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Structural Aspects of Local Adjunct Languages* 

LEON S. LEvY 

University of Delaware, 

Several open problems concerning local adjunct languages are considered 
and solved. One of the most interesting (from a linguistic point of view) and 
difficult (mathematically) open problems was whether or not null symbols 
can be dispensed without sacrificing the weak generative capacity. This problem 
is solved and the answer is negative. 

Also considered are some problems concerning one-sided grammars, homo- 
morphisms of languages (it is shown that local adjunct languages are not closed 
under homomorphism), fl-linear languages and mixed adjunct grammars. 

1. INTRODUCTION 

String adjunct grammars and their generalizations have been studied by 
Joshi, Kosaraju, and Yamada (1972b) and Joshi (1969, 1972) as an alternate 
means for describing the generation of formal languages and their classifica- 
tion. Adjunction as an operation on trees has also been studied in Joshi 
and Takahashi (1971), Levy (1971), and Joshi, Levy, and Takahashi (1972c), 
and, in fact, the operation of tree adjunction alone has more generative 
capacity than is necessary to obtain the context-free languages. 

The class of languages generated by local string adjunct grammars is 
a subset of the class of context-free languages. One might ask: Since context- 
free grammars are inadequate for characterizing natural languages, why 
should one study subclasses of context-free grammars ? There are two 
reasons: 

(1) One is interested in obtaining the "simplest" and "most natural" 
linguistic mechanisms available in natural language, Harris (1961, 1968), 
and in characterizing these using the methods of the theory of formal 
languages. In this paper, only the context-free operations are studied, 
namely local adjunction and simple replacement. Their linguistic relevance 
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has been discussed in Joshi, Kosaraju, and Yamada (1972b) and Joshi 
(1969, 1972). 

(2) One uses these grammars (e.g,, mixed adjunct grammars) as the 
base component of transformational grammars. We like to narrow down 
each component of a transformational grammar. String adjunct grammars 
and mixed adjunct grammars provide a very natural way of narrowing 
down the base component of a transformational grammar. 

The motivation for adjunction is to characterize the notion of a head 
of a constituent (which is awkward to characterize in a phrase structure 
grammar). (Example: In new books from the reference library, new and from 
the library are adjoined to books, while reference is adjoined to library.) 
Adjunction of strings, defined formally in Section 2, turns out to be a 
surprisingly powerful operation, but one whose characteristics are quite 
different from the usual phrase structure descriptions. Thus, the standard 
closure properties are either difficult to study or turn out to be false. Closure 
under intersection with regular sets fails, and in Section 5 it is shown that 
local adjunct languages are not closed under homomorphism. It is not 
known whether local adjunct languages are closed under union, concatenation, 
or Kleene star. Joshi, Kosaraju, and Yamada (1972b) in attempting to 
establish these closure properties introduced a set of special markers, called 
null symbols, which were used in the grammatical derivations but deleted 
in the languages and were able to show that with these auxiliary symbols, 
closure under union, concatenation, and Kleene star obtains. They then 
conjectured that the null symbols added no generative power to the class 
of local adjunct grammars. In Section 3, it is shown that the null symbols 
do, in fact, increase the generative capacity of the local adjunct grammars. 

In Section 4 the role of both left and right adjnnction is clarified showing 
that adjoining to the left and right is more powerful than just adjoining 
to one side. In Section 5, the relationship between local adjunct languages 
and right linear tree adjunct languages, defined in Joshi, Levy, and 
Takahashi (1972c), is developed, and the nonclosure of the local adjunct 
languages under homomorphism is shown. 

In Sections 6 and 7, the relationship of the linear context-free languages 
and the local adjunct languages is studied, using the replacement operator 
and mixed adjunct grammars of Joshi (1969). (Replacement rules were 
introduced to take care of exocentric constituents; for example, whether he 
came in I don't know whether he came.) The adjunction and replacement 
operators are quite different in their generative capacities, yielding incom- 
parable subclasses of the class of context-free languages. When combined, 
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these operators still do not suffice to generate all context-free languages. 
The class of context-free languages is, however, properly included in both 
the classes of distributed adjunct languages, Joshi, Kosaraju, and Yamada 
(1972b) and tree adjunct languages, Joshi, Levy, and Takahashi (1972c). 
These latter two classes of languages can easily be shown to be incomparable. 

2. DEFINITIONS FOR STRING ADJUNCT GRAMMARS 

DEFINITION 2.1. A local adjunct grammar with null symbols (LAGN), G, is 
(formally- described as) a list of seven items, G ~-~ (A, N, Z, 2c ,  27h, Za,  J), 
where 

A is a finite alphabet; 

N is a finite (possibly empty) set of null symbols, such that A n N ~ ~ ; 

27 is a finite set of basic strings over A • N; 

27c ~ 27 is a set of center strings; 

Z~ ~< 27 is a set of host strings; 

Za ~ 27 is a set of adjunct strings; 

J is a finite set of adjunction rules. 

Each adjunction rule u in J is of the form u ~ (oi, a j ,  s~k) where ai is 
a host string, ~j is an adjunct string, and ~k is a point of adjunction; each 
in Z is in (./I u N)* A(A u N)*; and each point of adjunction, ~ ,  is to 
the left or right of a symbol in _d, null symbols having no points of adjunction. 
In writing adjunction rules, each adjunction point will be either lq or rq 
with q designating the qth nonnull symbol counting from the left of the 
host string. (It was shown by Joshi, Kosaraju and Yamada (1972b) that 
every LAGN can be put in standard form where each string has at most 
one null symbol. Further, in such a standard form the null symbol can 
always be made the leftmost symbol in the string. Henceforth, only standard 
form LAGN's will be used.) 

Remark. A local adjunct grammar (LAG) is an LAGN where N = ~.  

