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Microbial communities of fermented foods have provided humans with tools for preservation and
flavor development for thousands of years. These simple, reproducible, accessible, culturable,
and easy-to-manipulate systems also provide opportunities for dissecting the mechanisms of
microbial community formation. Fermented foods can be valuable models for processes in less
tractable microbiota.
Introduction
The study of microbial communities currently faces a difficult

impasse. As we continue to amass terabytes of sequencing

data that describe the phylogenetic diversity of microbes around

the world, we are faced with the challenge of dissecting the

assembly, organization, and functions of these multi-species

communities. Major questions remain about the nature, extent,

mechanisms, and impact of species-species and species-envi-

ronment interactions within microbial communities.

There are a number of barriers to understanding microbial

ecosystems. First and foremost is the enormous diversity and

complexity of most microbial communities. DNA sequencing-

based surveys have now been applied to many habitats and

provide a picture of the microbial diversity within and

across environments (Lozupone and Knight, 2007). Although

there is substantial variation from one environment to the

next, the number of species in most habitats can reach into

the hundreds or thousands. The inability to isolate the vast

majority of species from natural systems by culturing is

another significant barrier to characterizing the role of any

given species in an ecosystem. A related constraint is the

difficulty in recreating experimental conditions in an in vitro

setting such that processes can be studied under controlled

conditions.

One way to overcome these challenges is to move toward the

development and analysis of simpler and experimentally trac-

table model microbial communities. An ideal model system

should be simpler than natural communities yet still exhibit pat-

terns of community formation and dynamics that are representa-

tive of those observed in more complex systems. The microbial

communities involved should form under defined, reproducible,

and easily accessible spatial and temporal scales to allow for

predictable and straight-forward sampling procedures. The con-

ditions for community formation and substrates of microbial

growth should be measurable and possible to recreate in an

in vitro setting. Finally, the individual members of the community

should be culturable to facilitate application of the full range of

genetic and omics-enabled tools, experimental analysis, and

in vitro community manipulation.
Model microbial ecosystems have already emerged that have

some of these properties (Jessup et al., 2004). These systems

range from synthetic mixtures of model microbial strains (Har-

combe et al., 2014; Hom and Murray, 2014), to model systems

composed of a subset of culturable strains in complex free-living

or host-associated communities (Lawrence et al., 2012; Peay

et al., 2012;Goodmanet al., 2011), to naturally occurring commu-

nities that are intensively sampledorperturbed in situ (Tysonet al.,

2004). Studies across this spectrumhave provided incredible op-

portunities to dissect the biology ofmicrobial communities. How-

ever, systems that fall in the middle of the spectrum of simplified

synthetic to irreducibly complex are needed help us to move

toward a mechanistic understanding of microbial communities.

Fermented Foods as Experimentally Tractable
Ecosystems
Fermentation is an ancient method for preserving foods that de-

pends on reproducible formation of multi-species microbial

communities. Over thousands of years, humans have optimized

the conditions that promote the growth of certain types of micro-

bial communities. The metabolic activity of these communities is

key to the safety, flavor, texture, and aroma of fermented foods

(Hutkins, 2006). Manipulation of microbial growth variables such

as temperature, salinity, and moisture results in a wide spectrum

of fermented foods, including cheese, beer, wine, chocolate,

sourdough, sauerkraut, kimchi, and miso (Figure 1 and Table 1).

The distinct microbial communities involved in fermenting these

foods have a number of properties that make them ideal

candidates for development as experimentally tractable model

ecosystems.

Because the microbial communities of fermented foods

(MCoFFs) offer a wide range of paradigms for community forma-

tion, it is possible to address experimental questions across

many different types of ecosystems (Table 1). These commu-

nities take many forms: multi-species biofilms associated with

surfaces (e.g., cheese rinds), suspended biofilms in liquid (e.g.,

kombucha, kefir, and vinegar), dispersed growth in liquid (e.g.,

lambic beers, natural wines, and yogurt), or in semi-solid sub-

strates (e.g., kimchi and miso).
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Figure 1. Multi-species Microbial Commu-

