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Pathogenic Anti-Desmoglein MAbs Show Variable ELISA
Activity because of Preferential Binding of Mature versus
Proprotein Isoforms of Desmoglein 3
Journal of Investigative Dermatology (2009) 129, 2309–2312; doi:10.1038/jid.2009.41; published online 12 March 2009

TO THE EDITOR
The desmosomal cadherins desmoglein
(DSG) 3 and DSG1 are targets of
autoantibodies in the potentially fatal
blistering disease, pemphigus vulgaris
(PV) (Stanley and Amagai, 2006). DSGs
are synthesized as preproproteins,
which are processed first in the endo-
plasmic reticulum to remove the signal
sequence and subsequently by the
Golgi proprotein convertases to remove

the propeptide before transport to the
cell surface. The cadherin propeptide is
thought to modulate the conformation
of the extracellular domains to prevent
intracellular aggregation because of
interaction with other cadherins within
the secretory pathway. Propeptide clea-
vage occurs upstream of the conserved
tryptophan residue at position 2, which
is responsible for cadherin strand dimer
formation, suggesting that propeptide

removal may unmask residues impor-
tant in intermolecular adhesion. The
proprotein convertase furin processes
recombinant DSGs in baculoviral over-
expression systems (Posthaus et al.,
2003), which are widely used for
pemphigus research and clinical
diagnostic purposes. Commercial DSG
ELISA kits use baculovirally produced
recombinant DSG antigen (Ag) and
have been shown to be a sensitive and
specific diagnostic tool for pemphigus
(Ishii et al., 1997).Abbreviations: Ag, antigen; DSG3, desmoglein 3; PV, pemphigus vulgaris
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Earlier, pathogenic anti-DSG3 MAbs
were isolated from human patients and
PV model mice (Amagai et al., 2000;
Payne et al., 2005). We have recently
observed decreased ELISA binding by
some pathogenic PV MAbs, despite
consistent pathogenicity against endo-
genously expressed DSG3 in human
keratinocytes. We hypothesized that
the variability in pathogenic PV MAb
ELISA was because of differential bind-
ing of mature DSG3 versus DSG3
proprotein, as the proprotein is com-
monly observed in recombinant Ags
purified from baculoviral overexpres-
sion systems. We requested the Ag data
from Medical and Biological Labora-
tories Co., Ltd (MBL International,
Woburn, MA), the commercial distri-
butor for DSG ELISA. Interestingly, an
increase in purified DSG3 proprotein
was observed when Ag production
methods switched from stationary plate
culture (Figure 1a, lot 012) to roller
bottle culture (Figure 1a, lots 013 and
014). Baculoviral roller bottle or spin-
ner culture often results in a higher
yield of recombinant proteins than
stationary plate systems. However, as
suggested by Figure 1a, increased
cell lysis associated with these

cultures can cause the release of
immature DSG3 proprotein into culture
supernatants.

We evaluated a panel of pathogenic
and non-pathogenic human and mouse
anti-DSG MAbs (summarized in Figure
1b) for their ability to immunoprecipi-
tate proprotein and mature DSG3 iso-
forms from recombinant baculoviral
culture supernatants. Human patho-
genic PV MAbs, P1 and P3, and mouse
pathogenic MAb, AK23, selectively
immunoprecipitate mature DSG3 (Fig-
ure 1c). In contrast, human non-patho-
genic MAbs, NP1 and NP2, mouse non-
pathogenic MAbs, AK15 and AK18, and
one human pathogenic MAb, P2 (which
recognizes a non-conformational epi-
tope), immunoprecipitate both mature
and proprotein isoforms.

To confirm that furin proprotein con-
vertase cleaves the DSG3 propeptide,
recombinant DSG3 was purified from
baculoviral supernatants by metal affinity
chromatography and incubated with
furin (20 U/mg) for 16 hours at room
temperature in the manufacturer’s re-
commended buffer (New England Bio-
Labs, Ipswich, MA). Figure 2a shows that
furin effectively processes DSG3 propro-
tein into the mature DSG3 isoform.