EXAMPLE 2.1. The following is an LAGN: 

G = (A, X , X ,  27°, 27h, Zo, J); 

A = (a, b}; 
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z = {~ab, ~ab}, 

& = {~ab}, 

& = &  =Z;  

J = {(~ab, flab, rl), (~ab, c~ab, rl) }. 

In  defining the language generated by a local adjunct grammar,  reference 
must  be made to the syntactic classes of strings in Z. I f  a string of syntactic 
class P is adjoined to a string of syntactic class Q, by some rule in J, the 
result will be in syntactic class Q. Markers are used in the language generation 
process for identification of syntactic classes, as follows: Let  -d -~ {d~ I as 
is in A}; let 2~ r = {#i I ~ is in N}; and let e denote the empty string. 

The  following homomorphisms are introduced. 1 Each homomorphism 
is defined in terms of its operation on symbols; the extension to strings and 
sets of strings are the usual ones: H ( x y ) =  H ( x ) H ( y ) ;  H ( S  t t3 S ~ ) - -  
H(s1) u H(s~). 

(i) D is a homomorphism which deletes unmarked symbols and 
leaves marked symbols without their marks. D is defined for strings over 
A t 3  A u  N~3  N b y :  

D(x) -~ e for x in A u N,  

D(N) = x  for ~ i n A t d N .  

EXAMPLE 2.2. D(~adb~) = vac. 

(ii) H is a homomorphism which removes markers and deletes null 
symbols. H is defined for strings over A k3 _~ u N U ~ .  

H(x)  -= E for x in N u P), 

H(x) = x for x i n A ,  

H(~) = x  for ~ i n A .  

EXAMPLE 2.3. H(va6) ~ ab. 

(iii) I is a homomorphism which adds markers. I is defined for strings 
over A u N. 

I(x) = ~ for x i n A u N .  

1 These homomorphism operators were not used in the original local adjunct 
grammar paper (Joshi, Kosaraju, Yamada, 1972b). 
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EXAMPLE 2.4. I(vab) = ~,~6. 

S is a substitution operator corresponding to adjunction, having three 
operands, one of which is a subscript on S. In Se(X, Y), X and Y are strings 
and ~ is either lq or rq. Se(X, Y)  is the string obtained by adjoining Y to 
the left or right of the qth symbol of A in X as s e is l a or ra,  respectively. 

EXAMPLE 2.5. S,~(~db~de, fg) = ~dbgfgde. 

Now the definition of a local adjunct language with null symbols is as 
follows. 

DEFINITION 2.2. A local adjunct language with null symbols (LALN) is 
the set of strings over _// such that each string is derived from some string 
in Z c . Formally, L = H(~(Zc)  ) where £'  is defined recursively as: 

(i) If  ~, is in Z, then I(~i) is in ~(ai).  

(ii) I f  a, is in 27(a~) and a~ is in £'(al) and (a~., a l ,  s ~) is a rule in J, then 

S~(oi, H(a~)) is in ~'(~.). 

(iii) Nothing else is in 2 ( ~ )  unless it follows from (i) and (ii). 

For  any a in Z, 2(~) is the syntactic class of a. 2(Zc) is the union of the 
syntactic classes of all strings in Z c ; i.e., £'(Zc) = (,Jo~n~:o 27(a). 

Note that if ~i is in ~(aj),  then D(ai) = ~. .  
A local adjunct language (LAL) is the language derived from an LAG 

(i.e., N = ~) .  

EXAMPLE 2.6. Let  G be the L A G N  given in Example 2.1, thenL(G)  
{x Ix is in a(a v b)*b and which is a balanced parenthesis string when a 
is considered a left parenthesis and b considered a right parenthesis}. 

Note that the language of Example 2.6 could have been derived from a 
local adjunct grammar (without null symbols), using the grammar G = 
(A, N, 27, • ,  4 ,  & ,  J)  with A ~ {a, b}, N : ~ ,  Z : Zh = & = & ~ {ab} 
and J = {(ab, ab, rl) }. 

3. ROLE OF THE NULL SYMBOLS 

In the LAGN,  G, given in Example 2.1, null symbols were used but 
it was noted, following the description of the derived language, L(G), given 
in Example 2.6, that an equivalent grammar without null symbols generates 
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the same language. Indeed, it is often the case that the null symbols serve 
in a convenient, but not essential, role. 

The  null symbols were originally introduced to allow proofs that: 

(i) the union of two LALN's  is an LALN; 

(ii) the concatenation of two LALN's  is an LALN; 

(iii) the Kleene closure (without (~}) of an LALN is an LALN. 

These facts, together with the observation that every finite set of strings 
is an LALN, suffice to show that the (E-free) regular sets are LALN's.  

The presence of null symbols in strings of the grammar corresponds to 
different structural descriptions of the basic sentences of the language, and 
one would prefer to have a unique structural description for each basic 
sentence in the language. 2 Joshi et al. (1972b) conjectured that for any LAGN 
one could find an LAG (without null symbols) which was weakly equivalent. 
This conjecture is refuted by Theorem 3.1, which shows that the class 
of LAL's  is properly contained in the class of LALN's.  

The result that null symbols do increase the weak generative capacity 
of the language is established by a diagonalization proof. A grammar, Go, 
with null symbols is exhibited, and it is demonstrated that there is no weakly 
equivalent grammar without null symbols. In somewhat greater detail, a 
language L' properly contained in L(Go) is exhibited, such that in any 
grammar, without null symbols, any rule used to generate a word of L'  
must satisfy a particular predicate. It  is then possible to establish a total 
ordering of rules satisfying the given predicate. Then, given any finite set 
of rules of this form, there is an effective construction of a word in L '  not 
generable by the grammar in question. 

