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Due to the fish-specific genome duplication event (~320–350 mya), some genes which code for serotonin pro-
teinswere duplicated in teleosts; this duplication eventwas precededby a reorganization of the serotonergic sys-
tem, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei,
including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were
lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of
view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. How-
ever,manydifferent behavioral functions of serotonin, aswell as the effects of drugswhich affect the serotonergic
system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reup-
take inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugswhich act at
the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will
expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an
analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Serotonin (5-hydroxytryptamine, 5-HT) has been proposed to
have a plethora of functions in vertebrates, including the control of
defensive behavior (Maximino, 2012), the control of sympathetic
outflow and the hypothalamus–pituitary–adrenal axis (Lowry,
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2002), immunomodulation (Baganz and Blakely, 2013; Khan and
Deschaux, 1997), and aggression (Carrillo et al., 2009; Takahashi
et al., 2011). These functions have usually been studied largely in
mammalian species. With the advent of teleost species, including
zebrafish, as important model organisms in the neurosciences
(Rinkwitz et al., 2011), however, a paradox begun to shape: while
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Fig. 1. Phylogenetic trees of selected genes from the serotonergic system inmodel organisms. (A) Tryptophan hydroxylase; (B)monoamine oxidase; (C) serotonin transporter; (D) 5-HT1A
and 5-HT1B receptors. Trees were generated with the Neighbor-Joining with Poisson distances and 100 bootstrapped replicates.
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it seems that most of the behavioral functions of serotonin, as well as
the effects of drugs which act on that system, seem to be very well
conserved, the degree of evolutionary conservation at the genomic
and neuroanatomic level is much smaller. In this article, we will ex-
pose this paradox, reviewing the chemical neuroanatomy of the
zebrafish serotonergic system, followed by an analysis of the role of
serotonin in zebrafish fear/anxiety, stress, aggression and the effects
of psychedelic drugs.

In order to increase comparability between studies, two strategies
were used. First, to facilitate comparison between studies, behavioral
variables were accompanied by their code in the Zebrafish Behavior
Catalog, v. 1.0 (Kalueff et al., 2013). Second, since in waterborne
treatments the unit used to report exposure concentrations varies
from molarity to weight per volume, spoiling the comparison of re-
sults, all concentrations reported in this article are on the molarity
scale.

2. Chemical neuroanatomy of the zebrafish serotonergic system

Early in the ray-finned fish radiation (~320–350 million years ago),
prior to or coinciding with the appearance of teleost fishes, a whole-
genomeduplication event took place, the so-calledfish-specific genome
duplication (FSGD) or 3R event (Christoffels et al., 2004). Many of the
duplicated genes were kept in zebrafish and closely-related teleosts,
sometimes termed ‘ohnologues’ in deference to Ohno (1970), the first
proposer of the FSGD. The significance of this event for the evolutionary
history of teleosts remains elusive, with some authors proposing the
possibility of neofunctionalization (Rastogi and Liberles, 2005), while
others propose that the FSGD and subsequent gene loss or differential
paralogue evolution in divergent populations can increase speciation
(Semon andWolfe, 2007). Naturally, some genes in the serotonin path-
way are duplicated (Fig. 1). In zebrafish, the serotonin transporter and
the 5-HT1A receptor present ohnologues (Norton et al., 2008; Wang
et al., 2006), while monoamine oxidase has only one isoform (Setini
et al., 2005). Tryptophan hydroxylase 1 is duplicated, while tryptophan
hydroxylase 2 exists in a single form (Bellipanni et al., 2002; Teraoka
et al., 2009). Interestingly, the gene which was previously identified as
coding an ohnologue of tyrosine hydroxylase actually encodes for a
third tryptophan hydroxylase isoform, albeit its sequence is more simi-
lar to that of tyrosine hydroxylase than that of any tryptophan hydrox-
ylase isoform (Ren et al., 2013). That might represent an important
example of neofunctionalization of an ohnologue. This lability of the
serotonergic system is not exclusive to fishes; an analysis of serotonin
genes demonstrated that, while there are no signs of positive or nega-
tive selection in rodents and primates (suggesting a functional con-
straint as the main driving force of the evolution of these genes),
considerable heterogeneity in the rate of protein evolution was ob-
served within and between these clades (Andrés et al., 2007).

This duplication event was preceded by a reorganization of the sero-
tonergic system. In the ascidian tunicate tadpole, serotonergic neurons
are found only in the hindbrain, while in amphioxus larvae they are
found in the forebrain and hindbrain (Candiani et al., 2012); while
this situation may resemble that found in Actinopterygii, the existence
of forebrain serotonergic nuclei in the amphioxus is probably an
apomorphism due to the absence of a midbrain–hindbrain organizer
in protochordates (Butler and Hodos, 2005). In the sea lamprey,
serotonin-like immunoreactivity is found in the pretectal area, zona
limitans intrathalamica, tuberal and mammillary hypothalamus,
isthmus and vagal group, as well as in the spinal cord (Barreiro-Iglesias
et al., 2009; Cornide-Petronio et al., 2013); these populations are roughly
equivalent to the nuclei found in basal actinopterygian fish (López and
González, 2014) and teleosts (Lillesaar, 2011; Maximino et al., 2013a).
Thus, the ancestral state of the vertebrate serotonergic system is charac-
terized by well-defined nuclei in the raphe nuclei, the preoptic area and
the basal hypothalamus (Lillesaar, 2011; López and González, 2014;
Maximino et al., 2013a); in amniotes, this system is reduced, as bona
fide 5-HTergic cells are found only in the retina, pineal and raphe nuclei
of these species (Hale and Lowry, 2011).



Fig. 2. Serotonergic populations in the adult zebrafish brain, with selected projection patterns from the raphe subpopulations. X — pineal population; 1 — pretectal population; 2–4 —

hypothalamic periventricular population; 5–7 — rostral raphe populations; 8 — caudal raphe population; 9 — area postrema population.
Adapted from Maximino et al. (2013a) and Panula et al. (2010).
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In larval zebrafish, 5-HT-like-immunoreactivity is found in
the habenula and posterior tuberculum from 24 hpf onwards;
immunoreactivity in the spinal cord appears at 32 hpf, in the superior
raphe (SR) at 40 hpf, in the inferior raphe (IR), pretectum, posterior
tuberculum, cerebellum and hypothalamus at 48 hpf, and in the area
postrema it appears at 3 dpf (McLean and Fetcho, 2004a). These nuclei
will develop into 9 separate bona fide serotonergic nuclei in the adult
(Fig. 2) — the pretectal complex (serotonergic cluster 1, as per Panula
et al., 2010); the anterior (2), intermediate (3) and posterior (4)
paraventricular organ nuclei, which comprise the paraventricular com-
plex; the dorsal (5), median (6) and ventrolateral (7) raphe, comprising
the rostral raphe complex; and the inferior raphe (8) and area postrema
(9), comprising the caudal raphe complex (Gaspar and Lillesaar, 2012;
Lillesaar, 2011; Maximino and Herculano, 2010; Maximino et al.,
2013a; Panula et al., 2010). These centers can be discriminated by the
presence of transcription factors and mature markers, including
enzymes (tryptophan hydroxylase [TPH]; aromatic acid decarbox-
ylase [AADC]; monoamine oxidase [MAO]), isoform of the seroto-
nin transporter (SERT) and of serotonin receptors (Lillesaar,
2011). Thus, the transcription factor pet1 is expressed in nuclei
5–9, with non-confirmed expression in the spinal cord (Lillesaar
et al., 2007, 2009), while etv5b is expressed in the basal forebrain
and hypothalamus, where it will lead to the development of seroto-
nergic neurons (Bosco et al., 2013). In the zebrafish raphe clusters,
serotonin is synthetized by isoform 2 of TPH — which is also
expressed in the epiphysis and in the pretectal area (Bellipanni et al.,
2002; Lillesaar et al., 2007; Teraoka et al., 2009), while isoforms 1A
and 1B are expressed in the hypothalamic cluster, as well as in the
epiphysis and retina (Bellipanni et al., 2002; Lillesaar et al., 2007;
Teraoka et al., 2009). Moreover, tph3 is also expressed in serotonergic
nuclei 3 and 4 (Ren et al., 2013). AADC has been described in the
pretectal area, posterior tuberculum, and raphe (Filippi et al., 2010;
Kaslin and Panula, 2001; Yamamoto et al., 2011).

So far, the most widely studied serotonergic cluster in teleost fishes
is those comprised of the raphe nuclei. The superior raphe is located in
the dorsorostral tegmentum, and is comprised of population 5, a dorsal-
ly located portion with large, elongated ovoid 5-HT-immunoreactive
cells with unipolar dendriteswhich encircle themedial longitudinal fas-
cicle and extend ventrolaterally (Kaslin and Panula, 2001); and popula-
tion 6, a ventrally located portion with larger 5-HT-immunoreactive
cells forming two parallel columns near the midline, with dendrites ex-
tending ventrally or ventrolaterally (Kaslin and Panula, 2001). Popula-
tion 5, described as the dorsal raphe nucleus (Rd), is localized below
the griseum centrale (GC), extending bilaterally on that portion, and
projecting to the telencephalon (especially the homologue of the
basolateral amygdala and hippocampus) and olfactory bulb (Lillesaar
et al., 2007, 2009); population 6 is the median raphe nucleus (Rm),
and projects to the hypothalamus (Lillesaar et al., 2009). A division of
mRNA expression of 5-HT1A receptor isoforms is also observed: isoform
1AA is expressed in themedian raphe,while isoform1AB is expressed in
the dorsal raphe (Norton et al., 2008). A dorsal habenula–dorsal
interpeduncular nucleus pathway projects to the GC, and the authors
suggest that axon collaterals from this pathway probably synapse on
Rd neurons (Agetsuma et al., 2010; Okamoto et al., 2011); the dorsal
habenula has been implicated in the control of zebrafish fear/anxiety
responses (Mathuru and Jesuthasan, 2013), behavioral flexibility after
fear conditioning (Agetsuma et al., 2010), and behavioral control after
uncontrollable stress (Lee et al., 2010). Finally, a third rostral raphe
nucleus (population 7) has been described in zebrafish (Gaspar and
Lillesaar, 2012; Lillesaar, 2011; Lillesaar et al., 2009) and sticklebacks
(Ekström and van Veen, 1984). In the latter species, these cells have
been described as homologous to mammalian group B9, the supra-
lemniscal raphe (Ekström and van Veen, 1984), while in zebrafish it
has been described as homologous to mammalian group B3, nucleus
raphe magnus (Panula et al., 2010). However, given that these cells
seem to project exclusively to the migrated nuclei of the posterior
tuberculum, it seems unlikely that they correspond to any mammalian
nucleus (Gaspar and Lillesaar, 2012; Lillesaar, 2011).

Neurons from the inferior raphe (population 8) have also been fairly
well characterized, since they project extensively to the spinal cord and
cerebellum (Gaspar and Lillesaar, 2012; McLean and Fetcho, 2004a,b).
In larvae, this population comprises small cells (~37 μm2 cross-
sectional area) which cluster around the midline in a segmental man-
ner, with gaps between subsequent segments (McLean and Fetcho,
2004a). They project to the brainstem escape network, which mediates
escape responses and arousal (Eaton et al., 2001), where they terminate
in close apposition to the ventral dendrite of the Mauthner cell and the
axon collaterals of a large reticulospinal neurons,MiD3cm, aswell as the
dendrites of primary and secondary motoneurons in the spinal cord
(McLean and Fetcho, 2004b).

