Let Z be 
a central simple K-algebra. Suppose Z = Homo(V, V), where D is a central 
division K-algebra, and V is ajnite dimensional right D vector space. An A-order 
A in Z is maximal if, and only ;f, there are a maximal A-order P in D and a 
right P-submodule E of V, which is a divisorial A-lattice such that 
A g Hom,(E, E). 

Remark. It will follow that rg Hom,(E, E). 

Proof. We first remark that all functions considered are in Horn&V, V), 
so in particular D and ZOP are subalgebras of Hom,(V, V) with 
ZOP = {f E HomK( V, V) : fd = df, all d E D} and D = {d : fd = df, all f E 2P}. 
Now V is a simple Z-module. Let v  E V with v  # 0 and let E’ = Av, where 
A is a maximal A-order in Z. Then E’ is an A-lattice in V. Let E = &es, EL . 
Since each Ei is a A,-module, E is a A = nsEp A, module. By the results in 
([7], Section 5) r = D n (E : E) is a divisorial A-order in D and 
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r, = D n (E, : E,) g Hom,,e(E, , E,). By Proposition 2.8 and Theorem 3.6 
of [I], r, is a maxima1 A-order in D for each p EP. It is clear that 
I’ g Homn(E, E). Now Zap n (E : E) is an A-order in zap which contains 
AOP. Hence (lop = Z”P n (E : E). But, it is clear that this is just isomorphic 
to Hom,(E, E) 0~) so we have proved one implication. 

As for the other implication, suppose r is a maximal A-order in E, and E 
is a divisorial A-lattice in V. Then Homo(V, v)OP n (E : E) in Hom,(V, I’) 
is a divisorial A-order in Homo( V, V) OP = zap. By the same arguments as 
above, it is a maximal order. The proof is complete. 

A generalization of maximal order is a tame order (cf. [22]). Let A, K, and Z 
be as usual. We say an A-order A in Z is tame if it is divisorial and A, is an 
hereditary AD-order in Z for each p EP. It is clear from ([7], Section 5) 
that if r is a maximal A-order containing the tame order A, then r, = A, 
for all but a finite number of p. Thus, much of what is said in [5] and 
([12], Chapter I) can be said for tame A-orders when A is a Krull domain. 
Here we are interested in two inheritance properties which tame orders enjoy. 

THEOREM 1.8. Let A be a Krull domain with$eld of quotients K. Let C be 
a central simple K-algebra. Suppose A is a tame (resp. maximal) A-order in 22 

Let P’ be a subset of P and set B = nDcpj A, (a subintersection). Then 

(1’ = nDEp, 4 is a tame (resp. maximal) B-order in Z. 

Proof. B is again a Krull domain, and A’ is a B-order which is divisorial. 
That A’ is tame (resp. maximal) is clear by localizing at each p E P’. 

COROLLARY 1.9. Let S be a multiplicatively closed subset of A. If A is a tame 
(resp. maximal) A-order in Z, then As is a tame (resp. maximal) As-order in Z: 

Proof. As = fipEP, A,, whereP’={p~P:pnS=+}.As=&,,,,A,. 
If A is a Krull domain with field of quotients K, and X is an inderminant, 

then A[X] is a Krull domain with field of quotients K(X). If Z is a central 
simple K-algebra, then Z(X) = K(X) OK Z is a central simple K(X)-algebra. 
Furthermore, if A is an A-order in Z, then A[X] = A[X] Ba A is an 
A-order in Z(X). We have 

THEOREM 1.11. Suppose A is a Krull domain with field of quotients K. 
Let 2 be a central simple K-algebra, and A a tame (resp. maximal) A-order in K. 
Then A[X] is a tame (resp. maximal) A[X]-order in Z(X). 

Proof. In view of Proposition 1.3 and the definitions, we must show A[X] 
is divisorial, and that A[x], is an hereditary A[Xl,-order (resp. maximal 
order) for each prime ideal P of A[X] with htP = 1. There are two types of 
these prime ideals, those with P n A = 0, and those with P n A = p # 0. 
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In either case let p = P n A. Then A[X], = A,[Xlo , where Q = PA,[X]. 
I f  P n A = 0, then A[X], = K[X]o . 

To see that A[X] is divisorial, we write 

n 4x1~ = ( 
htP=l 

n 4x1,). 
PnA#O 

Let I be the set of manic irreducible polynomials in K[X]. For each f c I, 
let (f ) denote the prime ideal it generates. When P n A = 0 we have 

~-YIP = W%) where PJWI = (f 1. Hence r)PnA=O 4Xlp = nfEI T%). 