Let G O be the following LAGN:  

A = {a, b, c, d, e, f} 

N = {~} 

Z -~ Z¢ = Sn = ~ = {ab, ixab, cd, tzcd, ef, lzef} 

J = set of adjunction rules = {(ab, cd, rl) , (ab, tzcd, rl), 

(ab, ef, 12), (ab, ~,ef, l~), 
(cd, cd, rl) , (cd, Izcd, rl), 

(ca, el, z~), (cd, ,ef, 12), 

2 Of course, even with unambiguous interpretation of the basic sentences, there are 
still ambiguous local adjunct grammars. 
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(ef, ca, r~), (el, ~cd, r3, 
(ef, el, l~), (el, ~ef, l~), 
(gab, ab, rl) , (ixab, i~ab, rl) , 

(~ab, cd, Z~), (t~ab, ~cd, l~), 
(txcd, ab, rl) , (~cd, t~ab, rx), 

(~d, cd, l~), (~d, ~ed, l~), 
(.el, ab, r~), (~ef, ~ab, ~), 
(t~ef, ca, le), (l~ef, twd, l~)}. 

G O has six host strings. For each host string there are four adjunction 
rules. Altogether there are 24 string adjunction rules in the grammar.  What  
follows is a proof that, in Go, the null symbols play an essential role, since 
it will be shown that no grammar  Go' , without null symbols, can generate 

L(ao). 

DEFINITION 3.1. Let  L" be the Dyck Language (without null string) 
defined by considering (a, b), (c, d), and (e , f )  to be matching pairs. I f  x 
is in L", then x is said to be balanced. I f  every word in a language is balanced, 
then the language is balanced. 

DEFINITION 3.2. Let  L '  = L" C~ (a v c v e)* (b v d v f )* .  I f  x is in L' ,  
then we say that x is linearly nested. 

DEFINITION 3.3. A preimage of a word x -~ XlX2 "" xn is any word in 
N*xlN*x2N* "" N*x~N*.  

PROFOSlTION 3.1. L(Go) is balanced. 

Proof. Each string in Z is a preimage of a balanced word and each 
string formed by adjoining balanced strings to the preimages of balanced 
strings is the preimage of a balanced string. Thus,  under the homomorphism,  
H,  which erases null symbols, every string in L(Go) is balanced. Q.E.D. 

LEraMA 3.1. L '  CL(Go). (Every linearly nested word is in L(Go).) 

Proof. Let  h be the homomorphism,  h: a ~ b, c ~-~ d, e ~+f ,  extended 
to strings over {a, c, e}, as usual. The  lemma claims that among the linearly 
nested words in L(Go) can be found any word of the form xy n where x is 
in (a v c v e)*, y -~ h(x), and yR is the mirror image of y. Proof  is by 
induction on I x l. I f  Ix  I = 1, then a preimage of x[h(x)] n is generable 
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in one of the syntactic classes of  Go, since x[h(x)] R is a preimage of itself 
and is in 2J c . Suppose that for [ x [ = k, a preimage of  x[h(x)] R is in the 
syntactic class of c~qh(q), where q is in A and a is in N k3 {e}. Then  for any p in 
A one can find a fi in N w {~} such that a preimage of px[h(px)] R is in the 
syntactic class of fiph(p). This is so because the string adjunction rules 
of G o have been so constructed. (In particular, if q = a or q = c, choose 
fi ~-/z; if q ~ e, choose/3 ~ the empty string). Q.E.D. 

The  proof that no local adjunct grammar, G o ' (without null symbols) 
can generate L(Go) is developed by considering the set of rules necessary 
to generate all words in L '  while generating only words in L(Go). It  will be 
shown that given any local adjunct grammar, Go' , without null symbols, 
such that L(Go' ) C L(Go) , a string x can be effectively constructed so that 

x is in L' c~ L(Go' ). 

DEFINITION 3.4. A rule u is said to be admissible iff u -~ (0"i, crj, ~ )  
implies that ei is linearly nested, aj is linearly nested, and if ~:~ = r~ then a 
n ~- 1/2] oil  while if ~ = l n then n = 1/21 (ri] -t- 1, where [0"il is the 
length of a i . (Informally, a rule is admissible iff the host and adjunct strings 
are linearly nested, and adjunction occurs "in the middle of the string.") 

LEMMA 3.2. Any derivation in Go" of any word in L' uses only admissible 
rules. 

Proof. Each host or adjunct string, 0", used in derivation of any word 
x = xlx 2 ".. x~ is of the form 

a = x i l x i ~ ' " x i ,  where 1 ~ i  1 < i ~ < - - -  < i  k ~ n .  

Thus,  x in ( a v c v e ) * ( b v d v f ) *  implies a = a l a  z is in ( a v c v e ) *  
(b v d v f )* ,  where cr t is in (a v c v e)* and a 2 is in (b v d v f )* .  I f  a is 
not linearly nested, then either I el I @ [ az I or I O'1 I = I O'2 I but the symbols 
are not in symmetrically located positions for balancing. I f  [0"1[ v~ [a~f 
then it is easy to generate unbalanced strings, hence, by Proposition 3.1, 
words not in L(Go). Otherwise, 10"11= 1%1 and the symbols are not 
symmetrically positioned, so if 0" is a center string, it is not in L(Go) , while 
if ~ is an adjunct string, any word formed immediately by its adjunction 
is not in L(Go). 

Finally, if 0"1 = [h(a2)] R, and a word in L '  is being generated, adjunction 
must  occur in the middle to preserve the linear nested property. Q.E.D. 

[ x [ denotes the length of the string x. 

643]z3[3-5 
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Let  S be the set of admissible rules in Go'. 

DEFINITION 3.5. (Ordering on strings). Let  cr~ <~  a~ if 

(i) l ~ l  < la; 
o r  

(ii) I o~ I = I ~ and cri lexicographically precedes a~. 

cr/<~cr~ if a~ < ~ a j  or a/ = ~ j .  