Apart from population 8, serotonin-immunoreactive neurons are
also found in the area postrema (AP) (Kaslin and Panula, 2001); however,
since no tph isoform has been detected in the AP (Lillesaar et al., 2007,
2009), and since this region expresses both VMAT2 (Wen et al., 2008)
and SERTA (Norton et al., 2008; Wang et al., 2006), these cells are likely
to take up and use 5-HT as a transmitter, but do not synthetize it. This
region is a circumventricular organ that relays baroreceptor and chemo-
receptor stimuli to the hypothalamus (de Wardener, 2001); however,
the role of this region infish, or theparticipationof serotonin in thesepro-
cesses, is unknown.
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Moving rostrally, the next populations after the raphe are hypotha-
lamic. Populations 2–4 (anterior [Ha], intermediate [Hi] and caudal
[Hc] parts of the paraventricular organ) represent hypothalamic
paraventricular clusters (Panula et al., 2010) which do not express nor
depend on pet1 to develop (Lillesaar et al., 2007). Differently from
mammalian 5-HT-accumulating cells, paraventricular neurons in the
zebrafish are bona fide serotonergic cells (Gaspar and Lillesaar, 2012;
Lillesaar, 2011), as they express tph1a and tph3 (Bellipanni et al.,
2002; Ren et al., 2013; Teraoka et al., 2009) and aadc (Filippi et al.,
2010; Kaslin and Panula, 2001; Yamamoto et al., 2011); these cells
also express the serotonin transporters sertb and vmat2 (Norton et al.,
2008; Wang et al., 2006; Wen et al., 2008; Yamamoto et al., 2011), the
metabolizing enzyme zmao (Anichtchik et al., 2006; Sallinen et al.,
2009), and the 5-HT1AB receptor (Norton et al., 2008). Moreover, the
5-HT2C receptor is also expressed in the larval posterior tuberculum
(Schneider et al., 2012).

This peculiar expression pattern in the hypothalamic serotonergic
nuclei is due to a different controlmechanism:while raphe cells depend
on pet1, hypothalamic serotonergic nuclei depend on etv5b (Bosco et al.,
2013) and fezf2 (Rink and Guo, 2004); both control parameters of cell
cycle in progenitor cells (Berberoglu et al., 2009; Bosco et al., 2013).
Interestingly, fezf2 is expressed in radial glial progenitors, and 5-HT
seems to promote neurogenesis of serotonergic neurons by promoting
proliferation and migration of radial glial cells in the hypothalamus
(Pérez et al., 2013). In spite of these observations, very little is known
regarding the function of paraventricular serotonergic neurons in
zebrafish.

Finally, the last bona fide serotonergic cluster is found in the
pretectum of zebrafish (Lillesaar, 2011; Maximino and Herculano,
2010; Maximino et al., 2013a). Kaslin and Panula (2001) demonstrated
that most of the serotonergic innervation of the tectum comes from this
cluster, although it has been observed that 5-HT cells from the raphe
also innervate the optic tectum (Yokogawa et al., 2012); projections
from the paraventricular pretectal nucleus terminatemainly in the stra-
tum fibrosum et griseum superficiale and stratum griseum centrale
(Kaslin and Panula, 2001), while raphe neurons project to the stratum
fibrosum et griseum superficiale, the stratum opticum and the stratum
album centrale (Yokogawa et al., 2012).

2.1. Serotonin synthesis, uptake and metabolism

5-HT is synthesized in a two-step reaction from tryptophan to 5-
hydryxytryptophan (5-HTP) and there to serotonin. The rate-limiting
enzyme in the synthesis is tryptophan hydroxylase, which presents
two isoforms in humans (Walther and Bader, 2003) and four in
zebrafish (Bellipanni et al., 2002; Ren et al., 2013; Teraoka et al.,
2009). tph1a is expressed in the retina, pineal, hypothalamus, and spinal
cord, while tph1b is expressed in the pineal and, transiently, in the
preoptic area (Bellipanni et al., 2002). tph2 is expressed in the pineal,
pretectal area, raphe and reticular formation (Teraoka et al., 2009).
tph3 (formerly th2) is expressed in the anterior, intermediate and
caudal hypothalamic neural clusters (Ren et al., 2013). Among those,
only the kinetics of tph3 is known, with the purified protein synthesiz-
ing 5-HTP at a rate of ~14 nM/min/mg protein (Ren et al., 2013). Inter-
estingly, tph3 appears to have risen from the duplication of the tyrosine
hydroxylase gene, but does not seem to have a participation in the syn-
thesis of catecholamines. Once synthesized, 5-HT is transported into
vesicles by isoform 2 of the vesicular monoamine transporter (VMAT),
which is expressed in the pretectal area, preoptic region, posterior
tuberculum, hypothalamus, raphe, reticular formation, area postrema
and spinal cord (Ren et al., 2013; Wen et al., 2008).

5-HT is transported from the extracellular environment by two
transport systems, uptake1 and uptake2. The first system represents a
high-affinity, low-capacity mechanism that is dependent on sodium
and chloride, and is subsumed in the serotonin transporter (SERT),
which has been cloned and studied in zebrafish (Norton et al., 2008;
Severinsen et al., 2008; Wang et al., 2006). The second system is a
low-affinity, high-capacity mechanism that is independent on sodium
and has been identified as the three isoforms of the organic cation trans-
porter (OCT1–3) and the plasma membrane monoamine transporter
(PMAT) (Duan and Wang, 2010); in anamniotes, OCT1 and OCT2 are
present (Popović, 2014), and, while present in zebrafish (NCBI
Reference Sequence: NP_001074041.1), PMAT has not yet been
characterized.

So far, the most well characterized system in zebrafish is that medi-
ated by SERT. Zebrafish present two isoforms of SERT, A andB,which are
expressed in a complementary fashion in the brain (Norton et al., 2008;
Wang et al., 2006). In 96 hpf larvae from the TL strain, SERTA mRNA is
expressed in the raphe nuclei, ventral posterior tuberculum and pineal
organ, while SERTB is expressed in the medulla oblongata and in the
inner nuclear layer of the retina (Wang et al., 2006). In the adult brain,
SERTA mRNA is expressed in the dorsal and ventral parts of the
periventricular pretectal nucleus (PPd and PPv) and superior and
inferior raphe nuclei, while SERTB mRNA is expressed in the
paraventricular organ (PVO) and caudal zone of the periventricular hy-
pothalamus (Hc) (Norton et al., 2008). 5-HT uptake in HEK293-MSR
cells transiently transfected with SERTA is characterized by a saturating
function of 5-HT concentration, with a Km of 2.13 μM (Severinsen et al.,
2008); in HEK293 cells, Km was reported as 4.2 μM (Wang et al., 2006),
which may reflect differences in transfection protocols. In whole-brain
homogenates, citalopram binds with a KD of ~16 nM (Sackerman
et al., 2010), a value which is very similar to the KD of escitalopram
(~13 nM) at HEK293-MSR cells transiently transfected with SERTA
(Severinsen et al., 2008).

After uptake, serotonin is metabolized in a two-step reaction to 5-
hydroxyindoleacetic acid (5-HIAA); the rate-limiting step is catalyzed
bymonoamine oxidase (Cotzias and Dole, 1951), amitochondrial flavo-
protein that, inmammals, exists in two isoforms,MAO-A andMAO-B. In
zebrafish, however, a single monoamine oxidase isoform (zMAO) has
been identified (Aldeco et al., 2011; Anichtchik et al., 2006; Arslan and
Edmondson, 2010; Fierro et al., 2013; Setini et al., 2005). This protein
displays ~70% sequence identity with both human isoforms, and its
predicted secondary structure indicates that the most important
domains – the flavin-binding, substrate-binding, and membrane-
binding domains – are probably conserved in the fish enzyme, without
an appreciable similarity between zMAOand any of the human isoforms
(Arslan and Edmondson, 2010; Fierro et al., 2013; Setini et al., 2005). In
whole-brain homogenates, tyramine is the best substrate for zMAO,
followed by 5-HT, phenylethylamine, 1-methyl-4-phenyl-1,2,5,6-
tetrahydropyridine (MPTP) and dopamine (Fierro et al., 2013). When
expressed in Pichia pastoris, the best substrate is tyramine, followed by
kynuramine, serotonin, p-carboxybenzylamine, benzylamine, phenyl-
ethylamine, dopamine and 4-phenylbutylamine (Anichtchik et al.,
2006). In the assay conditions used in that experiment, deprenyl
(a MAO-B inhibitor) is less efficacious than clorgyline, a MAO-A in-
hibitor (Aldeco et al., 2011; Arslan and Edmondson, 2010), with
clorgyline inhibiting 5-HT metabolism with an IC50 of ~0.47 μM,
while deprenyl inhibits 5-HT metabolism with an IC50 of 0.8 μM
(Anichtchik et al., 2006). In vivo, deprenyl (100 μM) decreases
zMAO activity by ~35% at 3 dpf and ~75% at 7 dpf (Setini et al.,
2005). When zMAO is expressed in P. pastoris, clorgyline inhibits
kynuramine metabolism with an IC50 of ~65 μM and deprenyl in-
hibits kynuramine metabolism with an IC50 of 6.5 μM, while the
oxidation of benzylamine (a MAO-B substrate) is faster than phen-
ylethylamine (a MAO-A substrate) (Arslan and Edmondson, 2010).
Structure–activity correlations show that zMAO catalytic activity
on benzylamine analogues depends on the electron withdrawing
capacity of the substituent, a characteristic that is shared with
MAO-A but not MAO-B (Aldeco et al., 2011). Thus, in vitro, zMAO's
catalytic behavior is closer to MAO-B, while its affinity for inhibitors
closely resembles that of MAO-A; moreover, some characteristics of
zMAO are not present in either MAO-A or MAO-B (Aldeco et al.,
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2011; Arslan and Edmondson, 2010; Fierro et al., 2013; Setini et al.,
2005).

zmao mRNA is detected at 24 hpf in the locus coeruleus and dien-
cephalon, while enzyme activity is detected using histochemistry at 42
and 48 hpf, respectively, in Türku zebrafish; at 2 dpf, zmao is found in
the telencephalon, diencephalon, rostral raphe and internal reticular
formation, and enzymatic activity is detected in these regions at 3 dpf
(Sallinen et al., 2009). In adult Türku zebrafish, MAO histochemistry is
low to moderate in dopaminergic cell clusters, while the highest levels
are found in the noradrenergic and serotonergic cell groups, as well as
in the habenulointerpeduncular pathway (Anichtchik et al., 2006).
From 5 dpf onwards, zmaomRNA is found in the ventral telencephalon,
preoptic region, habenula, thalamus, in Ha, Hi andHc, and in the inferior
raphe (Anichtchik et al., 2006; Sallinen et al., 2009).