Now K[X] is noetherian, so we may use the lattice theory in ([4], Chap. VIII) 
toconclude that Z[X] = .Z[Xl** = her &%) . Hence hp=l 4xlp = 

x:[xi n nPnAz0 fl[XIPf Suppose that h E nhtp=, A[X], . Then we may 
write h = g/s, where g E A[X] and 0 f  s E A. Since f E AIXlp for each prime 
ideal P with htP = 1, we get each coefficient of f, say &/s, in A, , where 

p = P n A. But A = fihtP=, A,, so Xi/s E A for each i, hence f e A[X] 
which is what we set out to establish. 

We now show that A[X], is hereditary (maximal) for each P. If  P n A = 0, 
then Z[X]p = Z[X](,) . Now Z is a central separable K-algebra, hence C[X] 
is a central separable K[X]-algebra and so a maximal order in Z(X) as seen 
in [2]. Thus we have that E[,yl, is a maximal order for those prime ideals 
which meet A at 0. 

Now suppose P n A = p f  0. Then AIXlp = Ap[XIQ @A A = 
Ap[;YIo Bar A, . We know A, is an hereditary (maximal) A,-order. Since 
P = pA[X], the ring A,[X], = A,(X) as defined in [II]. Once we prove the 
next lemma the proof of the theorem will be complete. 

LEMMA 1.12. Let D be a discrete rank one valuation ring and A an hereditary 

D-order. Then D(X) @n A is an hereditary D-order. If A is a maximal D-order, 

then A(X) is a maximal D(X)-order. 

Proof. To show that A(X) is hereditary, it is sufficient in light of 

([I], Corollary page 5), to show that the radical of A(X) is a projective left 
A(X)-module. To show this, it is enough to show that Rad(A(X)) = 
Rad(A)(X) (where here Rad(A), d enotes the Jacobson radical of the ring A). 
Let m be the maximal ideal of D and K the residue class field. Then 

A(X>/mA(X) z (Wm) Ok k(X), so 

Rad((A/mA) Ok k(X)) = (Rad(A/mA)) or k(X) = (Rad A/mA) Ok k(X). 

But Rad(A(X)/mA(X)) = Rad A(X)/mA(X). Hence Rad(A(X)) = (Rad A)(X). 
Since Rad A is projective as a A-module, it follows that Rad A(X) is a 
projective A(X)-module. 
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Also we get that A(X)/Rad A(X) = (A/Rad A) olc K(X). I f  A/Rad A is 
simple (i.e. (1 is a maximal order), then (A/Rad A) Ok K(X) is a simple 
k(X)-algebra since k(X) is a separable extension of K. Hence Rad A(X) is 
a maximal twosided ideal in A(X), and so A(X) is a maximal D(X)-order. 

2. GROUPS OF DIVISORS 

Let A be a Krull domain with field of quotients K. Let A be a tame 
A-order in a central simple K-algebra Z. We call an A-lattice M in 2, which 
is a two sided A-module, a A-divisor (or simply a divisor) if it is divisorial as an 
A-lattice, and if for each p E P, MO is an invertible A,-module. That is to say 
A, = M9M;;l = M;‘Mp for each p EP. Let D(A) denote the set of 
A-divisors. A product in D(A) is given by M * N = (MN)**. Just as in 

[5, IO, 121, D(A) is then an abelian group, which is free on the ideals 
M(p) = Rad(A,) n /I. We call it thegroup of divisors of (1. We have as in [9]. 

THEOREM 2.1. Let A be a Krull domain with $eld of quotients K. Let .Z be 

a central simple K-algebra. If A, , A, are two maximal A-orders in Z, then the 
conductor A 1 : A, induces an isomorphism d(A, , A,) : D(Al) + D(A,) of the 
groups of divisors. This isomorphism is natural in the sense that rf A, is a third 
maximal A-order in 2, then d(A, , A,) d(A, , Al) = d(A, , Al). 

Proof. This is established as in [IO]. An outline is: Let A, : A, = 
(z E Z : Aax C Al}. Then A, : A, is a divisorial A-lattice in Z, which is a left 
A, and a right A, module. Furthermore ((Aa : &)(A1 : A,))** = A, : A,. 

Now define d(A, , A,)(M) = ((A1 : /I,) M(/l, : A,))**. It is easy to verify 
that the statements of the theorem now follow. 