FACT 3.1. <~  is a total ordering on strings. We extend <~ to rules in Go'. 

DEFINITION 3.6 

(i) host(u,) 

(ii) host(u~) 

(i/i) host(u/) 
where I ~1 = q if 

(Ordering on rules), ui <~  u~. if 

<~  host(us) or 

= host(u~.) and adjunct(u/) <~  adjunct(uj) or 

= host(uj) and adjunct(u/) = adjunct(uj) and I sei I < [ g:~" [, 
= ra or lq. 

FACT 3.2. <~  is a total ordering on rules in S. 

Remark. In rules in Go', there might be a pair of rules (e l ,  a2, lq), 
( e l ,  cry, rq) which are not ordered by < ~ .  However in S, q is either 1/2 i a l ]  
if ~ is r~, or 1/21 a l l  + 1 if ~: is lq. 

DEFINITION 3.7. hd(a) -~ {x Ix  is in A and H ( a ) =  xa'}. (hd(cr) is the 
first nonnull symbol of a.) 

DEFINITION 3.8. n(a) = { y l ( 3 u i n  S)(a = hos t (u)&y = hd(adjunct(u))}. 

LEMMA 3.3. For any ~r in Go', [ n(e)l ~ 2. 

Proof. Let  L be a language. We say that L has property A ,  if for any 
x -  xlsls2s~x 2 in L with h ,  s2, sg balanced, either h d ( s l ) =  hd(s2) or 
hd(s~)  - hd(s~) .  

Recall that G 0' is such that L(Go') C L(Go). In Go, each derivation consists 
of a sequence of adjunctions of balanced words to preimages of balanced 
words. Now for each ~ in Go, ] n(a)t ~ 2. Also, the rules in G o are such 
that if xlx ~ is in syntactic class P and adjunction can be made between x 1 
and x2 of strings in (alA* v a2A*), then a sequence of adjunctions can 
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yield words in Xl(~l)g(¥/2)gx¢, o r  words in x,(~=)*(gll)*x2,  where 
W i = {a I hd(a) = ai and a is balanced}. Thus,  L(Go) has property A. 

Since L(Go' ) C_L(Go), L(Go' ) has property A. But if I n(~)l = 3 in Go', 
we can generate words inL(Go' ) of the form x,&s2ssx~ such that hd(sl) ~ hd(s~) 
and hd(s~) :/: hd(sa). Thus,  it must be that [ n(a)l ~< 2. Q.E.D. 

DEFINITION 3.9. re(a) = {X I x is in {a, c, e}, x is not in n(a), & (Vy)(y not 
in n(e) implies x ~< y)}. That  is, re(a) is the least y in {a, c, e} which cannot 
be the head of an adjunct to a in the rules in S. 

LEMMA 3.4. Given any local adjunct grammar, Go', without null symbols, 
such that L(Go' ) C_ L(Go) , then L(Go' ) :/: L(Go). 

Proof. From the description of Go', an x in L '  which is not in L(Go' ) 
can be constructed. First note that by Lemma 3.2, only the set of admissible 
rules, S, need be considered. Also, the rules in S may be ordered by the 
total ordering, < , ,  as u s , u2 .... , u~. (Fact 3.2). 

Let host(u;) T V, T P(uO s(ui) where I p(ue)l = l s(ui)]. Define 

0 "1 = P ( u l )  , 

~-* = ~ m ( V O ,  

V r+l = {Uj I ( ~ x ) ( V  j = "i'eeX and (Vh)(3x)(Ve -= r"x implies j ~ k)}, 

u~+l = tthe unique member of v r+l if v ~+1 is nonempty, 
{undefined otherwise, 

where 

and 

G,+I : t p(u~+l ) if v,+t # ~ ,  
(undefined otherwise, 

r,+l = ta"+lm(host(ur+l))if v r+l # 2~, 
(undefined otherwise. 

The  preceding recursive construction of at, rr, W', v ~ starts with u 1 and 
finds r 1 as the prefix of some string in L '  which cannot be generated with 
ul as the last applied rule but must be generated by a later rule u 2 in which 
host(u ~) is of the form rlx. For  such a rule, there will be a string with r 2 
as prefix which is not generable by u 2, or any rule < ~  u 2, as the last applied 
rule. Continuing in this way', v ~+~ is the singleton set containing the least 
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rule in which the host has a prefix arm(host(u*)) if such a rule exists; otherwise 
v r+: is empty. 

Now, let # = {rUx[h(zMX)]R i M is the largest index for which ~-r is defined 
and x in (a v c v e)* chosen so that I ~ [ > longest string in 27e}. 

By construction ~.u cannot be the prefix of any string generated by the 
rules in S. Yet ~ is in L'. Thus,  ~ is the desired word whose construction 
has been asserted; i.e., 6 is in L' but 6 is not in L(Go' ). Therefore,  L(Go' ) =/: 
L(Go). Q.E.D. 

F rom L e m m a  3.4, we immediately have the following theorem. 

THEOREM 3.1. L A L  C L A L N .  (Null symbols increase the weak generative 
capacity of local adjunct grammars.) 

Theorem 3.1 while establishing a role for null symbols leaves the following. 

Open question. Is every regular set an LAL;  i.e., can every regular set 
be generated without the use of null symbols ? 

Also of interest are the questions of whether the L A L ' s  are closed under 
union, concatenation, or Kleene star. 

4. ONE-SIDED L A G N ' s  

I t  is often the case that we can construct an adjunct grammar  for a given 
language which requires only one-sided local adjunction (in which case 
there is no distinction between left and right). In  this section it is proved 
that  L A G N ' s  with both left and right adjunction are more powerful than 
L A G N ' s  with one-sided adjunction only. These  results carry over to the 
case of mixed adjunct grammars,  discussed in Section 7. Several definitions 
are required. 