3. Serotonergic modulation of larval and adult behavior

3.1. Serotonin and arousal

One of the first observations regarding the role of the serotonergic
system in mammalian behavior regards arousal. At the end of the
1950s and beginning of the 1960s, a series of pharmacological and
lesion studies led Jouvet to suggest that neurons in the dorsal raphe nu-
cleus and posterior central nucleus were responsible for slow wave
sleep (Jouvet, 1969, 1972). Soon, however, this role was inverted, and
serotonin was proposed to increase arousal (Jouvet, 1999). In zebrafish,
arousal states are usually characterized by changes in locomotor activity
or sensory responsiveness triggered by intense stimuli (Chiu and
Prober, 2013). For example, larvae exposed to a sudden change in
water flow rate becomehyperactive and sensitized to theflow stimulus,
and show heightened visual sensitivity to perceivedmotion (Yokogawa
et al., 2012). Using calcium imaging, these authors were able to demon-
strate that the flow stimulus leads to increased activity in tph2-
expressing cells in the superior raphe; moreover, genetic ablation of
these cells abolishes the increase in visual sensitivity during arousal
(Yokogawa et al., 2012). These authors suggested that a DR-tectal pro-
jection, which terminates at the retinorecipient upper layers of the
optic tectum, is responsible for this effect. A sudden light flash enhances
the Mauthner cell-mediated escape response (ZBC 1.52) in larvae, an
effect which is abolished by laser ablation of monoaminergic cells in
the caudal hypothalamus; while treatment with dopamine antagonists
also abolishes this response, there is evidence for a modulation by sero-
tonin as well, since knockdown of tph3 in larvae decreases this effect
(Mu et al., 2012). In larvae, the sudden onset of a high-intensity light
stimulus elicits a robust motor excitation response (lasting 5–7 s), the
photomotor response (ZBC 1.116). MAO inhibitors increase the magni-
tude and duration of the excitatory phase, and a series of coumarins
which produce a similar behavioral phenotype at concentrations of 10
and 100 μM were shown to present MAO inhibiting activity (Kokel
et al., 2010). The MAO inhibitors phenelzine and tranylcypromine, as
well as the 5-HT1A receptor antagonist UH-301 (all drugs at 10 and
30 μM), however, seem to promote sleep-like behavior, decreasingwak-
ing activity and increasing rest bout length (ZBC 1.128) (Rihel et al.,
2010), while in rodents MAO inhibitors decrease slow wave sleep
(Real et al., 2007). These results suggest that, in zebrafish, serotonin
may act to promote sleep in the absence of stimulation,while increasing
arousal in response to intense stimuli or sudden stimulus change.

These observations also have important consequences towards the
assessment of emotional states which involve arousal. Generalized
arousal is defined as a mechanism to provide alertness to sensory stim-
uli, drive voluntary motor activity, and fuel emotional reactivity
(Quinkert et al., 2011), and thus alterations in this “background” may
lead to misinterpretations regarding emotional states. Mice selectively
bred for high arousal show elevated anxiety-like behavior and reduced
exploratory behavior in the elevated plusmaze and light/dark box tasks
(Weil et al., 2010). In female zebrafish from a wild-type strain,
locomotor activity is inversely correlated with geotaxis/bottom-
dwelling (ZBC 1.46) in the novel tank test (NTT) (Tran and Gerlai,
2013), a putative measure of fear/anxiety in adult zebrafish
(Iturriaga-Vásquez et al., 2012; Stewart et al., 2011a,c). Interestingly, fe-
male zebrafish show higher forebrain DA turnover and lower forebrain
5-HT turnover in relation to males (Dahlbom et al., 2012). Male fish
from the AB strain show decreased PMR but increased bottom-
dwelling in the NTT in relation to animals from the TU strain (Vignet
et al., 2013). Thus, increased or decreased arousal can both be interven-
ing variables in the assessment of the effects of a givenmanipulation on
anxiety-like behavior. While decreased arousal usually manifests as
hypolocomotion (ZBC 1.81), and thus it is easily factored out of the anal-
ysis, increased arousal does not necessarily imply hyperlocomotion
(ZBC 1.79) (Quinkert et al., 2011; Weil et al., 2010). Two possible solu-
tions to this conundrum arise: assessing the effects of a givenmanipula-
tion on arousal measures, such as the photomotor response or the
enhancement of auditory C-starts by non-auditory stimuli; and using
multivariate statistical analyses to isolate the most generalized, least
specific factor (Quinkert et al., 2011). Of course, this latter recourse re-
quires a suitable dataset with a wide array of behavioral endpoints,
such as those proposed in the novel tank test (NTT) by Cachat et al.
(2011) and in the light/dark test (LDT) by Maximino et al. (2011a,
2013b,c), which can be labor-intensive if variables are recorded
manually.

3.2. Serotonin and anxiety-like and fear-like states

3.2.1. Brain serotonin levels in zebrafish defensive behavior
Serotonin has long been implicated in the control of fear, anxiety and

stress. There are several lines of evidence regarding this role in
mammals: (i) situations which evoke approach–avoidance conflict, as
well as treatment with anxiogenic peptides, increase serotonin release
in prosencephalic structures associated with defensive behavior
(Graeff et al., 1996; Guimarães et al., 2008, 2010; Lowry et al., 2008;
Maximino, 2012); (ii) benzodiazepines decrease prosencephalic seroto-
nin turnover (Lowry and Moore, 2006; Matsuo et al., 1996; Rex et al.,
2005; Steckler, 2008), while anxiolytic peptides decrease serotonin re-
lease in the forebrain (Wise et al., 1972); (iii) microinjection of seroto-
nergic agonists and antagonists in structures such as the septum,
hippocampus, amygdala and periaqueductal gray area alters defensive
behavior in different paradigms, including the elevated plus-maze and
the elevated T-maze (Steckler, 2008); (iv) knockout of some serotoner-
gic genes (e.g., the transcription factors Pet-1 and Lmx1b, the 5-HT1A
and 5-HT2C receptors, the serotonin transporter) also alters anxiety-
and fear-like behavior (Maximino, 2012; Pinheiro et al., 2007).

In longfin stripped (LFS) zebrafish, exposure to the LDT increases ex-
tracellular 5-HT levels, while exposure to the NTT does not (Lesch et al.,
2003); moreover, tissue 5-HT levels are increased in the hindbrain and
forebrain after exposure to the LDT, and increased in themidbrain after
exposure to the NTT (Maximino et al., 2013b). There is a tight, positive
correlation between serotonin turnover and scototaxis/dark preference
(ZBC 1.127) in the LDT, and extracellular serotonin levels are directly
correlated with scototaxis/dark preference, thigmotaxis (ZBC 1.173)
and risk assessment in the LDT, while being inversely correlated with
bottom-dwelling in the NTT (Maximino et al., 2013b). Nonetheless,
these results are suggestive of a “dual role” of serotonin in the control
of zebrafish defensive behavior in the LDT and NTT, increasing it in the
first and decreasing it in the latter. This is reminiscent to the “dual
role” of serotonin proposed in rodents, with the neurotransmitter in-
creasing anxiety-like behavior and decreasing panic-like behavior
(Graeff et al., 1997). In support of this hypothesis, strain differences in
neurochemistry and behavior have been observed: in relation to blue
shortfin (BSF), skin mutants from the leopard strain show decreased
whole-brain tissue 5-HT and increased anxiety in both the LDT and
NTT — effects which are rescued by treatment with fluoxetine
(5 mg/kg), suggesting a misregulation of serotonin uptake (Maximino
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et al., 2013c). It has also been observed that BSF animals show de-
creased expression of serta and decreased whole-brain serotonin in re-
lation to zebrafish from the AB strain (Pan et al., 2012). AB fish also
show less geotaxis and are less active in a group preference task, but
do not present differences in predator avoidance behavior in relation
to BSF fish (Gerlai et al., 2009). In wild-caught zebrafish, females have
lower forebrain serotonin turnover than males (Dahlbom et al., 2012)
and display less boldness (ZBC 1.18) than males (Winberg et al.,
2011). Whether these differences are correlative or causative remains
to be tested.
Table 1
Effects of drugs which increase extracellular 5-HT levels on larval and adult zebrafish behavior

Assay Drug Treatment Effect

Five-fish bouncing ball
assay (larvae)

Fluoxetine Acute, 6.5 μM -Impair
-No effe

Locomotion (larvae) Deprenyl Developmental (0–7 dpf),
1–100 μM

-Hypolo
-Top-dw
-Decrea
-Increa
-Increa

376 nM, and Tranylcypromine Developmental (0–72 hpf),
25–200 μM

-Hypolo
-Apopto

Novel tank test Tranylcypromine Acute, 3.76 μM -Decrea
Acute, 376 nM -Decrea

Desipramine Acute, 82.8 μM -Decrea
Citalopram Acute, 247 μM -Decrea
Fluoxetine Acute, 323.3–3233 nM -No effe

Acute, 161.60–323.3 nM -Decrea
Acute, 3.88 μM -Decrea
Acute, 2.5–5 mg/kg -Decrea

-Decrea
-Increa

Acute, 10 mg/kg -Increa
Chronic, 323.3 nM -Decrea

-Decrea
-Decrea

Chronic, 323.3 nM -Decrea
-Increa
-Decrea
-Downr
and ste
-Upregu
and
organo

R-fluoxetine Chronic, 95.4 nM -Decrea
S-fluoxetine Chronic, 95.4 nM -Decrea
Sertraline Chronic, 1 μg/day, p.o. -No effe
5-HTP Acute, 300 mg/kg -Decrea

-Decrea
-Increa

Aquatic plus-maze Desipramine Acute, 82.8 μM -No effe
Citalopram Acute, 247 μM -No effe
Sertraline Chronic, 1 μg/day, p.o. -Decrea

-Decrea
periven
-Decrea

Light/dark test Moclobemide Acute, 5–10 mg/kg -No effe

Fluoxetine Acute, 2.5 mg/kg -Increa
-Increa
-Increa
-Increa
-Increa

Fluoxetine Acute, 5 mg/kg -No effe
-Decrea
-Decrea
-Decrea

Fluoxetine Acute, 10 mg/kg -Increa
Fluoxetine Chronic, 10 mg/kg -Decrea
5-HTP Acute, 300 mg/kg -Increa

-Increa
-Increa
-Increa
Acute exposure to a conspecific alarm substance (CAS) produces a
fear-like alarm reaction in zebrafish (ZBC 1.5), characterized by in-
creased geotaxis, erratic swimming and freezing (Egan et al., 2009;
Mathuru et al., 2012; Speedie and Gerlai, 2008); CAS also increases
scototaxis and inhibits nocifensive behavior (ZBC 1.104) in BSF and
LFS animals (Maximino, 2011; Maximino et al., submitted for
publication), effects which are accompanied by an ~80% increase in ex-
tracellular serotonin level and are blocked by acutefluoxetine treatment
(Maximino et al., submitted for publication). Repeated CAS exposure
decreases mRNA for pet1 and serta (but not tph2) in the brains of
in models of fear/anxiety, as well as on physiological variables.