As in [7] we can obtain another group for A, which is similar to the group 
of divisors, but arises from the modules rather than the ideals. Let &’ = &!(A) 
denote the category of left A-modules. Denote by Mi = &i(A) and 
A. = A&l) the Serre subcategories of & consisting of those left A-modules 
M, such that K @A M = 0 and A, @A M = 0 for all p E P, respectively. 
Let To and TI denote the canonical functors Ti : .,&’ -+ &Z/J&‘~+~ , i = 0, 1. 
As in [7], TJ is a noetherian object and a generator in each &/&&+r . 
Furthermore A&& is in a natural way a Serre subcategory of &Z/&a with 
quotient category naturally equivalent to d/&i . I f  ( )# denotes the (exact 
abelian) full subcategory of noetherian objects of ( ), then we have that 
(~&i,/&~)# is a Serre subcategory of (&/=Ma)#with quotient category(&‘,MZr)#. 
Let G(A) denote the Grothendieck group of the category (&‘&&‘a)#, and let 
Y(A) denote the Grothendieck group of the category (,,&/&a)#; 

PROPOSITION 2.2. Let A be a tame A-order in the central simple K-algebra 

48 I/d3-5 
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Z. For each p E P, let Y(P) denote the number (finite) of maximal A,-orders which 
contain A, . Then G(A) = fll)EPZ”(p). 

Proof. Each object in (JZ&&)# has finite length, so it is sufficient to 
compute the Grothendieck group of the associated semi-simple subcategory 

generated by the simple object. As in [7], it is seen that an object is simple if, 
and only if, it is a simple object of T,(A,/Rad A,). By results in [.5], there are 
exactly Y(P) isomorphism classes of these, and the proposition is proved. 

In [9] we established the fact that D(A) and G(A) are isomorphic in some 
natural sense, when A is a noetherian Krull domain and A is a maximal order. 
This result is still true in the more general setting in force here. 

We suppose that A is a Krull domain, and that A is a maximal A-order. 
I f  M is a divisor of A, which we suppose is contained in A, then T,(d/M) is an 
object in (JS%‘&~!..)# and hence has a class in G(A). However, the map 

M - [T&W)1 d oes not induce the desired isomorphism from D(A) to 
G(A). We can modify this as follows 2: For each p E P, let s(p) be the complete 
degree of C at p. This integer is obtained by forming the p-adic completion of 
A, , AD , then writing 2, = AD Ba C = Homn(,,( V(p), V(p)) for a suitable 
division ring D(p). Then s(p) = dimn(,,V(p). Now A ,̂ @A A is a maximal 
order in 2, (cf. [I]), and so can be written in the form Hom,(E, E), where r 
is the (unique) maximal &-order in D(p). Then, if R(p) denotes the radical 
of A ,̂ OR A, we have A ,̂ OR A/R(p) = Homrlrl,(E/&, E/Err) (where rn is 
the radical of r). Now r/r, is a division ring, and E/Err is a vector space of 

dimension s(p) over r/r,. Hence &, @A (A/Rad A, n A) = &, @A A/R(p) 
has length s(p) as a A-module. 

We now define an isomorphism f (A) : D(A) -+ G(A). Take 

M = fl M(P)~(~’ 

an element of D(A), and define 

f(4M) = ,cp t(p) ‘A$~‘1 9 

where we have used [ ] to denote the class of T( ) in G(A). This map is well 
defined and is manifestly an isomorphism. 

PROPOSITION 2.3. Let A be a maxim& A-order. Then D(A) and G(A) are 
isomorphic. 

If r is another maximal A-order in .?Y, then (A : r) @A - : &(A) -+ d(r). 
As in [9], (A : r) 0, -induces equivalences of categories 

~(cf)l4’,(4 -+ d(4/4(4 for i=l,2, 

2 Professor Reiner made several suggestions which led to this treatment. 
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Thus we can state 

THEOREM 2.4. Let A, r be maximal A-orders, A a KY& domain. Then 
the conductor A : r induces isomorphisms g(r, A) : G(A) -+ G(F), and 
c(r, A) : ‘S?(A) -+ g(r), which are natural in the sense that if A’ is another 

maximal A-order, then g(r, A)g(A, A’) = g(r, A’), and c(r, A) c(A, A’) = 
c(I’, A’). Also the diagram 

D(A) a G(A) 

d(I+.A) 
1 1 

dl-A 

D(r) S G(r) 

is commutative. 