DEFINITION 4.1 (Joshi et al. (1972b)). A derivation tree has a set of nodes, 
each node labeled with a string in 2? and defined recursively as follows: 

(i) A single node labeled by a string in Z is a derivation tree. 

(ii) I f  T is a derivation tree, then T '  is a derivation tree if T '  is 
obtained from T by  adding a node labeled a, and a branch labeled ~:k, 
directed f rom the node labeled a to some node in T. 

(iii) Nothing else. 

T is a derivation tree in G if each branch in T corresponds to a rule in G; 
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i.e., if ai and a t are labeled nodes and ~ is a labeled edge from a t to ~ , ,  
then ( ~ ,  a j ,  ~ )  is a rule in G. The  convention is adopted that all edges 
directed to a vertex are ordered so that  if an edge from ~1 labeled ~:1 occurs 
to the right of an edge from ~2 labeled ~:2, then either ~1 -~ ~2 or ~:2 corre- 
sponds to a point  of adjunction to the left of ~1 • Moreover,  when ~3" = ~ 
and if they are both left adjunction points ,  and if ~:j labels a point  to the 
right of ~:k, then the string derived at set is adjoined before the string derived 
at ~1~. Dually,  when se~ . = ~7~ and both are right adjunction points, and ~j 
labels a branch to the left of ~:~, the string derived at ~. is adjoined first. 

Finally,  T represents the  derivation of a word in L(G)  if T is a derivation 
tree representing a derivation in G and the root of T is in 2J,. 

EXAMPLE 4.1. 

A = {a, b}, N = ~ ,  

X = • = X~ -= Xa = {ab, aa, ha}, 

J = {(ab, aa, h), (ab, ba, r~), (ab, ab, rl), (ba, ba, r2) , (aa, aa, r2)}° 

aa ha 

\ /  
aa ab ba 

ab 

FIG. 1. Derivation tree for aaaaaababbab. (The string built up at the interior 
node is aaabab.) Fig. 1 follows Example 4.1. 

DEFINITION 4.2. Let  T, T '  be derivation trees in G, an occurrence of T 
in T '  is a tree T obtained from T" by deleting (0 or more) branches and 
nodes of T' .  T is said to occur at a node x in T '  if  T occurs in T '  and the 
root of T is x. T h e  string derived by  T will be denoted e(T).  

DEFINITION 4.3. I f  a~ and a 2 are strings, an occurrence of al  in (r 2 is a 
string H(a l )  obtained from a 2 by deleting (0 or more) symbols of a 2 . Note 
that null symbols of  (r 1 need not occur and that  the port ions of H(al )  occurring 
in ae need not be contiguous. 

]~XAMPLE 4.2. a 1 = vabc; a2 = izadbecc. There  are two occurrences of 
a 1 in ~2 as underl ined:  Ix adb_ecc, iza_dbec_c. 
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A string ~ occurring in a derivation d in G' means that a occurs in some 
basic string a '  in G'  and that a '  labels a node of the derivation tree for d. 

Let  

T = ab cd 7"1----- 

\ /  
ab 

T'  = cd ab T 1' = 

\ /  
cd 

and let G be the following L A G :  

A = {a, b, c, d}, 

ab T~ -~ cd 

ab ab 

cd T 2' = ab 

cd cd 

Z = Z ,  = Z h = ,Y'a = {ab, cd}, 

J = {(ab, ab, rl) , (ab, cd, 12), (cd, ab, 12) , (cd, cd, rl) }. 

LEMMA 4.1. Let G be as given above, and let G' be any one-sided L A G N  
such that L( G') -~ L( G). Let l be the length of the longest center string of G'. 
Whenever, in a derivation of z in G, such that I z [ > l, the subtree T occurs, 
then in G', ~(TI) or a(T2) must occur in a string in the grammar G', in any 
derivation of z. Similarly, whenever T '  occurs in a derivation, a( TI' ) or a( T~') 
must occur. 

Proof. Assume that T occurs in G but neither cr(T1) nor a(T2) occur 
in a corresponding derivation in G'. Then  the occurrence of ~r(T1) and 
~r(T~) in derived strings in L(G') must be the result of adjunction. This 
could occur only if (i) strings of the form axb and cyd can both be adjoined 
at the same point, or (ii) a string of one of these forms can be adjoined 
and act as a host for the other. Either of these possibilities is easily seen 
to lead to the generation of a string not in L(G). Q.E.D. 

LEMMA 4.2. In the set of derivation trees of depth k > l = max{J a r I ~ 
in Z~} over G, there is a set of trees { Ti} each Ti being of depth k, such that 
at least one of (~(Ti)} must occur in a string in any one-sided grammar for L(G). 

Proof. Call a tree which at each node except for the terminal  nodes 
has an occurrence of T or T',  a comPlete tree. A tree, all of whose terminal 
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nodes are at the same depth, is called a uniform tree. Let TA be a tree in G 
and TB a tree in G'  such that a(TA) = a(T~). We claim that for each complete 
tree TA there is an occurrence in T~ of a(Tc) where T c is a tree which occurs 
at the root of T~,  and has, as one of its leaves, a leaf of TA • 

By the preceding lemma, for derivation of words of length > l ,  a(T1) 
or a(T~) must occur in the root label of a(Ts). Assume that Ta is a uniform 
complete tree of depth h'  > k and assume that there is in the root label 
of T B an occurrence of cr(Tc) of a tree Tc of depth k at most, where T c 
is a subtree of TA occurring at the root of TA • Let n be a terminal node 
of T c at depth k and let TD be the subtree of T A occurring at n. Now, either 
T or T '  occurs at the root of T . ,  and both axb and cyd cannot be adjoined 
in G', which is a one-sided adjunct grammar, to the same point of a(Tc), 
or we could generate a string not in L(G). Thus,  at least one of these must 
occur in the root label of TB. Thus,  the tree whose derived string occurs 
in the root label of TB must  have, as one of its leaves, a leaf of TA • Q.E.D. 