nities Form during the Production of Fer-

mented Foods
(A) Fermented meats, such as salami, are pro-
duced by fermentation of meat by lactic acid
bacteria.
(B) During the aging process, the salami surface is
colonized by a mixture of yeast and bacteria,
visible as white and yellow colonies, and filamen-
tous fungi (diffuse white filaments) such as
Penicillium.
(C) Cheeses, such as the Camembert-style cheese
shown, are made through the fermentation of milk
by lactic acid bacteria. During aging, a biofilm,
commonly called a rind, develops on the surface
and contributes to the flavor, texture, and aroma of
the cheese.
(D) A rind biofilm plated on standard lab medium
shows a subset of the mixed eukaryotic (filamen-
tous fungi on the left) and prokaryotic (Proteo-
bacteria on the right) members of these microbial
communities.
(E and F) (E) Visible microbial communities also
form in liquid fermentations, such as this fer-
mented tea, commonly known as kombucha. The
microbial cells within the pellicle (floating biofilm)
can be seen in the micrograph (F). Kombucha is
typically composed of yeasts (larger cells) and
acetic acid bacteria (smaller cells). The yeasts are
involved in the fermentation of sugar to produce
ethanol and carbon dioxide. The acetic acid bac-
teria then ferment the ethanol and produce acetic
acid. The intact biofilm is on the right, and yeast
and bacterial cells are sloughing off on the left.
All photos by Benjamin Wolfe, except (C) (Jasper
Hill Farm) and (E) (Adam DeTour).
Recent advances in genomic and metagenomic sequencing

are providing researchers with catalogs of the bacterial, fungal,

and viral diversity in many traditionally produced fermented

foods (Table 1; reviewed in Bokulich and Mills, 2012). These

communities range in composition from those dominated by

bacterial species to those dominated by fungal species, with

some communities containing a mix of both bacteria and fungi.

Certain bacterial groups such as the lactic acid bacteria (LAB)

and acetic acid bacteria (AAB), as well as fungal species such

as Saccharomyces cerevisae, have well-established roles in

fermentation. However, the increasingly detailed analysis of

the microbial diversity of fermented foods is revealing many

additional species whose roles have not been characterized

extensively, if at all. For example, marine-associated Pseudoal-

teromonas are dominant members of some cheese rinds (Wolfe

et al., 2014) (in Table 1, these and all non-LAB/AAB fall under

‘‘other bacterial groups’’).

After characterizing the diversity of a microbial community,

one of the biggest challenges in the study of microbial

ecosystems is the difficulty in culturing community members

in the laboratory. Because MCoFFs have defined starting

materials as growth substrates (e.g., milk, grapes, and wheat

flour) and known incubation conditions, these same condi-

tions can be replicated in the lab and used as starting condi-

tions for isolation of community members. Indeed, some

food-associated microbes are already well-established model

organisms, such as Saccharomyces cerevisiae and Lactococ-

cus lactis.
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Experimentation using MCoFFs is also greatly facilitated by

the fact that they are extremely accessible microbial ecosys-

tems. The production of fermented foods happens at regular in-

tervals (from daily to seasonally), and communities develop on

short timescales (from days to months), allowing for predictable

access to many replicated samples over relatively short time

periods. Fermented foods are often produced across multiple

geographic regions, also increasing the accessibility of samples.

These communities form as part of discrete entities (e.g., a wheel

of cheese), which allows well-defined spatial and temporal

sampling.

MCoFFs have some potential limitations as model systems.

Given the short timescales required to form communities, there

may be fewer opportunities for species to coevolve. However,

horizontal gene transfer between species that co-occur in

MCoFFs suggests that at least somemembers of these commu-

nities have coexisted long enough to allow for gene exchange

(Cheeseman et al., 2014; Rossi et al., 2014). In fact, some

MCoFFs are maintained for many years through serial transfer

(Table 1), providing ample opportunities for long-term coevolu-

tion within communities. For example, fermented teas such as

kombucha consist of a pellicle that contains bacteria and yeasts

in a mixed biofilm (Figures 1E and 1F). These pellicles have been

spread all around the world (Marsh et al., 2014), leading to

geographically separated communities that potentially started

from initially identical species and genetic backgrounds.