Proof. The first part of the theorem follows exactly as in [9]. For the 
second part, we note that the complete degree of Z at p does not depend on the 
maximal order in question. To establish commutativity of the diagram, it is 

sufficient to consider a generator M,(p) of D(A) and to follow it about. Now 

where wsA, = A,w, = Rad A,. Also r, : A, = A,c, , where c, is a unit 
in .Z. So as left r,-modules we have isomorphisms (A, : r,)/(A, :F,) w, z 
(A, : r,) cJ(A, : I’,) w+~,c, g (A, : I’,)(r, : A,)/(A, : r,) Rad A#, : A,) z 
r,/Rad I’, . Hence in G(r), we have 

m A)f(A)(JCl(P)) = $y [r,/Rad r,] = f(r)(Rad r, n r) 

= f(r) 4c -~(WI(P)). 

We are also able to obtain the corollary to Theorem 2 of [9] since the 
structure theorem of Section 1 is available. As the technique of proof is 
exactly the same as in [9], we omit the details and only state the result. 

THEOREM 2.5. Let A be a Krull domain with Jield of quotients K. Let D be 
a central division K-algebra, V a jinite dimensional right D-module and 
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2 = Hom,(V, V). Let r be a maximal A-order in D, E a divisorial A-lattice 
in V which is a right r-module and A = Hom,(E, E), the corresponding 
maximal order in 2. Then 

E 0, - : J(r) -+ &Z(A) and Hom,(E, r) @A - : &(A) -+ J%‘(T) 

induce inverse isomorphisms 

and 

which commute with the conductor induced isomorphisms in both .Z and D. 

Suppose that A is a tame A-order in Z: We define the class group l&‘(A) 
(or W,(A) to conform with the notation in [6, 71) to be the image of G(A) in 
9(A). Since we have the exact sequence of abelian groups. 

Kl(Z) --% G(A) & 3(A) u, K”(Z) - 0 

W(A) can be described as any of the groups Im h, Ker p or G(A)/Im 6. Since 
K”(Z) is just 2, IV(A) is a direct summand of 9(A). The functorial properties of 
G(A) and ‘9(A) expressed in Theorems 2.4 and 2.5 yield 

PROPOSITION 2.6. Under the same hypotheses as in Theorem 2.5 g(r, A) 
induces an isomorphism w(r, A) : W(A) ---f W(r), which is functorial in the sense 
of Theorems 2.4 and 2.5. 

Remark. It is not the case that W(A) = 0 implies, even for a maximal 

order, that each divisorial A-order, which is a left A ideal, is principal. 

3. EXTENSIONS 

Let A be a Krull domain with field of quotients K. If  B is a Krull domain 
which contains A, and which satisfies the property 

(PDE) If P is a prime ideal of B with htP = 1, then ht(PA) < 1. 

We said in [7] that B is l-flat over A and we then defined, via B @A -, 
homomorphisms D,(A) -+ D,(B) and W,(A) - WI(B), which are the same 
as those defined in [q. We extend this definition to tame orders over Krull 
domains. 
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Let A be a tame order in a central simple K-algebra Z: Let B be a Krull 
domain containing A, which is l-flat over A. Let r be a tame B-order, which 

contains B @A A in L OK 2. 

LEMMA 3.1. If  P is a prime ideal of B with htP = 1, then r, is a flat 
/&,-module where p = P n A. 

Proof. We know that I’, is an AD-torsion free /&-module. A, is such that 

if E is a finitely generated AD-module, then hdAgE = hdABE by Theorem 2.2 
of [I]. Now I’, as a A,-module is the direct limit of its finitely generated 
/&-sub-modules which are A,-torsion free and hence projective. Thus r, 
is the direct limit of A,-projective modules, and hence is the direct limit of 
flat A,-modules, so is flat. 

Thus r On-induces homomorphism G(A) + G(r), 9(A) --f 9(r), and 
W(A) ---f W(r) (see [7], Section 7). We are most interested in the homo- 
morphism W(A) + E’(P), when 3 is a subintersection or a polynomial 
extension and r = B QA A. 

PROPOSITION 3.2. Let A be a Krull domain and A a tame A-order. Let P’ 

be a subset of P, and let P = nsCp, A,. Then the homomorphism W(A) + W(r) 

is an epimorphism. 

Proof. G(A) + G(r) is an epimorphism. 

COROLLARY 3.3. Let S be a multiplicatively closed subset of the Krull 
domain. A. Let A be a tame r2-order. Then the homomorphsim W(A) + W(A,) 
is an epimorphism. 

PROPOSITION 3.4. Let A be a tame A-order. Then there is a homomorphism 
W(A) + W(A[X]) induced by A[X] @A - . 

We do not know whether this homomorphism is an epimorphism but conjecture 
that it is (see [6, 71). 
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