THEOREM 4.1. There is an L A L  which is not generable by any one-sided 
L A L N .  

Proof. By the preceding lemma, there is no fixed upper bound on the 
length of a string in a one-sided grammar for L(G). Hence, no one-sided 
LAGN.  Q.E.D. 

5. HOMOMORPHISM OF L A L N ' s  

In  this section it is shown that the L A L N ' s  are not closed under homo- 
morphism. The  question of  closure under homomorphism is left open by 
Joshi et al. (1972b). The  proof is by way of connection with tree adjunct 
grammars. 

Tree adjunct grammars were defined by Joshi and Takahashi (1971) 
and some related results are given in Levy (1971). The  discussion here 
corresponds most closely to a slightly different development given in Joshi, 
Levy, and Takahashi (1972c). 

DEFINITION 5.1. A tree adjunct grammar, G , ,  consists of a set of center 
strings, ~'c, and a set of adjunct trees, ~-~. Each center tree has root labeled S, 
each interior node is labeled with a nonterminal symbol, and each leaf 
is labeled with a terminal symbol or e (denoting the empty string). Each 
adjunct tree has all leaves except one labeled with terminals or e, and one 
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leaf labeled with the same nonterminal as the root label; all interior nodes 
are labeled with nonterminals. 

DEFINITION 5.2. The  set of derivation trees in G7 is defined recursively 
as follows: 

(i) Every center tree is a derivation tree. 

(ii) I f  T is a derivation tree and T'  is obtained from T by detaching 
the subtree T" at some internal node v, labeled V, attaching a V-tree in r A 
to v, and attaching T" to the V-node on the frontier of T", then T '  is a 
derivation tree. 

(iii) Nothing else. 

EXAMPLE 5.1. The  adjunction of an adjunct tree to a derivation tree to 
obtain a new derivation tree is shown in Fig. 2. T '  is adjoined to T, as 
described above, yielding T". 

T: S T ' :  U T": S 

/ l \  / \ / 1 \  
a U b V U a U b 

/ \  I / \  
a b E V U 

e a b 

FIG. 2. Tree adjunction (see text). 

DEFINITION 5.3. A tree is linear if at each level there is at most a single 
nonterminal. A right-linear (left-linear) tree is a linear tree in which the 
nonterminal at any level is the rightmost (leftmost) symbol at that level. 
(A tree is one-sided linear if it is either left-linear or right-linear.) These 
definitions of right linearity, left linearity, and one-sided linearity are 
extended to tree adjunct grammars in the usual way. 

A language is a right (one-sided) linear tree adjunct language if it is the 
set of yields of the derivation trees in some right (one-sided) linear grammar. 

PROPOSITION 5.1. Linear context-free and one-sided linear tree adjunct 
languages are incomparable. 
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THEOREM 5.]. Every L A L N  is a right linear tree adjunct language. 

Proof. We give a construction for the tree adjunct grammar  corresponding 
to a given L A L N .  

(a) For each center string ~i ~-- v~x~xi~ "'" xi~ add to ~'c the tree shown 
in Fig. 3a. 

(b) For each adjunct string ~j ~ vjxjx~ "." xj~ construct the tree shown 
in Fig. 3b. 

Add to zA, for each point of adjunction v to which it applies, the tree 
shown in Fig. 3c. Q.E.D. 

S~ 1 xj~ Sjrl 

Siz2 xj 2 S ~  

/ l  

x~ Sir k 

c 

(a) 

FIG. 3. 

& 

Tj 

& 

(b) (c) 

Trees used in the construction of Theorem 5.I. 
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C: S S S 

A1 B1 C1 

/'~ /I /I 
a A2 c B 2 e C~ 

A3 B3 C3 

A4 B4 C4 

/I /I /I 
b e d ~ f E 

A: A 2 A a A 4 B~ B 3 B 4 

,,"I /~ /; /I /l /I 
a A S c B~ e C~ c B~ e C 2 a A~ 

A3 B3 C3 B3 C8 Aa 

A 4 B 4 C 4 B 4 C 4 A~ 

/I /I /; /I /I /i 
b A2 d A3 f A4 d B2 f B 3 b B 4 

FIC.. 4. Tree adjunct grammar of Example 5.2. 
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c~ c~ c, 

/1  / l  
e C a a A 2 c B~ 

C3 A3 B3 

(2, A 4 B 4 

f c~ b c~ d C~ 

FIa. 4 (continued) 

LEMMA 5.1. I f  LALN's  were closed under homomorphism, then the class 
of right linear tree adjunct languages would equal the class of LALN's.  

Proof. Modify the tree adjunct grammar so that at each level, whenever 

Xi 

X~, 

both 32/and Xj being nonterminals, we have 

Xi  

/ \  
a i X j  

where ai is a new terminal. The set of yields of the set of derivation trees 
of the modified tree adjunct grammar is an LALN, 'L ' ,  (the grammar can 
easily be written), and the (unmodified) tree adjunct language is a homo- 
morphic image of L'. Q.E.D. 

Rosa Hwang (1972) has constructed the following example. 
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EXAMPLE 5.2. The tree adjunct grammar shown in Fig. 4 generates 
a language for which there is no LAGN. 

The proof that the grammar given in Example 5,2 yields a language 
which is not an L A L N  is similar to the proof of Lemmas 4.1 and 4.2, except 
that one considers a complete uniform set of trees where at each node there 
is an occurrence of one of the following three trees: 

ab cd ef cd ef ab ef ab 

\ , l /  \ l /  \ l /  
ab cd ef 

We omit the details here. 
Based on Lemma 5.1 and Example 5.2, we have the following. 

cd 

THEOREM 5.2. LALN's  are not closed under homomorphism. 