Reference

ment of escape
ct on thigmotaxis

Maximino et al. (2013b)

comotion
elling
sed thigmotaxis
sed heart rate
sed extracellular 5-HT

Sallinen et al. (2009)

comotion
sis of neurons

Jie et al. (2009)

sed geotaxis Stewart et al. (2011c)
sed freezing Stewart et al. (2011c)
sed geotaxis Sackerman et al. (2010)
sed geotaxis Sackerman et al. (2010)
ct Stewart et al. (2011c, 2013)
sed geotaxis Iturriaga-Vásquez et al. (2012)
sed geotaxis Stewart et al. (2013)
sed geotaxis
sed freezing
sed extracellular 5-HT

Kizil and Brand (2011)

sed locomotion Maximino et al. (2011b, 2013b)
sed geotaxis
sed erratic movements
sed whole-body cortisol

Egan et al. (2009)

sed geotaxis in HSB
sed oxtl, npy and isg15 mRNA
sed ucn3l, prl2, GAT, and nrbf2mRNA
egulation of genes involved in lipid
roid metabolism
lation of genes involved in amino acid

nitrogen metabolism

Wong et al. (2013)

sed geotaxis in HSB Wong et al. (2013)
sed geotaxis in HSB Wong et al. (2013)
ct on geotaxis Gould (2011) and Gould et al. (2007)
sed geotaxis
sed freezing
sed 5-HT turnover

This article, Fig. 3

ct Sackerman et al. (2010)
ct Sackerman et al. (2010)
sed scototaxis
sed SERT binding sites in the OT and
tricular hypothalamus
sed AChE activity

Gould (2011) and Gould et al. (2007)

ct Maximino et al. (2011b) and Araújo et al.
(2012)

sed scototaxis
sed latency to white
sed thigmotaxis
sed risk assessment
sed extracellular 5-HT

Maximino et al. (2013b)

ct in LSF
sed scototaxis in leo
sed thigmotaxis in leo
sed risk assessment in leo

Maximino et al. (2011b, 2013b,c)

sed locomotion Maximino et al. (2011a,b, 2013b)
sed scototaxis Maximino et al. (2011b)
sed scototaxis
sed thigmotaxis
sed risk assessment
sed 5-HT turnover

This article, Fig. 3



56 A.M. Herculano, C. Maximino / Progress in Neuro-Psychopharmacology & Biological Psychiatry 55 (2014) 50–66
RIKEN Wako strain zebrafish, but does not decrease the alarm reaction
(Ogawa et al., 2014).

Further support to the “dual role” hypothesis is lent by pharmaco-
logical manipulations. Intraperitoneal injection of the TPH inhibitor
para-chlorophenylalanine (pCPA; two doses of 300 mg/kg, separated
by 24 h, with the last dose injected 24 h before behavioral testing) in-
creases geotaxis, inhibits habituation in the first minutes, and increases
homebase behavior (ZBC 1.76) in the NTT; the same treatment, howev-
er, decreases scototaxis, thigmotaxis and risk assessment in the LDT
(Maximino et al., 2013b). Treatment with reserpine (32.86 and
65.72 μM), a VMAT inhibitor which depletes dopamine and noradrena-
line aswell as serotonin, induces a delayed phenotype of skin darkening
(Nguyen et al., 2013), increased latency to top and freezing, and “droopy
tail” (ZBC 1.49) 7 days after a single treatment (Kyzar et al., 2013). Lar-
vae treated with the TPH inhibitor para-chlorophenylalanine (pCPA,
25 μM) for 24 h between 1 and 2 dpf do not show touch responses
(ZBC 1.177), and, while spontaneous swimming appears at 5 dpf as in
non-treated larvae, they present hypolocomotion (Airhart et al.,
2007). At the end of the treatment, the mRNA levels for the 5-HT1AA re-
ceptor are diminished in the brain and spinal cord, while SERTA is di-
minished in the spinal cord; interestingly, at 7 dpf (five days after
treatment offset), 5-HT1AAR levels in the spinal cord, but not in the
brain, are restored, while SERTA levels in both the brain and the spinal
Fig. 3. Effects of 5-HTP (300 mg/kg, i.p.) on (A) scototaxis (t[df = 22] = 8.8, p b 0.0001,
Maximum Predictive Value = 2.64), (B) geotaxis (t[df = 22] = −15.5125, p b 0.0001,
Maximum Predictive Value = 4.66), and (C) brain 5-HT concentrations (t[df = 8] =
−22.50, p b 0.0001, Maximum Predictive Value = 11.02) in adult longfin stripped (LFS)
zebrafish.
cord are increased in relation to control animals. Since tph2 in the supe-
rior raphe has been implicated in arousal (Yokogawa et al., 2012), both
hypolocomotor (in larvae) and anxiolytic-like effects (in adults) could
be explained by decreased generalized arousal, but the increase in geo-
taxis and inhibition of habituation argue against this explanation.

If the pharmacological depletion of serotonin increases anxiety-like
behavior in the NTT and decreases it in the LDT, treatments which in-
crease serotonin do not produce such straightforward results
(Table 1). Treatment with the 5-HT precursor 5-hydroxytryptophan
(5-HTP, 20 mg/kg, 60 min before test) increases scototaxis and de-
creases geotaxis, while at the same time increasing serotonin turnover
~2.3 fold (Fig. 3). Monoamine oxidase inhibitors are clinically effective
in the treatment of depression and panic disorder, but not generalized
anxiety disorder (Baldwin et al., 2011). In larval zebrafish of the Turku
strain treated with the preferential MAO-B inhibitor deprenyl
(1–100 μM) from 0 dpf to 7 dpf a hypolocomotor effect is shown, ac-
companied by surfacing behavior (i.e., top-dwelling) (ZBC 1.164) and
decreased thigmotaxis (Sallinen et al., 2009). At 10 and 100 μM, heart
rate was increased. Treatment at 7 dpf for 2 hwith 100 μM, a concentra-
tion which decreases MAO activity at 7 dpf to about a third of control
values, is sufficient to produce hypolocomotion. ThisMAO inhibitory ac-
tivity is accompanied by highly increased serotonin levels (up to 169% of
control values after 0–5 dpf treatment with 100 μM, and up to 977% of
control values after 0–7 dpf treatment with 100 μM); treatment with
pCPA (1500 μM, from 1 to 5 dpf) restores the elevated 5-HT levels as
well as the hypolocomotor effects of deprenyl, but had no effect by itself.
Using immunohistochemistry for 5-HT, the authors were able to dem-
onstrate that 5-HT-like immunoreactivity was highly elevated in areas
innervated by serotonergic neurons; this effect was prevented by treat-
ment with fluvoxamine (100 μM) 2 h before euthanasia, suggesting a
SERT-dependent process (Sallinen et al., 2009). The dramatic elevation
of serotonin levels, aswell as the autonomic and hypolocomotor effects,
suggest that, at these concentrations and treatment schedules, deprenyl
induces serotonin toxicity (see Section 3.3 for further discussions on the
topic).

While developmental deprenyl treatment produces hypolocomotion,
surfacing and decreased thigmotaxis, acute treatment with the MAO-B
inhibitor tranylcypromine decreases latency to top and increases top
transitions at 376 nM, and reduces freezing duration at 3.76 μM in adult
BSF zebrafish (Stewart et al., 2011a,c). A much lower concentration
(7.5 nM) does not produce effects in the NTT, but, in combination with
fluoxetine (3.88 μM), tranylcypromine increases top transitions and aver-
age top visit duration (Stewart et al., 2013). In contrast, treatment of BSF
zebrafish with the MAO-A inhibitor moclobemide (5 or 10 mg/kg) does
not alter behavior in the LDT (Araújo et al., 2012; Maximino et al.,
2011b). These results suggest an anxiolytic-like effect of MAO inhibitors
in the NTT, without effects on the LDT.

Waterborne treatment of PETCO zebrafish with desipramine
(82.8 μM), which show ~15 times more affinity for zebrafish SERTA
than human SERT (Severinsen et al., 2008), decreases the time
spent in the half third of the tank in the NTT, but does not alter
scototaxis in the aquatic plus-maze (Sackerman et al., 2010);
citalopram (247 μM), which shows a similar affinity for zebrafish
SERTA and human SERT (Severinsen et al., 2008), produces an even
more dramatic effect in this model, and is also without effect in the
aquatic plus-maze (Sackerman et al., 2010). The prototypic SERT in-
hibitor, fluoxetine, produces very mixed results, presenting a
hormetic dose–response profile. While the affinity of this ligand for
any of the zebrafish SERT isoforms, either in vivo or in vitro, has
not been determined, in wild-type larvae (7 dpf) escape responses
in the five-fish bouncing ball assay are impaired by acute fluoxetine
(6.5 μM), without effects on thigmotaxis either with or without stim-
ulation (Richendrfer et al., 2012); interestingly, an opposite effect
was observed with diazepam (17.6 μM) treatment. In adults, acute
treatment with 323.3–3233 nM racemic fluoxetine in BSF zebrafish
failed to produce any effects on the NTT (Stewart et al., 2011c);

image of Fig.�3
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combined treatment of the highest concentration with a non-effective
concentration of LSD (46.4 nM) decreased geotaxis (Stewart et al.,
2013). At both lower (161.6 and 323.3 nM) and higher concentrations
(3.88 μM), however, geotaxis is decreased (Iturriaga-Vásquez et al.,
2012; Stewart et al., 2013). Intraperitoneal injection produces a similar
profile: lowdoses (2.5 and 5 mg/kg) decrease geotaxis and freezing and
promote habituation in the last 3min in LSF zebrafish tested in the NTT,
with a higher dose (10 mg/kg) producing hyperlocomotor effects
(Maximino et al., 2013b). In the LDT, 2.5 mg/kg increase scototaxis, the
latency to enter thewhite compartment, thigmotaxis and risk assessment
in LSF zebrafish (Maximino et al., 2013b), with 5 and 10 mg/kg not alter-
ing scototaxis, and 10 mg/kg also producing hyperlocomotor effects
(Araújo et al., 2012; Maximino et al., 2011b, 2013b). Interestingly, in the
leopard strain, which shows increased geotaxis (Egan et al., 2009), fluox-
etine (5 mg/kg) rescues the increased scototaxis and risk assessment ob-
served in the LDT in relation to LSF animals (Maximino et al., 2013c); the
leopard strain also shows decreased whole-brain tissue 5-HT levels, in-
creased serotonin turnover, and increased MAO activity in relation to
LSF (Maximino et al., 2013c).