Because MCoFFs grow on raw food materials, such as grains,

meat, or milk, most nutrients are not limited. This high resource



Table 1. Diverse Fermented Foods Provide Ample Opportunities to Study Microbial Communities

Type of Food Fermented Product Main Ingredients Major Microbial Groups Opportunities to Study References

Fruit wine pressed grapes Y (natural styles: LAB) biogeography, population biology due to wide geographical

distribution

Bokulich et al. (2014a);

Knight and Goddard (2015)

chocolate cacao pods FF, Y, LAB, AAB, OBG community interactions and dynamics due to successional

development and broad phylogenetic diversity

Meersman et al. (2013)

coffee coffee cherries FF, Y, OBG community interactions and dynamics due to successional

development and broad phylogenetic diversity

Vilela et al. (2010)

Dairy yogurt milk LAB co-evolution and adaptation due to serial transfer over long

time periods

Sieuwerts et al. (2008)

cheese milk, salt FF, Y, LAB, AAB, OBG biogeography, community interactions and dynamics,

and abiotic selection due to wide geographical distribution,

broad phylogenetic diversity, and strong abiotic filters

Wolfe et al. (2014);

Montel et al. (2014)

kefir milk Y, LAB, AAB, OBG co-evolution, adaptation, and biofilm formation due to self-

replicating, highly organized biofilm and serial transfer over

long time periods

Marsh et al. (2013)

Grains beer barley, hops, water Y (lambic styles: AAB,

LAB, OBG)

adaptation, community interactions and dynamics in lambic

styles: accumulation of species in facility, successional

development

Bokulich et al. (2012)

sake, soy sauce,

miso

rice, water (soy beans

added for soy sauce

and miso)

FF, Y, LAB, AAB, OBG community interactions and dynamics due to successional

development, adaptation due to domestication of Aspergillus

oryzae

Bokulich et al. (2014b);

Gibbons et al. (2012)

sourdough wheat flour, water Y, LAB biogeography, co-evolution, adaptation due to wide geographical

distribution and serial transfer over long time periods

Minervini et al. (2014)

Meat salami ground meat, salt FF, Y, LAB, OBG community interactions and dynamics due to broad

phylogenetic diversity

Cocolin et al. (2011)

Plants kimchi cabbage, spices, salt Y, LAB community interactions and dynamics, abiotic selection

due to successional development and strong abiotic filters

Jung et al. (2011)

sauerkraut cabbage, salt LAB community interactions and dynamics, abiotic selection

due to successional development, abiotic filters

Plengvidhya et al. (2007)

kombucha tea, sugar Y, LAB, AAB, OBG co-evolution, adaptation, biofilm formation due to self-

replicating, highly organized biofilm and serial transfer over

long time periods

Marsh et al. (2014)

Key: FF = filamentous fungi; Y = yeast; LAB = lactic acid

bacteria; AAB = acetic acid bacteria;

OBG = other bacterial groups
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availability may be one reason why productivity is high in these

systems and diversity can be low (Mittelbach et al., 2001). How-

ever, certain micronutrients such as iron, which has been shown

to be a crucial factor in microbial interactions and coevolution in

other environments (Cordero et al., 2012), is also limited in some

MCoFFs, such as cheese rinds (Monnet et al., 2012). Finally,

MCoFFs are not host-associated communities. Although this

may simplify many aspects of experimental analysis, the impact

of host innate and adaptive immune responses in dictating mi-

crobial community composition will be missing. An exception

is the presence of biologically active host-derived products in

milk, such as lactoferrin, oligosaccharides, and peptides

(German et al., 2002).

The development of model systems based on fermented

foods is already in progress. For a number of systems, the cata-

logs of microbial diversity within and across foods, temporal

dynamics of community formation, and cultured community

members are already established (Table 1). As an example of

the characterization and development of such a system, we

have recently focused on the microbial communities that form

on the surface of cheese as it ages, also known as the rind (Fig-

ures 1C and D) (Wolfe et al., 2014). We cataloged the diversity of

bacteria and fungi of cheese rinds across broad geographic re-

gions, and measured the temporal dynamics of community for-

mation. We cultured representatives of all dominant microbial

groups and then reconstructed in vitro communities, which dis-

playedmany of the properties of natural communities. The ability

to move quickly from observations of microbial diversity to the

establishment of highly manipulable in vitro systems makes

model systems based on MCoFFs excellent starting points for

studying the mechanisms and principles of microbial community

formation.

Using Fermented Foods to Link Patterns, Processes,
and Mechanisms of Microbial Community Assembly
One of the current challenges in microbiology is linking patterns

of microbial diversity within communities with the ecological pro-

cesses that generate those patterns. What determines the

composition of a microbial community? When and how do new

species successfully invade communities? What causes shifts

in composition of established microbial communities? To

address such questions, microbiologists have begun to adopt

community assembly frameworks developed for plant and ani-

mal communities to explain ecological processes underlying

patterns of diversity (Costello et al., 2012; Hanson et al., 2012;

Nemergut et al., 2013). Community assembly approaches usu-

ally consider contributions from the amount and timing of

microbial propagules colonizing a habitat (dispersal), interac-

tions between species (biotic selection), interactions between

a species and the environment (abiotic selection), stochastic

changes in the relative abundances of species within commu-

nities (drift), and evolution of new species within communities

(diversification).