Remark. The local adjunct languages (without null symbols) are also 
not closed under homomorphism. This can be seen, since it is easy to show 
that every LALN is a homomorphic image of a one-sided local adjunct 
language. 

6. /3-LINEAR LALN's  

In Joshi et al. (1972b) the relationship between the linear context-free 
languages, and the LALN's  was explored. I t  was originally conjectured 
that any language which is both an L A L N  and a linear context-free language 
must be regular. Recently, Hart (1973) has shown an example of a nonregular 
linear context-free language which is an LALN. 

In this section, a class of fi-linear LALN's  is defined, and it is shown 
that if L is a/3-linear LALN then L is regular. 

DEFINITION 6.l (Rosenberg (1967)). A ~3-linear language is one which 
can be generated by a grammar in which all productions are of the forms 
V --~ TV,  V ~ VT,  or V --+/3 where V is any nonterminal, T is any terminal 
in 27, and /3 is a distinguished terminal not in Z'. (It is a linear language 
generated by a grammar in which all productions whose right side is a single 
terminal have /3 as the right side of the productions.) A fl-linear LALN 
is a/3-1inear language which is an LALN. 
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DEFINITION 6.2. A homomorphic mapping of languages is a mapping, h, 
from languages to languages which satisfies the condition h ( x ) u  h(y) -~ 
h(x u y) for any languages x, y. 

EXAMPLE 6.1. Let f (L )  be the operation which removes all words x 
such that [ x t ~ 5 from a language (if they were in it). It is shown in Levy 
(1970) t h a t f  preserves LALN's and i lL  1 and L 2 are LALN's then (L 1 uL2) 
is an LALN. Finally, f(L1) w f(L~) = f ( L  1 W L2); thus, f is a homomorphic 
mapping of languages which preserves LALN's. 

THEOREM 6.1. Let L be a fi-LALN. (L is of the form (JiLi f lLi  ' where 
the Li and L i' are languages over Z, and fl is not in 2.) Let k 1 and k 2 be homo- 
morphic mappings'of languages which preserve LALN's. Then (Ji hl(L~) fi k~(Li') 
is an LALN. 

Proof. L is derived from some finite set of center strings each of which 
contains ft. Adjunctions to the right of fi do not affect anything to the left 
of fi and vice versa (i.e., we can use "separate grammars" with distinguishing 
null symbols for the adjuncts on each side). Hence, we are free to modify 
the left and right languages independently. Q.E.D. 

THEOREM 6.2. Let L be a h-linear language, expressible as a finite union in 
the form ~)~ xi fi y i ,  and let k 1 and h~ be homomorphic mappings of languages 
which preserve regular sets. Then L' = Oi kl(xi) fi ke(yi) is a h-linear language. 

Proof. In Rosenberg (1967) it is noted that "the class of h-linear languages 
is coextensive with the class of fi-CFL's (a ]3-CFL is a context-free language 
L C Z* fi X*) such that both (x I (~y)(x fl y is in L)} and {y { (x)(x f ly  is in L)} 
are regular sets." 

Now suppose UiLi  fiL i' is a fl-linear language (not necessarily an LALN) 
and let h 1 , k 2 be homomorphie mappings which preserve regular sets, then 
~)~ kl(L~) k~(L/) will be h-linear since it preserves both conditions. Q.E.D. 

We also have the following corollary to Theorem 6.2. 

COROLLARY 6.1. Let L be a h-linear LALN. (L is of the form OiL~fiLi'  
where L i and Li' are languages over X and fl is not in X.) Let k 1 and k S be 
homomorphic mappings of languages which preserve regular sets and LALN's. 
Then (Ji kl(L~) fl k2(Li' ) is a fl-linear LALN. 

DEFINITION 6.3. I f L  is a fl-linear language, then x such that (3y)(xfly is 
in L) is called a left part, and {y lx f i y  is in L} denoted r(x) is called its 
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corresponding right set. Similarly, right part and corresponding left set are 
defined in the obvious way. 

THEOREM 6.3. l f  L is a fi-linear language, then for each left (right)part, 
the corresponding right (left) set is regular. 

Proof. We give the proof for a left part and its corresponding right set: 
The rules for a grammar, G, forL are all of the forms: S i ---> yS~ ; Si ~ Sty;  
Si -+/3, where y is any member of V r ,  and the start symbol is S O . If we 
fix x, we can construct a new /3-linear grammar, G', which generates 
L(G') = x fi r(x). Since all the rules of G' will be right-linear, L(G') will be 
regular. 

Let x = xlx 2 ... x m . The construction of G' is as follows: 

G' = (VN', Vr', P', So(°)), 

V T  t = V T  ; VN t = {S~ ~) I Si is in VN and 0 ~ k ~ [ x t}, 

P '  = {S~ ~-1) --~ x~S~) [ S i  --+ x~S~ is in G}, 

w {S/k)---~ S~k)y [ S, ~ S jy ,  y in Vr ,  is in G}, 

u m)--,/3}. 

Clearly, L(G') = x f3 r(x). Q.E.D. 

EXAMPLE 6.2. Let the productions of G be: {So--> aSx; S 1 --+ S2b; 
S~ -+ aS 1 ; $2 -+ $2c; $2 --* dSa ; $8 --~ dSa ; $8 -+ fl}. The fl-linear 
language with add as its only left part is generated by a grammar with produc- 
tions: (S  O ---> aS(11); S(~ 1) --~ S(~l)b; S(~ 1) --~ S~l)c; S~ 1) -+ dS(~2); S~a~'--~ dS~aZ); 

COROLLARY 6.2. Let L be a ~3-linear language and x be any finite set of 
left (right) parts of L. Any Boolean function of the corresponding right (left) 
sets is regular. 