While acute treatmentwith SSRIs producemixed effects on different
tests, chronic treatment is usually less variable. Treatment with sertra-
line (1 μg/day, p.o.) for 21 days decreases SERT binding sites in the
optic tectum and periventricular hypothalamus, decreases acetylcholin-
esterase activity, and decreases scototaxis in the aquatic plus-maze,
without effects on geotaxis in the NTT (Gould, 2011; Gould et al.,
2007). Treatment with racemic fluoxetine for 2 weeks produces
marked effects on both the LDT (5 mg/kg; Maximino et al., 2011b)
and in the NTT (323.3 nM; Egan et al., 2009). In both cases, these effects
were observed in BSF zebrafish; in male zebrafish from a selectively
bred High Stationary Behavior (HSB) line – which shows increased
freezing and decreased thigmotaxis in the open tank, increased geotaxis
and freezing in the NTT, increased sensitivity to CAS, increased
scototaxis in the LDT, and increased latency to feed in undisturbed and
Table 2
Behavioral and physiological effects of 5-HT1A- and 5-HT1B-acting drugs on zebrafish behavio

Drug Effect

Group behavior task Buspirone (7.11 and 11.85 μM) -Decreased bottom-dwellin
-No effect on shoaling
-No effect on thigmotaxis

Social preference Buspirone (23.7 μM) -Promotes social interactio

Novel tank test Buspirone (11.85–118.49 μM) -Decreased bottom-dwellin
(immediately after exposu
-Increased bottom-dwellin
(3½ h after exposure)
-Hypolocomotion (3½ h af
-Increased freezing (3½ h

Buspirone (25 and 50 mg/kg) -Decreased geotaxis
-Increased habituation

WAY 100,635 (0.003 and 0.03 mg/kg) -Decreased geotaxis
-Increased habituation
-Decreased erratic swimm
-Increased homebase (sma

SB 224,289 (2.5 and 5 mg/kg) -Decreased geotaxis
-Increased habituation
-Increased homebase (sma

Aquatic plus-maze Buspirone (237 μM) -Decreased scototaxis
Light/dark test Buspirone (7.11–36 μM) -Decreased scototaxis

Buspirone (25 and 50 mg/kg) -Decreased scototaxis
-Decreased thigmotaxis
-Decreased risk assessmen

WAY 100,635 (0.003 and 0.03 mg/kg) -Decreased scototaxis
-Decreased thigmotaxis
-Decreased risk assessmen

SB 224,289 (2.5 and 5 mg/kg) -No effect on scototaxis
-Increased risk assessment
disturbed conditions (Wong et al., 2012) – chronic racemic fluoxetine
(323.3 nM) dramatically decreases bottom-dwelling in the NTT, with-
out altering freezing (Wong et al., 2013); moreover, treatment with
either R-fluoxetine or S-fluoxetine (95.4 nM) produced a similar effect,
but drug effects were not different between each other, suggesting that
the behavioral effect of chronic fluoxetine is not stereospecific (Wong
et al., 2013). Moreover, fluoxetine increases the expression of genes
which dampen the stress response (e.g., oxtl, npy) and decreases the ex-
pression of genes which induce cortisol responses (e.g., ucn3l and prl2),
and a microarray analysis revealed that racemic fluoxetine altered the
expression of genes associated with steroidogenesis (Wong et al.,
2013). Consistentwith this observation, BSF zebrafish treatedwith race-
mic fluoxetine show decreased whole-body cortisol levels (Egan et al.,
2009). Nonetheless, as we will see below, the relationship between
serotonin and the HPI axis is more complicated than that.

3.2.2. 5-HT1A and 5-HT1B receptors in zebrafish defensive behavior
While the 5-HT1A receptor duplication event was retained in

zebrafish, drug effects are remarkably conserved (Table 2). At 6 dpf,
scotophobia is markedly reduced by treatment with the 5-HT1A partial
agonist buspirone at a concentration of 59.24 μM (Steenbergen et al.,
2011). In adult whole-brain homogenates, buspirone displaces [3H]8-
OH-DPAT with an inhibition constant Ki of 1.8 nM (Barba-Escobedo
and Gould, 2012); specific binding for [3H]8-OH-DPAT was defined as
~175 fmol/mg protein in the hypothalamus, ~275 fmol/mg protein in
the optic tectum, and ~230 fmol/mg protein in the telencephalon
(Connors et al., in press). In adult zebrafish (AB strain), waterborne
buspirone (24 and 36 μM) decreased scototaxis in the LDT (Lau et al.,
2011), while a higher concentration (237 μM) decreased scototaxis in
the aquatic plus-maze (Connors et al., in press). In BSF zebrafish,
buspirone (7.11 μM) also decreased scototaxis, without altering loco-
motion or the latency to enter the dark compartment (Gebauer et al.,
2011). A similar effect is observed after intraperitoneal injection in BSF
r in models of fear/anxiety.

Comments References

g Gebauer et al. (2011)
and Maaswinkel et al. (2013)

n preference Animals originally did not
prefer the conspecific chamber

Barba-Escobedo and Gould (2012)

g
re)
g

ter exposure)
after exposure)

Delayed effect suggests either
rebound anxiety or ‘dizzyness’

Bencan et al. (2009)
and Maaswinkel et al. (2012)

Maximino et al. (2013b)

ing
ller dose)

Hormetic dose–response Maximino et al. (2013b)

ller dose)

Hormetic dose–response Maximino et al. (2013b)

Connors et al. (in press)
BSF and AB zebrafish Gebauer et al. (2011)

and Lau et al. (2011)

t

BSF and LFS zebrafish Araújo et al. (2012)
and Maximino et al.
(2011b, 2013b)

t

Maximino et al. (2013b)

(lower dose)
Maximino et al. (2013b)



Table 3
Effects of treatment with the 5-HT1A antagonist WAY 100,635 on extracellular serotonin
levels after exposure to the LDT or NTT. Values represent mean ± S.E.M., and are relative
to control values.

Behavioral test
\WAY 100,635 dose

0 mg/kg 0.003 mg/kg 0.03 mg/kg

LDT 182.3 ± 12.1% 179.4 ± 16.1% 191.2 ± 11.8%
NTT 113.4 ± 8.7% 121.1 ± 9.8% 109.2 ± 12.1%
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and LFS wild-type zebrafish at doses of 25 and 50 m/kg (Araújo et al.,
2012; Maximino et al., 2011b, 2013b); moreover, buspirone also de-
creases thigmotaxis (ZBC 1.173), freezing (ZBC 1.68) and risk assess-
ment in the LDT (Maximino et al., 2013b). In wild-type (non-
described phenotype) adult zebrafish, buspirone (14.81–118.49 μM)
decreases bottom-dwelling in theNTT (Bencan et al., 2009). Intraperito-
neal injection in LFS zebrafish at doses of 25 and 50 mg/kg decreases
bottom-dwelling, while 50 mg/kg also decreases freezing and pro-
moted habituation (ZBC 1.72) in the last 3 min in the NTT (Maximino
et al., 2013b). In the group behavior task (GBT), buspirone (7.11
and 11.85 μM) decreased bottom-dwelling without altering shoal
cohesion (ZBC 1.141), color response (ZBC 1.19) or thigmotaxis
(Gebauer et al., 2011; Maaswinkel et al., 2012, 2013). While shoal
cohesion was not altered by this concentration in the GBT, buspirone
(23.7 μM) promotes social interaction preference (ZBC 1.152) in
PETCO animals, which normally show no preference towards a stranger
conspecific in relation to an empty blue box (Barba-Escobedo and
Gould, 2012).

Given the high density of 5-HT1A-like receptors at presynaptic sites
in mammals, it is generally believed that decreases in 5-HT release
following the activation of autoreceptors are responsible for the
anxiolytic-like effects of buspirone (DeVry, 1995). There are many evi-
dences that are at variance with this hypothesis. First, transgenic mice
expressing the 5-HT1A receptor under the control of a tph2 promoter
show restored negative feedback and hypothermia mediated by 5-
HT1A receptors, but no differences in anxiety-like behavior in relation
to 5-HT1AR knockout mice (Piszczek et al., 2013), and animals with
transgenic decrease or increase in the expression of 5-HT1ARs in the
DRN show differences in stress reactivity, but not anxiety-like behavior
(Richardson-Jones et al., 2010). Second, 5-HT1A antagonists, which
usually do not alter 5-HT release in vivo, decrease anxiety- and
depression-like behavior in rodents (Cao and Rodgers, 1997a,b, 1998;
Griebel et al., 1999; Rex et al., 2008; Rodgers and Cao, 1997). Third,
systemic injection of drugs which are preferential agonists at postsynap-
tic sites (Assié et al., 2010) and microinjection of 5-HT1AR agonists and
antagonists at postsynaptic sites (Broiz et al., 2008; File and Gonzalez,
1996; File et al., 1996; Roncon et al., 2012; Soares and Zangrossi, 2009;
Viana et al., 2008; Zangrossi et al., 1999) alter anxiety-like behavior in
rodents. Since, in zebrafish, both 5-HT1A receptor isoforms are present
in serotonergic nuclei, probably as autoreceptors (Norton et al., 2008), it
is difficult to test whether the reported effects of buspirone are mainly
pre- or post-synaptic.

To complicate matters even further, buspirone shows a complex
pharmacological profile. As a partial agonist in a system which shows
receptor reserve, buspirone acts as a full agonist at autoreceptors and
as a full antagonist at heteroreceptors (Meller et al., 1990). Moreover,
systemic administration of buspirone (3 mg/kg) in rats decreases nitric
oxide synthase 1 (NOS-1) immunoreactivity in the DRN without alter-
ing 5-HT or tyrosine hydroxylase immunoreactivity (Jahanshahi et al.,
2010). Finally, treatment of rat brain sections with 10 μM 8-OH-DPAT
recruits Gαi3 but does not alter forskolin-stimulated cAMP accumula-
tion, while treatmentwith the same concentration of buspirone recruits
Gαo, Gαi2 and Gαi3, as well as inhibits forskolin-stimulated cAMP accu-
mulation (Valdizán et al., 2010).

All these data suggest a potential pharmacological effect of 5-HT1A
antagonists. In zebrafish whole-brain homogenates, WAY 100,635 dis-
places [3H]8-OH-DPAT with a Ki of 1034 nM, three orders of magnitude
higher than that in mice (Barba-Escobedo and Gould, 2012). In spite of
this lower affinity,WAY 100,635 exerts behavioral effects in zebrafish at
doses which are lower than or inside the range of doses that affect
rodent behavior (Maximino et al., 2013b). In the NTT, a low dose
(0.003 mg/kg) not only decreased bottom-dwelling, promoted habitua-
tion and decreased erratic swimming (ZBC 1.51), but also increased
homebase behavior, while a higher dose (0.03 mg/kg) decreases
bottom-dwelling and erratic swimming (Maximino et al., 2013b). In
the LDT, bothdoses decrease scototaxis, while thehigher dose decreases
thigmotaxis and risk assessment (Maximino et al., 2013b). Interestingly,
in goldfish (Carassius auratus), WAY 100,635 (29.74 nM) improves
active avoidance acquisition (Beulig and Fowler, 2008).

As referred above, acute buspirone decreases NOS-1 immunoreac-
tivity in the DRN of rats (Jahanshahi et al., 2010), a species in which
someNOS-1-containing cells do not produce 5-HTand somedo produce
(Lu et al., 2010; Okere and Waterhouse, 2006; Wang and Nakai, 1995;
Xu and Hökfelt, 1997); in zebrafish, co-localization of nitric oxide and
5-HT has been demonstrated in the posterior tuberculum and caudal
hypothalamus (Holmqvist et al., 2007). Nitric oxide appears to play a
tonic regulatory role on serotonergic neurons to stimulate basal and
NMDA-induced 5-HT release (Smith and Whitton, 2000). Pre-
treatment with 8-OH-DPAT blocks the hyperlocomotor effect of the
peroxynitrite donor SIN-1 microinjected in the DRN of rats (Gualda
et al., 2011). At the postsynaptic side, Zhang et al. (2010) have shown
that NOS-1 is required for both the anxiolytic-like effects of the 8-OH-
DPAT and the anxiogenic-like effects of NAN-190 at the hippocampus.
Interestingly, we have observed (Maximino et al., unpublished data)
that pre-treatment with the NOS inhibitor L-NAME blocks the
anxiolytic-like effect of WAY 100,635 in the LDT.