To evaluate whether altered ratios of
DSG3 isoforms affect ELISA binding by
anti-DSG3 MAbs, we treated current
commercial DSG3 ELISA wells with
furin enzyme (2 U/well in Tris-buffered
saline plus 1 mM CaCl2 for 1 hour at
room temperature) before incubation
with anti-DSG3 MAbs. Furin treatment
increases the ELISA binding of all
human pathogenic MAbs (P1, P2, and
P3), as well as the mouse pathogenic
MAb, AK23. Furin treatment also mod-
estly increases the binding of human
non-pathogenic NP2 MAb, which re-
cognizes a non-conformational epitope
in the amino-terminal domain of DSG3
(Figure 2b). Furin treatment shows no
significant effect on the binding of other
non-pathogenic human and mouse
MAbs.

As increases in proprotein Ag levels
seem to disproportionately decrease the
binding of pathogenic versus non-
pathogenic PV MAbs, we sought to
determine whether the clinical perfor-
mance of the DSG3 ELISA would be
affected by the variability of Ag iso-
forms. MBL produced custom mature
DSG3 ELISA plates by furin treatment of
DSG3 before Ag adsorption (as shown
in Figure 2a). A pilot study of 85
independent PV patient sera indicates
that use of the mature DSG3 Ag does
not change the diagnostic result com-
pared with the current DSG3 ELISA.
However, in 30 of the 85 samples, use
of mature DSG3 ELISA increases the
serum index value by 15% or more
compared with the current DSG3 ELISA
(range 15–33%), whereas only 1 of 85
samples shows a decrease in the index
value of X15% (value¼15%) (demar-
cated by the 45 degree dashed line in
Figure 2c). The mean serum index value
increased from 116 to 129 with use of
the mature DSG3 ELISA, which was
statistically significant by the paired
t-test analysis (P¼1� 10�14). Similar
binding of DSG3 isoforms between the
two kits was confirmed by anti-E tag
ELISA (unpublished data).

In summary, our results indicate that
pathogenic PV MAbs preferentially
bind epitopes in mature DSG3 that are
masked in the proprotein isoform. In
contrast, non-pathogenic anti-DSG3
MAbs recognize both mature and pro-
protein isoforms, correlating with the
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Figure 1. Pathogenic anti-DSG MAbs recognizing conformational epitopes selectively immunopreci-

pitate mature DSG3. (a) SDS-PAGE and coomassie staining of DSG3 antigen for three sequential lots of

baculovirally produced recombinant DSG3 (data provided by MBL). (b) Immunochemical properties of

human and mouse anti-DSG MAbs (Amagai et al., 2000; Payne et al., 2005). ND, not determined. (c)

Immunoprecipitation of recombinant DSG3 baculoviral supernatants by pathogenic and non-pathogenic
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binding of non-conformational DSG
epitopes. Earlier studies have shown
that pathogenic pemphigus antibodies
more often bind conformational epi-
topes in the amino-terminal domain of
DSGs, whereas non-pathogenic antibo-
dies bind non-conformational epitopes
(Sekiguchi et al., 2001; Li et al., 2003;
Payne et al., 2005; Ishii et al., 2008).
Therefore, a predominance of propro-
tein in the DSG3 ELISA might bias the

test to the detection of non-pathogenic
antibodies. Although the clinical diag-
nostic value of the ELISA is unaffected
by variability in the DSG3 isoform
(Figure 2c), we would predict that the
mature DSG3 ELISA would correlate
better with disease activity. Our study
does not directly evaluate this hypoth-
esis, although a concurrent study sup-
ports this conclusion (Yokouchi et al.,
2009). Commercial DSG ELISA plates

will use mature DSG3 Ag, cleaved with
furin before adsorption, beginning in
December 2008 (lots 101 and up).
Ongoing research studies may note
changes in optical density values using
the new ELISA kits. These findings are
relevant for physicians and scientists
using baculovirally produced recombi-
nant DSG3 for clinical and basic
research studies, including the use of
ELISA to track disease activity and for
the evaluation of human and mouse
anti-DSG MAbs.
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Non-Neuronal Expression of Transient Receptor Potential
Type A1 (TRPA1) in Human Skin
Journal of Investigative Dermatology (2009) 129, 2312–2315; doi:10.1038/jid.2009.58; published online 12 March 2009

TO THE EDITOR
The temperature-sensitive channels,
which belong to the transient receptor
potential (TRP) superfamily, play an
important role in skin biology. In
addition to being expressed in sensory
neurons, several members of this fa-
mily, TRPV1, TRPV3, and TRPV4,
which are activated by warm to hot
temperatures (442, 434–38, and
427–34 1C, respectively), are broadly
expressed in non-neuronal cells of the
skin and are involved in the control of
keratinocyte differentiation, inflamma-
tory skin responses, and hair growth
(reviewed in Bı́ró et al., 2007).