MCoFFs provide many opportunities for quantifying the rela-

tive roles of each of these ecological processes because micro-

bial community dynamics can be easily measured, monitored,

and controlled. For example, dispersal can be manipulated by

controlling the openness of system (e.g. by simulating a highly
52 Cell 161, March 26, 2015 ª2015 Elsevier Inc.
controlled and sterilized environment versus a rustic production

facility open to migration), using pasteurization of raw materials,

or by incorporating known starter cultures. Biotic selection can

be manipulated through the addition of specific combinations

of species that are known to have strong species interactions.

Abiotic selection can be controlled through the same selections

that food producers use, including the manipulation of salt,

moisture, temperature, and pH. These systems offer the ability

to alter inputs and known ecological filters and allow testing of

the relative impacts of each process on the composition of

communities.

MCoFFs are particularly ripe with opportunities to link pattern,

process, and mechanism in the study of microbial interactions

(Mounier et al., 2008; Sieuwerts et al., 2008). For example,

most fermented foods go through a clear and relatively consis-

tent process of ecological succession with early colonizing mi-

crobes being replaced with one or more succeeding microbial

groups. In some systems, such as the fermentation of cocoa

pods (Meersman et al., 2013) and sourdough fermentations

(Minervini et al., 2014), changes in the environment caused by

early colonizing species and metabolic cooperation between

functional groups are underlying drivers of these successions.

In vitro community reconstructions and the ever-growing suite

of microbial ‘‘-omics’’ tools can help uncover the molecular

mechanisms driving succession and identify how species inter-

actions play a role in these temporal changes in community

composition. Approaches such as RNA-seq can be used to

winnow many potential mechanisms down to a short list of mo-

lecular mechanisms underlyingmicrobial interactions. The appli-

cation of sequencing-enabled transposon mutagenesis (TnSeq

and INseq) has been successful in elucidating key microbial in-

teractions in complex microbial communities such as the human

gut microbiome (Goodman et al., 2009) and could be an

extremely powerful tool for the analysis of microbial interactions

in MCoFFs. In addition, new approaches in the identification of

molecules responsible for species interactions, such as imaging

mass spectrometry (Watrous and Dorrestein, 2011), could enrich

our understanding of the chemical cross-talk in MCoFFs.

Taste of Place? Microbial Biogeography of Fermented
Foods
Similar types of MCoFFs are produced in many locations around

the world (Table 1), making it possible to address basic ques-

tions in microbial biogeography. Because microbial diversity

can have an important impact on the flavor of fermented foods,

such as wine or cheese (Ciani et al., 2010; Montel et al., 2014),

MCoFFs can help link patterns in microbial diversity from place

to place to the functional consequences of this diversity. As

with plant and animal communities, microbial communities

have clear species abundance distributions, with a fewmicrobial

taxa that are locally abundant within and across communities,

while many tend to be relatively low abundance (Nemergut

et al., 2013). This pattern has also been observed in high-

throughput sequencing surveys of MCoFFs (e.g., Jung et al.,

2011; Wolfe et al., 2014), although the typical long tail of low-

abundance species tends to be shorter due to the lower diversity

in MCoFFs. Thus, MCoFFs can be used to compare the patterns

of community diversity over both regional scales, such as in wine



(Bokulich et al., 2014a), and over global scales, such as with

cheese (Wolfe et al., 2014).

Trait-based approaches have also emerged to address ques-

tions of microbial abundance across these larger spatial scales.

Trait-based approaches attempt to use either directly measured

microbial life-history traits, such as growth rate or predicted

traits from genomic data (Fierer et al., 2014), to explain distribu-

tions or functions of microbial species. Unlike many microbial

communities dominated by unculturable taxa, it is fairly straight-

forward to measure phenotypic and genomic traits of species

withinMCoFFs (Bayjanov et al., 2013; Almeida et al., 2014; Douil-

lard and de Vos, 2014). MCoFFs that are open to dispersal,

widely distributed, and are not heavily inoculated with starter cul-

tures, including naturally fermented wines, unpasteurized rind

cheeses, and sourdough breads (Table 1), could be ideal

MCoFFs for linking the genetic basis of interspecific trait varia-

tion with geographic distributions.