In guinea pigs, WAY 100,635 (1.0 and 3.0 mg/kg) decreases
depression-like behavior in the forced swim test, but these doses do
not alter 5-HT release in the medial prefrontal cortex; it does, however,
increase serotonin turnover in the cortex, ventral hippocampus and
raphe (Rex et al., 2008). It has been proposed that WAY 100,635 in-
creases serotonergic function only when activity in the raphe is high,
but not when it is low (Rex et al., 2008). Therefore, the effects of WAY
100,635 geotaxis and scototaxis on these tasksmight be due to blockade
of 5-HT1A autoreceptors, disinhibiting serotonin release. Nonetheless,
treatment with both doses of WAY 100,635 did not modify the effects
of exposure to the LDT or the NTT on the extracellular 5-HT levels
(Table 3).

In the mammalian dorsal raphe, 5-HT1ARs are located in the cell
bodies of serotonergic neurons, while 5-HT1B receptors are located
mainly in axon terminals located at other regions aswell as in collaterals
sent to raphe neurons (Guimarães et al., 2008, 2010). These receptors
have been shown to regulate the activity of SERT (Riad et al., 2000) in
the raphe, microinjection of 5-HT1BR agonists decrease extracellular 5-
HT levels, but 5-HT1BR antagonists have no effect by themselves
(Hagan et al., 2012). Thus, as is the case with 5-HT1A autoreceptors, 5-
HT does not seem to produce a tonic inhibition over 5-HT1B receptors
(Adell et al., 2002). In LFS zebrafish, treatment with the 5-HT1BR antag-
onist SB 224,289 produces a hormetic dose–response profile, with
smaller doses (2.5 mg/kg) producing a higher reduction of bottom-
dwelling in the NTT than the higher dose (5 mg/kg), promoting habitu-
ation in the first half of the trial, and increasing homebase time
(Maximino et al., 2013b); both doses also decrease erratic swimming.
Interestingly, injection of 2.5 mg/kg, but not 5 mg/kg, increased risk as-
sessment in the LDT, without altering other measures; the higher dose
did not produce any behavioral effect in this test (Maximino et al.,
2013b).

3.2.3. Serotonergic regulation of neuroendocrine stress responses
An interaction between the serotonergic system and the hypotha-

lamic stress axis has been proposed as the basis for stress integration
in different species (Lanfumey et al., 2008). While chronic fluoxetine
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treatment reduces whole-body cortisol levels in zebrafish (Egan et al.,
2009), in chinook salmon Oncorhynchus tshawytscha intracerebroven-
tricular injection of corticotropin-releasing factor induces hyperactivity
that is potentiated by co-administration of fluoxetine, and the 5-HT1AR
antagonist NAN-190 attenuates it (Clements et al., 2003)— suggesting a
role for 5-HT1A receptors in that response. In zebrafish and goldfish, 5-
HT1A receptors are expressed at all levels of the HPI axis, but the
mRNA levels in the preoptic region and the head kidney are 12- to 16-
fold higher than in the pituitary (Lim et al., 2013; Norton et al., 2008).
In goldfish, intraperitoneal injection of the 5-HT1A/7 agonist 8-OH-
DPAT (100 and 400 μg/kg) increases cortisol levels (Lim et al., 2013),
while in Arctic charr 8-OH-DPAT dampens the increase in plasma corti-
sol caused by handling and injection (Höglund et al., 2002). In both
cases, plasma ACTH levels were not altered, and in goldfish 8-OH-
DPAT treatment does not alter mRNA levels of crf in the preoptic region
or pomc in the pituitary (Höglund et al., 2002; Lim et al., 2013). In vitro,
cortisol release from the goldfish head kidney is increased by 8-OH-
DPAT, an effect which is blocked by WAY 100,635 and merely delayed
by the 5-HT7 receptor antagonist SB 258,719; moreover, superfusion
with the 5-HT4R agonist cisapride also increases cortisol release
in vitro, an effect which is blocked by the 5-HT4R antagonist GR
125,487 (Lim et al., 2013). These results suggest that 5-HT1AR- and 5-
HT4R-mediated cortisol responses are due to the activation of these re-
ceptors directly in steroidogenic cells in the interrenals, and suggest that
the behavioral effects of drugs acting at the 5-HT1A receptor are inde-
pendent of their neuroendocrine effects.

While 5-HT can mediate cortisol release, glucocorticoids can also
modulate the serotonergic system by blocking the uptake2 system
(Hill et al., 2011), or by altering the expression of serotonergic proteins
such as the 5-HT1A receptor (Ou et al., 2001). Interestingly, the zebrafish
mutant grs357, which was identified on the basis of lack of visual back-
ground adaptation response (ZBC 1.26) (Muto et al., 2005), emerged
as an important model of glucocorticoid–serotonin interactions. In
these mutants, a single base-pair change completely disrupts the tran-
scriptional capacity of the glucocorticoid receptor (GR), and therefore
the only effects which cortisol can exert are nongenomic (Ziv et al.,
2013). Whole-body cortisol levels are elevated in these mutants in a
gene dose-dependent way (Griffiths et al., 2012; Ziv et al., 2013); how-
ever, these levels are not altered in adult homozygous animals by con-
finement stress – which elevates plasma cortisol in heterozygous and
non-carrier animals – or dexamethasone (25 μM) –which reduces plas-
ma cortisol in heterozygous and non-carrier animals (Ziv et al., 2013).
pomca transcript levels are also increased in the pituitary of larvae and
in the lateral tuberal nucleus of adult grs357 animals, and this overex-
pression is not reduced by treatment with betamethasone-17-valerate
(25–30 μM) in larvae and confinement stress in adults (Griffiths et al.,
2012; Ziv et al., 2013). crh levels are increased in the preoptic region
and lateral tuberal nucleus of the homozygous animals in relation to
heterozygous, but confinement stress increased crh expression in the
latter but not in the first (Ziv et al., 2013). These results are highly sug-
gestive of a lack of negative feedback in the HPA axis in grs357 mutants,
and led the authors to propose these mutants as model organisms to
study depression and other affective disorders.

The drawback with that proposal is the behavioral alterations ob-
served in these animals, which resemble anxiety-like states, but have
little face validity as assays for depression. grs357 larvae show decreased
spontaneous activity, without altered circadian activity rhythm, and in-
creased acoustic startle magnitude in relation to wildtype animals
(Griffiths et al., 2012). Adult grs357 animals showdecreased serta expres-
sion in the superior raphe (Ziv et al., 2013), and treatment of mutant,
but not wildtype, larvae with fluoxetine (4.6 μM between 5 dpf and 6
dpf) rescued activity and startle response levels, but did not decrease
whole-body cortisol levels (Griffiths et al., 2012). Adult mutants ex-
posed to an open-field test (OFT) show aberrant habituation of freezing
responses, which are not different from heterozygotes or wild-type an-
imals at the first day of testing, but do not decrease – and actually
increase – freezing after three tests separated by 4–7 days (Ziv et al.,
2013).Moreover, at the third test, mutants showdecreased thigmotaxis
in relation to heterozygotes and wild-type animals. Treatment with di-
azepam (5 μM for 30min) rescued the freezing response without alter-
ing the expression of gr, mr or serta mRNA (Ziv et al., 2013). More
interestingly, sub-chronic treatment with fluoxetine (0.8 μM), but not
with the catecholamine reuptake inhibitor bupropion (3 μM), also res-
cued the freezing andwall-avoidance responses, again without normal-
izing plasma cortisol levels — further reinforcing the hypothesis of
independence between behavioral and neuroendocrine effects of
these drugs. When animals are exposed to chronic social isolation for
2 weeks, whole-brain serta and mr mRNA levels were increased in
both mutants and control animals, and administration of fluoxetine
(0.8 μM) during this protocol blunts these increases and reduces plasma
cortisol levels (Ziv et al., 2013). However, as pointed above, serta levels
are diminished in the superior raphe of grs357 animals, while pretectal
expression is unaltered, and therefore, it is likely that this longer fluox-
etine treatment produces its therapeutic effects by normalizing serta in
these areas, as well as by attenuating the mineralocorticoid receptor-
mediated stress responses.

3.3. Serotonin toxicity in zebrafish?

Excessive serotonergic activity in the central nervous system and at
peripheral serotonin receptors – due to therapeutic drug use, drug inter-
actions, overdose, or recreational use of drugs which act mainly at the
serotonin transporter – can lead to serotonin toxicity (also called sero-
tonin syndrome) (Boyer and Shannon, 2005). In humans, serotonin tox-
icity ismarked by autonomic (hyperthermia, hypertension, tachycardia,
nausea, diarrhea), somatic (overrresponsive reflexes, myoclonus, and
tremor) and cognitive symptoms (hypomania, hypervigilance and agi-
tation) (Boyer and Shannon, 2005; Dunkley et al., 2003). SERT knockout
mice present the somatic and autonomic alterations, as well as
hypolocomotion and increased anxiety-like behavior (Kalueff et al.,
2007); moreover, co-treatment of rodents with tranylcypromine and
fluoxetine elevates extracellular serotonin levels ~40-fold and evokes
serotonin toxicity (Shioda et al., 2004). In zebrafish larvae, treatment
with deprenyl from 0 to 5 dpf elevates serotonin levels, at 7 dpf, to
about 1000% of control levels, associated with hypolocomotion, tachy-
cardia, and surfacing behavior (Sallinen et al., 2009). This led Stewart
et al. (2013) to propose that the effects of SSRIs and MAO inhibitors
on the NTT (i.e., decreased latency to top, more top entries, decreased
freezing) actually represent the elicitation of surfacing behavior, since
no effect was observed, in a wide array of concentrations of racemic flu-
oxetine in BSF zebrafish, on bottom-dwelling (Stewart et al., 2011c).
Moreover, the combination of high concentrations of racemic fluoxetine
with an inactive concentration of tranylcypromine or LSD potentiates
the behavioral effects of fluoxetine, without altering bottom-dwelling
in the case of tranylcypromine (Stewart et al., 2013). Thus, in zebrafish,
serotonin toxicity would be characterized by surfacing behavior and de-
creased freezing, a behavioral profile that was also observed by intra-
peritoneal injection (Maximino et al., 2013b). In this case, SSRIs and
MAOis would not produce an ‘anxiolytic’ effect in the NTT (Maximino
et al., 2012) but rather these alterations would be symptoms of seroto-
nin toxicity. Some complications arise from this thesis, as in at least two
cases low, but not higher doses/concentrations, of fluoxetine decrease
bottom-dwelling and freezing (Iturriaga-Vásquez et al., 2012;
Maximino et al., 2013b). Moreover, at 2.5 mg/kg (the dose which also
increases scototaxis; Maximino et al., 2013b), fluoxetine increases ex-
tracellular serotonin levels by only ~50% (Maximino, 2014), a value
much smaller than that observed after developmental deprenyl expo-
sure (Sallinen et al., 2009) and after co-treatment of rodents with fluox-
etine and tranylcypromine (Shioda et al., 2004). These results argue
against the hypothesis of serotonin toxicity at low fluoxetine doses,
but do not necessarily discard it at higher fluoxetine doses, or by the
combination of fluoxetine with other serotonergic drugs (Stewart
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et al., 2013). At the present moment, both hypotheses – that acute flu-
oxetine is ‘anxiolytic’ in the novel tank test, and that this effect actually
reflects serotonin toxicity – areweakly supported and lack face and con-
struct validity. Both hypotheses must be tested by analyzing brain sero-
tonin content after these treatments, and would be greatly
strengthened by a more thorough behavioral analysis – including
using other tests which are thought to model anxiety-like behavior –
and especially by the analysis of autonomic arousal, including, e.g., alter-
ations in swimbladder activity, heart rate, circulating catecholamines, or
behavioral reactivity (see Section 3.1).