TRPA1 is a distant family member of
the TRP superfamily channels, which is
localized in a subset of nociceptive
sensory neurons, and showed a re-
sponse to cold temperature starting
nearly at 17 1C, the threshold of noxious
cold for humans (Story et al., 2003).
TRPA1 can also be activated by the
number of pungent natural compounds,
environmental irritants, and formalin,
as well as by endogenous proalgesic
agents (Bandell et al., 2004; McNamara
et al., 2007; Trevisani et al., 2007). In
addition, TRPA1 is capable of mediat-
ing acute and inflammatory pain, at
least in part, through crosstalk with the
signaling pathway induced by the
proinflammatory peptide, bradykinin
(Bautista et al., 2006). However, the
expression and functions of TRPA1 in

non-neuronal cells in skin remain as yet
unknown.

The aim of this study was to explore
a role of TRPA1 in skin biology by
studying its expression in distinct cuta-
neous cell populations (keratinocytes,
fibroblasts, and melanocytes) as well as
by assessing whether pharmacological
activation of TRPA1 would have effects
on gene expression programs in epider-
mal keratinocytes. Human scalp skin
samples were obtained from five pa-
tients after face-lift surgery, with written
consents approved by the Institutional
Review Board to ensure subject protec-
tion and adherence according to the
Declaration of Helsinki Principles. By
real-time PCR analysis (see Supplemen-
tary Material), the TRPA1 mRNA ex-
pression was observed in primary
cultures of human epidermal keratino-
cytes, melanocytes, and fibroblasts
(Figure 1a). Relative quantification re-
vealed that TRPA1 mRNA levels were
higher in melanocytes than that in
fibroblasts and keratinocytes. By wes-
tern blot analysis, the TRPA1 protein
expression was also seen in all cell
types examined, and its expression
levels in fibroblasts were relatively
higher than those in melanocytes and
keratinocytes (Figure 1b). To determine
localization of TRPA1 in skin, we
performed immunofluorescence analy-
sis. TRPA1 immunoreactivity was de-
tected in the basal layer of the

epidermis, in the dermis, and in the
epithelium of the hair follicle. By
double immunofluorescence, we ob-
served colocalization of TRPA1 with
the melanocyte marker, pMel-17, in the
distinct cells of the basal layer of the
epidermis, suggesting that TRPA1 is
expressed in the keratinocytes as well
as in the melanocytes (Figure 1c and d;
for details, see also Supplementary
Text).

Epidermal keratinocytes serve as first
line of defense that protects organism
from environmental stressors, including
cold temperature and chemical irri-
tants, which are capable of activating
TRPA1. To explore a possible func-
tional role for TRPA1 in the epidermis,
primary normal human epidermal ker-
atinocytes were treated with the phar-
macological TRPA1 agonist, icilin
(10 mM; 24 hours) (Werkheiser et al.,
2006; Doerner et al., 2007). Compara-
tive analysis of global gene expression
profiles in keratinocytes treated with
icilin and vehicle control was per-
formed using Agilent microarray tech-
nology (Santa Clara, CA) and real-time
PCR (Supplementary Text).

Microarray analysis of the icilin-
treated and control keratinocytes
showed two-fold or higher changes in
the expression of 241 genes encoding
the adhesion/extracellular matrix mole-
cules, in cell cycle/apoptosis and
cytoskeleton/cell motility markers, and
in molecules involved in the control of
cell differentiation, metabolism, signal-
ing, and transcription (Figure 2a and b,

Abbreviations: GDF15, growth differentiation factor 15; HSP, heat shock protein; TRP, transient receptor
potential
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