Microbial Evolution in a Community Context
MCoFFs have ideal properties for dissecting ecological pro-

cesses, but they can also serve as models for understanding

mechanisms of microbial evolution. Beer and wine yeasts, lactic

acid bacteria used in dairy fermentations, and the filamentous

fungus Aspergillus oryzae used to make sake, soy sauce, and

miso have all served as models of microbial domestication

(Douglas and Klaenhammer, 2010; Gibbons et al., 2012; Steen-

sels and Verstrepen, 2014). Comparisons of genomic and

phenotypic traits across the large diversity of fermentation and

wild strains provided clear evidence for consistent loss of genes

unnecessary in the nutrient-rich fermentation environment,

acquisition of new traits through horizontal gene transfer, and

metabolic remodeling associated with adaptation to the fermen-

tation niche and artificial selection by humans. Experimental

evolution of wild strains to the fermentation environment has

been used to confirm potential genetic mechanisms involved

with the transition to domestication (Bachmann et al., 2012).

One exciting future direction is to link ecological processes

described above with the study of evolutionary processes in

MCoFFs. Recent work from other model microbial ecosystems

has highlighted the importance of eco-evolutionary feedbacks,

where the presence and composition of neighboring species

can alter evolution of community-level traits, such as species

composition (Celiker and Core, 2014), and ecosystem-level

traits, such as productivity (Lawrence et al., 2012). MCoFFs

that have experienced long periods of serial passage or co-cul-

ture could serve as powerful model systems in this emerging

field. Future studies could experimentally test for coevolution

within these communities by swapping identical species from

across geographically isolated communities. Applying experi-

mental evolution approaches in the lab would allow for real-

time monitoring of community coevolution within MCoFFs.

Translation to Other Microbial Communities
and Potential Applications
The study of community assembly in MCoFFs has the potential

to have direct impacts on the quality and safety of traditional fer-

mented foods. But how might basic ecological and evolutionary

principles discovered in these semi-natural microbial ecosys-
tems be applied to other types of microbial communities such

as the human microbiome or soil microbial communities?

Certain MCoFFs share compositional similarity with less trac-

table systems, so pattern-process-mechanism relationships

identified in MCoFFs may be readily translatable to other micro-

biomes. One example is the recently characterized molecular

mechanism of competitiveness in Lactobacillus reuteri, a spe-

cies found in both sourdough and human gut microbiomes (Lin

and Gänzle, 2014). In sourdough fermentations, glycerol meta-

bolism explained the competitive advantage of human-associ-

ated strains and potentially could explain how these species

compete in human gut microbiomes.

Looking at cheese rindmicrobial community diversity revealed

a diversity of bacteria and fungi with similarity at the genus level

to the human skin microbiome (Wolfe et al., 2014). Data from

both cheese rinds and the human skin microbiome (Grice

et al., 2009) suggest that moisture is a major driver of these sur-

face biofilms, suggesting that ecological selection could play

similar roles in both. Thus, although the exact species may not

be the same betweenMCoFFs and other microbial communities,

community-level processes will likely be conserved.

MCoFFs have the potential to directly impact human health

because they are edible communities. Although the probiotic

effects of highly simplified MCoFFs from yogurt have been the

topic of intense study (McNulty et al., 2001), the wider microbial

diversity across MCoFFs could be a source of many additional

microbes and metabolites with direct access to the human

digestive tract and gut microbiome. The potential for direct inter-

action with the human microbiome is evidenced by the findings

that MCoFFs can remain viable during passage through the hu-

man digestive tract (David et al., 2014).

MCoFFs may also provide opportunities to understand how to

better design synthetic microbial communities for medicine, in-

dustry, and agriculture. Just as synthetic biologists rely on un-

derstanding regulatory networks and other interactions within

cells to deconstruct and then reconstruct new metabolic path-

ways, synthetic microbial community ecologists will need to be

able to first understand mechanisms underlying interactions

within communities before piecing together synthetic microbial

communities (Grosskopf and Soyer, 2014). Because MCoFFs

have been designed—although in many cases unintention-

ally—for specific functions, can we use the pre-existing commu-

nities to teach us about design principles? Canwe takemicrobes

from disparate MCoFFs and combine them into new composi-

tions not already found in food systems? What ecological or

evolutionary constraints will prevent the construction of syn-

thetic microbial communities, and can we use experimental

community coevolution to overcome these constraints?

Answering these questions with food microbial communities

could lead to safer and more delicious foods while also devel-

oping much-needed principles of microbial community design.
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