3.4. Serotonin and aggression

In addition to its role in mediating arousal, fear and anxiety, and
stress, serotonin has also been implicated in themodulation of zebrafish
aggressive behavior. The temporal sequence of agonistic behavior dur-
ing dyadic fighting is highly structured and somewhat stereotypical
(Oliveira et al., 2011). The first phase consists of an appetitive element,
with both animals in the dyad exhibiting display (ZBC 1.45), circle (ZBC
1.32), and biting (ZBC 1.17) behaviors; this appetitive phase is usually
followed by a resolution phase, in which chases (ZBC 1.28)/flights
(ZBC 1.61) ensue.

Treatment with serotonergic drugs has been shown to alter the ap-
petitive phase of aggression in other teleost species. In the Siamese
fightingfish Betta splendens, chronic (14 or 28 days) treatmentwithflu-
oxetine (130 nM, but not smaller or higher concentrations) increased
the latency to initiate an aggressive display anddecreased the frequency
of aggressive behavior in themirror test (Kania et al., 2012). Acute treat-
ment with fluoxetine (8.7 μM) also inhibits aggressive behavior in male
bettas (Lynn et al., 2009). Interestingly, in WIK zebrafish, acute fluoxe-
tine (8.7 or 13 μM) does not alter aggressive behavior, while treatment
with WAY 100,635 (37.9 nM) greatly increases it (Filby et al., 2010). In
the solitary, territorial weakly electric fish Gymnotus omarum, 8-OH-
DPAT decreased attack rate, but not display latency; moreover, after ad-
ministration of this drug thewinner could no longer be predicted by size
asymmetry. In a resident–intruder paradigm, injection of 8-OH-DPAT
did not alter contest outcome, attack rate, or latency of resident
Brachyhypopomus gauderio, which only shows agonistic displays during
the reproductive season (Zubizarreta et al., 2012). While zebrafish are
gregarious — and therefore their social ecology resembles more that of
B. gauderio than G. omarum or B. splendens, the WIK strain does not
show a marked social preference (Barba-Escobedo and Gould, 2012),
which could explain the pharmacological similarity with G. omarum.
Table 4
Behavioral and physiological effects of manipulations which might produce depression-like be

Manipulation Behavioral effects Neurochemistr

CUS GBT:
-Increased geotaxis
-Increased coloration
-Increased or decreased shoaling
LDT:
-Increased scototaxis

-Decreased bra
-Increased brai
-Increased brai
-Upregulation o
-Increased who

Social defeat N/T -No effect on b
-Increased who
-Increased hind
-Decreased bra
-Decreased hyp
-Decreased tele

Immune stimulus NTT:
-Hypolocomotion
-Increased immobility
-Increased geotaxis
Shoaling:
-No effect

-No effect on b
-No effect on w

a Difference in relation to controls, but not dominant animals.
b Difference in relation to dominant animals.
After resolution, all agonistic behaviors are initiated by the winner,
whereas the loser displays flight and submissive behavior (ZBC 1.162),
including staying near the bottom or top of the tank (Oliveira et al.,
2011). Winners show increased serotonin and dopamine turnover in
the prosencephalon, while losers show increased serotonin and dopa-
mine turnover in the optic tectum (Teles et al., 2013). Moreover, a neg-
ative correlation between 5-HT turnover in the diencephalon and
submissive behavior was found (Teles et al., 2013). The outcome of
this dyadic fight leads to the formation of dominant–subordinate rela-
tionships which are very stable, and have been observed in zebrafish
for at least 5 days (Oliveira et al., 2011; Pavlidis et al., 2011). The activity
of the serotonergic system is altered by these interactions; dominant
animals of the Türku strain show an upregulation of whole-brain
mRNA levels for TPH3 (Pavlidis et al., 2011), and dominant WIK male
zebrafish, tph1b and htr1aa are overexpressed in the hypothalamus,
while in females htr1a, tph2 (instead of tph1b), mao and serta are
overexpressed in this region (Filby et al., 2010). Moreover, in the telen-
cephalon of dominant females both tph1b and tph2 are overexpressed
(Filby et al., 2010). On day 5, tph2, serta and mao are overexpressed in
the hypothalamus of dominant males in addition to those which were
already represented in the first day, and tph1b is overexpressed in the
telencephalon (Filby et al., 2010). Therefore, at the fifth day synthesis,
uptake andmetabolism of serotonin should be higher in the hypothala-
mus,while synthesis should be higher in the telencephalon of dominant
animals. In the solitary Gymnotus omaromum, however, both dominant
and subordinate animals show lower telencephalic 5-HT levels than
controls, while in the gregarious B. gauderio subordinate males show
increased 5-HT levels in the telencephalon in relation to controls
(Zubizarreta et al., 2012). Moreover, in subordinatewild-type zebrafish,
hindbrain 5-HT turnover is higher than in dominant animals, while no
differences are found between dominant and subordinate animals in
the forebrain (Dahlbom et al., 2012); in this experiment, however, the
forebrain included telencephalon, optic tectum and hypothalamus,
and therefore alterations in serotonin activity in the latter area (as pre-
dicted by the gene expression experiments of Filby et al., 2010) cannot
be assessed.

3.5. Zebrafish models of depression?

Alterations in the brain of subordinate fish are reminiscent ofwhat is
observed in rodents in social defeat models (Berton et al., 1998;
Huhman, 2006), suggesting that the analysis of behavioral, neural and
genomic responses of subordinates can be used to model depression-
havior in zebrafish.

y/endocrinology Reference

in gr
n crf
n bdnf
f brain mitochondrial proteins
le-body cortisol

Piato et al. (2011)
and Chakravarty et al. (2013)

rain gr or crf
le-body cortisola

brain 5-HT turnoverb

in tph3
othalamic tph1b, tph2, htr1aa, serta and mao
ncephalic tph1b

Dahlbom et al. (2012),
Pavlidis et al. (2011),
and Teles et al. (2013)

rain purine metabolism
hole-body cortisol

Kist et al. (2011, 2012)
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like states in fish. Some steps have beenmade towards eliciting depres-
sion in zebrafish, including these social defeat models (Dahlbom, 2013;
Dahlbom et al., 2012; Teles et al., 2013), HPA axis mutants (Griffiths
et al., 2012; Ziv et al., 2013), animals exposed to chronic unpredictable
stress (Kist et al., 2011), models of sickness behavior, and animals
exposed to learned helplessness paradigms (Lee et al., 2010) (See
Table 4). CUS, for example, increases the expression of crf and decreases
gr in the brain of zebrafish, while increasing whole-body cortisol levels,
after 7 or 14 days of exposure (Piato et al., 2011). After 7 days of
CUS, animals also show increased geotaxis, shoaling and coloration
response in the GBT, as well as learning impairments in the inhibi-
tory avoidance task (Piato et al., 2011). Interestingly, though, after
14 days of CUS animals show increased geotaxis and coloration,
but either decreased or increased shoaling and hypolocomotion in
the GBT (Chakravarty et al., 2013; Piato et al., 2011), increased
scototaxis in the LDT (Chakravarty et al., 2013) and no learning im-
pairments (Piato et al., 2011). Besides increased crf levels in the brain
after 14 days of CUS, bdnfmRNA is also increased, as well asmitochondri-
al proteins (Chakravarty et al., 2013).

Sickness behavior induced by an immune stimulus has been pro-
posed as a model of depression (Dantzer, 2009), and the interfascicular
part of the rodent DR has been identified that is highly responsive to
peripheral immune system activation (Lowry et al., 2007). Moreover,
a peripheral immune stimulus can also increase extracellular 5-HT in
the brain (Baganz and Blakely, 2013). In zebrafish,waterborne exposure
to MC-LR derived from Microcystis aeruginosa increases bottom-
dwelling (50 and 100 nM) and immobility time and decreases total
locomotion (100 nM), without altering social interaction or whole-
body cortisol levels (Kist et al., 2011). In sticklebacks infested with
Schistocephalus solidus, serotonin turnover is increased in the hypothal-
amus and brainstem, while 5-HT and NE levels are reduced in the telen-
cephalon (Øverli et al., 2001). So far, the evidence is still weak to judge
whether an immune stimulus can emulate depression-like behavior in
fish species.

The main difficulty in assessing whether these manipulations
can induce depression-like behavior in the zebrafish is methodo-
logical, and rests on the lack of behavioral studies with enough con-
struct validity. While it has been argued that chronic elevations in
circulating cortisol, associated with hypolocomotion, represent
endophenotypes of mood alterations in zebrafish (Kalueff et al.,
2014; Nguyen et al., This issue), other dimensions of mood disor-
ders have not yet been assessed. Among these dimensions, it has
been argued that the central feature of depression is anhedonia
(Anisman and Matheson, 2005), a notably difficult construct to
model. In zebrafish, social preference has an hedonic component
(Al-Imari and Gerlai, 2008; Barba-Escobedo and Gould, 2012),
which could produce complementary evidence for a depression-
like state in zebrafish. Moreover, pharmacological isomorphism has
not been assessed in these models — for example, in none of these
models were SSRIs tested.

3.6. Serotonin and psychedelics

Psychedelic drugs are a subclass of hallucinogens which act primar-
ily by altering serotonergic neurotransmission (Hanks and González-
Maeso, 2013); among the effects of such drugs, activation of the 5-
HT2A receptor is a common target of lysergic acid diethylamide (LSD),
mescaline, and psilocybin. In contrast, dissociatives act as noncompeti-
tiveNMDA receptor antagonists, delirants act as competitivemuscarinic
receptor antagonists, and some stimulants act as SERT inhibitors/trans-
port reversers (Abraham et al., 2002; Hanks and González-Maeso,
2013). In zebrafish, these categories can be discriminated by their
behavioral and, to some extent, endocrinological profile (Neelkantan
et al., 2013). In the NTT, LSD (which binds to 5-HT1A, 5-HT2A, 5-HT2B,
5-HT2C, 5-HT5A and 5-HT6 receptors, as well as to D2 dopamine recep-
tors (Abraham et al., 2002; Appel et al., 2004; Hanks and González-
Maeso, 2013; Ray, 2010; Roth and Driscoll, 2014)) produces top-
dwelling at concentrations above 155 μMand decreases freezing at con-
centrations above 77.5 μM; in addition to those variables, LSD (775 μM)
also increases vertical drift (ZBC 1.184) and freezing in the surface in the
observation cylinder and T-maze, and disorganizes behavioral se-
quences in the observation cylinder (Grossman et al., 2010; Stewart
et al., 2011c). An intermediate concentration (310 μM) decreases
inter-fish distance in a shoaling test (Grossman et al., 2010), while the
highest concentration tested (775 μM) decreases inter-fish distance in
this test but does not alter conspecific preference in a social preference
test (Green et al., 2012). In the OFT, the same concentration decreases
the number of entries in the center without altering time on center or
total locomotion (Grossman et al., 2010). Moreover, the same concen-
tration also increases the average duration of entries in the white com-
partment in the LDT, albeit without altering the time spent in this
portion of the tank (Grossman et al., 2010). Finally, LSD increases
whole-body cortisol after open-field exposure, but not after exposure
to theNTT or the LDT (Grossmanet al., 2010; Stewart et al., 2011b). Sim-
ilarly, mescaline (79 μM), which acts at 5-HT1A and 5-HT2 receptors, as
well as showing dopaminergic activity (Abraham et al., 2002; Appel
et al., 2004; Hanks and González-Maeso, 2013; Ray, 2010; Roth and
Driscoll, 2014), decreases bottom-dwelling in the NTT and increases
the frequency of top swimming episodes, as well as the probability of
transition between bottom and top swimming, and decreases inter-
fish distance in the shoaling test; moreover, mescaline did not reduce
whole-body cortisol levels (Kyzar et al., 2012). Ibogaine, a psychedelic
hallucinogen which stabilizes SERT in an inward-facing conformation
that is associatedwith the production of transporter-mediated currents,
activates 5-HT2A, 5-HT2C receptors, μ-, κ- and σ-opioid receptors
(Abraham et al., 2002; Appel et al., 2004; Hanks and González-Maeso,
2013; Ray, 2010; Roth and Driscoll, 2014) produces a more complex
phenotype, decreasing latency to top in the NTT at 32.21 and 64.43
μM, but increasing freezing, locomotion and erratic movements at
32.21 μM. In the NTT, ibogaine also increased the transition probability
from top to bottom swimming, from erratic movement to bottom
swimming, and from erratic movement to top swimming. In the LDT,
ibogaine (64.43 μM) decreases scototaxis; in the OFT, ibogaine (32.21
and 64.43 μM) increases meandering (ZBC 1.97) and increases
homebase behavior. This drug also does not alter conspecific preference,
but increases inter-fish distance at both concentrations. Moreover,
ibogaine increases body coloration at both concentrations, and
increases approaches and contacts in the mirror test; in this test,
ibogaine also disorganizes behavioral sequences. Finally, despite the
marked behavioral alterations, ibogaine does not increase whole-brain
cfos expression or whole-body cortisol levels (Cachat et al., 2013).

Interestingly, dissociative drugs produce a behavioral phenotype in
zebrafish that is qualitatively different from that produced by psyche-
delics. The most prominent phenotype that is observed is the appear-
ance of “circling” behavior (ZBC 1.32), which is observed after
administration of PCP (Kyzar et al., 2012), ketamine (Riehl et al., 2011;
Zakhary et al., 2011) or MK-801 (Echevarria et al., 2008; Seibt et al.,
2010; Sison and Gerlai, 2011). Notably, serotonergic psychedelics such
as mescaline do not seem to produce this effect (Grossman et al.,
2010; Kyzar et al., 2012).

Finally, methylene-dioxy-methamphetamine (MDMA, “Ecstasy”), a
substituted amphetamine, has been tested in zebrafish (Green et al.,
2012; Stewart et al., 2012). Substituted amphetamines induce an
inwardly-directed sodium current in the SERT that couples to 5-HT
efflux (Hilber et al., 2005). In adult BSF zebrafish, MDMA reduces
bottom-dwelling and freezing (207–620.95 μM) and impairs intra-
session habituation (51.75–620.95 μM), as well as upregulating cfos
expression in the brain (Stewart et al., 2012) and increasing inter-fish
distance in a shoaling assay (Green et al., 2012). In the weakly electric
fish G. omarum, MDMA (5 mg/kg) decreases aggressive behavior and
spontaneous swimming activity and increases the amplitude of the
novelty response (Capurro et al., 1997). D-Amphetamine induces
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dopamine, but not serotonin, release via a transporter-mediated mech-
anism (Leviel, 2001); when administered to BSF zebrafish D-
amphetamine (36.98 and 73.96 μM) greatly increases bottom-
dwelling, without affecting erratic swimming or freezing (Kyzar et al.,
2013); the same is observed with the dopamine transporter blocker
methylphenidate (214.3 and 428.62 μM) (Iturriaga-Vásquez et al.,
2012), suggesting that the behavioral effects of MDMA are serotonin-
specific. Similarly, MDMA treatment (413.97 μM) does not alter skin
coloration, while amphetamine treatment (73.96 μM) produces skin
darkening (Nguyen et al., 2013).

4. Future directions

The present review attempted to raise some important questions re-
garding the role of the serotonergic system in behavioral arousal, defen-
sive behavior, aggression and hallucination-like states in zebrafish. In
the course of our review, a picture in which a somewhat different neu-
roanatomical organization of this system is associated with conserved
function has emerged. This paradox is not easily solved, and it is proba-
ble that this task will necessitate further developments in at least two
fields.

The first field is that of model validation. Most of the work reviewed
here is theory-agnostic, in the sense that a few selected endpoints are
analyzed in terms of drug effect, but very little is known about themea-
sures themselves. For example, homebase behavior is an exploratory
strategy that has been observed in rodents (Eilam and Golani, 1989)
and zebrafish (Stewart et al., 2010) alike, but whose function is poorly
characterized in both species. Since, from a face validity point of view,
it resembles perseverative behavior that is observed in obsessive-
compulsive disorder, it has been proposed as a model for this disorder
(Albelda and Joel, 2012); nonetheless, drugswith an anxiolytic-like pro-
file, as well as hallucinogenic drugs, can increase homebase behavior. In
another example, decreased geotaxis can be interpreted either as a re-
duction in anxiety-like behavior and a serotonin syndrome-like signal
(Sections 3.2 and 3.3).

Clearly, while it has advanced greatly since Gerlai's (2003) call for
more attention to zebrafish behavior, our understanding of what these
behavioral models actually model is very incipient. An important clue
to this conundrummight lie in a return to the evolutionary and ecolog-
ical approach championed by the Blanchards (Blanchard and Blanchard,
1988). While the non-theoretical “data mining” approach to behavioral
phenotyping has produced important results (Cachat et al., 2011; Rihel
and Schier, 2011; Rihel et al., 2010) and has a great potential for increas-
ing throughput and decreasing anthropomorphism in the selection of
behavioral endpoints (Crabbe and Morris, 2004), perhaps now the
time is ripe for more attention to the evolutionary, comparative and
ecological contexts in which behavior emerges in experimental situa-
tions — that is, to embody construct validity within an evolutionary
framework (Alleva et al., 1995; Kalueff and Stewart, in press; Kalueff
et al., 2014; Maximino et al., 2010b; McNaughton and Zangrossi,
2008; Stewart and Kalueff, in press). The first steps were already
made in the direction of understanding stimulus control in commonly
used tasks such as the NTT (Ahmed et al., 2012; Blaser and
Goldsteinholm, 2012; Blaser and Rosemberg, 2012; Luca and Gerlai,
2012) and the LDT (Blaser and Peñalosa, 2011; Blaser et al., 2010;
Maximino et al., 2010a; Stewart et al., 2011b), leading to the conclusion
that the LDT best represents an approach–avoidance conflict, while the
NTT represents escape from the surface (Maximino et al., 2012). As far
as those experiments got, however, we still do not know whether anx-
iety and fear are different states in zebrafish (Braithwaite et al., 2011;
Jesuthasan, 2011; Kalueff et al., 2012).

From the point of view of the pharmaceutical industry, a focus on
construct validity might seem costly (van der Staay, 2006; van der
Staay et al., 2009; Willner, 1991). History, however, demonstrates that
it has paid off in the long term, at least in terms of discoveries relating
to the serotonergic system (McNaughton and Zangrossi, 2008;
Rodgers et al., 1997). Buspirone and other 5-HT1A agonists did not pro-
duce any effect on “classical” spatiotemporal measures of anxiety-like
behavior in the plus-maze (i.e., time spent in the open arms) in spite
of their clinical efficacy; only when “ethological” measures (e.g., head-
dipping, stretched-attend postures) were introduced did the effects
appear (Guimarães et al., 2010; Rodgers et al., 1997). It might be the
case that the same happens with zebrafish models.

Moreover, the scope of zebrafish models is still very small
(Kalueff and Stewart, in press; Kalueff et al., 2014; Norton and
Bally-Cuif, 2010). While the tasks described in the present article
already provided a plethora of data on the role of serotonin in
anxiety/fear and aggression, little is known about other behavior-
al functions modulated by this monoamine, including functions
associated with depression and impulse control. Tasks to assess
impulse control (Parker et al., 2013) are already available, but
tasks to assess anhedonia or cognitive bias have not yet been
explored.

A second field of future development is that of fine-grained
functional neuroanatomy. Systemic drug administration does not
allow for the differentiation between, for example, pre- and post-
synaptic effects of a given drug, which is important given the exis-
tence of autoreceptors. In rodents, for example, microinjection ex-
periments determined that 5-HT1A activation is “anxiolytic” in
some regions, while being “anxiogenic” in others (Guimarães
et al., 2010). Moreover, 5-HT innervation has been observed in
fish swimbladder and gills (Jonz and Nurse, 2005; Lundin and
Holmgren, 1989; Sundin et al., 1995), which could produce false
positives. Techniques for intracerebroventricular administration
of drugs (Barbosa et al., 2012; Kizil and Brand, 2011) are available.
Moreover, pharmacogenetic ablation of specific structures and
projections has been applied to study the role of, e.g.,
habenulointerpeduncular projections (Agetsuma et al., 2010) and
DRN neurons (Yokogawa et al., 2012). Similar constructs could be
made by crossing, e.g., Tg(−3.2pet1:eGFP)ne0214 or Tg(emrpg:gb:
eGFP) zebrafish with lineages expressing, e.g., tetanus toxin light
chain, creating animals with specific lesions in serotonergic nuclei
of either the raphe or the hypothalamus; constructs using trans-
genic expression of nitroreductase could make the lesion time-
specific, without leading to developmental compensations. Finally
– especially in larvae – light-controlled 5-HT receptors could be
engineered, leading to the time- and region-specific activation of
such receptors.

Interestingly enough, while zebrafish presents two copies of differ-
ent genes in the serotonergic system, this duality has yet to be explored
by using, e.g., knockdown strategies to understand the role of each phe-
nocopy (‘ohnologues’) in the control of behavior. mRNAmorphants are
widely present in zebrafish, and, although their applicability seems to
extend more to larval zebrafish, novel alternatives for adult animals
can be delivered towards the brain without much difficulty (Kizil and
Brand, 2011).

When these hurdles to development are solved, zebrafish promises
to be an important model organism in the study of the behavioral and
physiological roles of serotonin. Until then, much work still has to be
done.
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