Proof. This is a direct consequence of Theorem 6.3 and the closure 
of the regular sets under Boolean operations. Q.E.D. 

THEOREM 6.4. Every fi-linear LALN is regular. 

The proof of Theorem 6.4 is given in the appendix. The proof is essentially 
constructive, and an example of its application is also given. 
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7. MIXED ADJUNCT GRAMMARS 

It has been shown in Section 6 that no nonregular fl-linear language is 
an LALN.  Also, it was pointed out that many linear languages which are 
not regular sets are non LALN's ,  such as {a% n In ~ 1}. Also in Levy 
(1970) the following is proved. 

THEOREM 7.1. Suppose that for some nonnull x, y in A*, ux~vy~w is in L 
for every n ~ O, and v in A* is nonnull and contains some symbol which appears 
neither in x nor in y, and for arbitrarily large k', there is an m ~ k" such that 
uxmvym-~w, 1 ~ p ~ k', is not in L, then L is not an LALN. 

As a direct application of Theorem 7.1 it can be shown that the grammar, 
G, for arithmetic expressions in an ALGOL-like language yields a language 
which is not an LALN:  

G ~-(Vz~, V T , P , S ) ,  

V N = {S,L,  T); V~- = (a, b, + ,  - - ,  ×, /} ,  

P ~ { S - - ~ S +  T ; S - - ~ T - - S ; S - - ~ T ;  T - + L  × T; 

T - + L / T ;  T--~ L ; L - +  (S); L--~ a;L -+ b}. 

The proof that G is not an L A L N  is by considering {(~a) ~ I n ~ 0} ~ L(G) 
and applying Theorem 7.1. 

To add to local adjunct grammars the ability to nest parentheses one 
is led to the use of replacement rules. Replacement rules were introduced 
by ]oshi (1969) to account for phrases which are not endocentric and, hence, 
cannot be built up by adjunction. 

DEFINITION 7.1. A mixed adjunct grammar with null symbols (MAGN) 
is (formally described as) a list of nine items, 

G = ( A , N , Z , Z ~ , Z ~ , Z ~ , Z ~ ,  L R ) ,  

where 

A is a finite alphabet; 

N is a finite (possibly empty) set of null symbols; 

Z is a finite set of basic strings over A t3 N U {S}; 

Z' c ~ ,~ is the set of center strings; 

27~ ~ Z is the set of host strings; 
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Z~ ~< Z is the set of adjunct strings; 

Z~. ~ Z is the set of replacer strings; 

J is a finite set of adjunction rules; 

R is a finite set of replacement rules. 

Each rule in J is of the form u = (ai,  crj, ~), where ei is a host string, 
aj is an adjunct string, and ~ is a point of adjunction; each point of adjunction 
being to the left or right of a symbol in A. 

Each rule in R is of the form r = <ei, at) where ei is in Zh t~ X s and 
~. is in Z , .  (Z  s is the set o f  strings over A k3 N u {S} containing exactly 
one occurrence of S.) 

is 
EXAMPLE 7.1. An MAGN combining replacement and adjunction rules 

A - ~ { a , b , c , d , e }  N - ~  fg, 

Z = {aXb, c, de}, 

Ze : {de}, 

Sn = {aSh, de}, 

S ,  -= Z r -= {aSh, c}, 

J -~ {(de, aSb, is)}, 

R -= {<aSb, aSb),  <aSh, c>}. 

The definition of the language generated by G is, informally, the set 
of strings derivable from Z'c, using rules of J and R, with the provision 
that whenever a string containing an S is to be used either as a replacer 
or as an adjunct, it must be completely built up (i.e., have no occurrence 
of S, and have all its adjuncts.) 

In order to give the formal definition of the language generated by an 
MAGN, we must extend some of the homomorphisms, given in Section 2, 
to the symbol S, and define a substitution operation for replacement. 

DEFINITION 7.2. I is a homomorphism which adds markers. I is defined 
for strings over A k3 N t3 {S} 

I(x) = * for x in A k¢ N ;  

EXAMPLE 7.2. I(vabS) -= ~abS. 

~ ( s )  = s .  
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DEFINITION 7.3. R is a replacement operator. The first operand of R 
is a string having a single occurrence of S, and the second operand is a 
string over A. R(X, Y) is the string obtained by substituting Y for S in X. 

EXAMPLE 7.3. R(aSb, cd) = acdb. 

We extend the domain of the adjunction operator S, defined in Section 2, 
so that in Se(X, Y), X, Y are strings over A w 2 /w N w fir u {S}. 

DEFINITION 7.4. A mixed adjunct language with null symbols (MALN) is 
defined as H(2)(Z,)), where 2) is defined recursively as follows: 

(i) If ai is in 27 -- 27s, then I(a/) is in 27(~,). If ~i is in 27s, then I(ai) 
is in Z's(~i). 

(ii)(a) If ai is in ~s(%'), an is in £'(%) and @j,  a,> is in R, then 
R(a/, n(%)) is in 2(~) .  

(b) If ~, is in 2 , (~, ) ,  ~ is in 2(~1) and (~;, ~1, ¢) is in J, then 
Se((~i, H(%)) is in 2s(aj). 

(c) If  q i is in 2)(aj), an is in 2(al) and (cry, oh, ~:) is in J, then 
Se(cri, H(a~)) is in 2(aj). 

(iii) Nothing else is in (ai), or ~s(ai) unless specified by (i) and (ii). 

EXAMPLE 7.4. The language generated by the MAGN of Example 7.1 is 

L = {da~¥bnlan:cb ~ "'" a~cbn~d[ h >/0; ni >~ 1, 1 <~ i ~ k}. 

DEFINITION 7.5. A simple replacement grammar with null symbols (SRGN) 
is an MAGN where J, the set of adjunction rules, is empty. The language 
it generates is called a simple replacement language with null symbols (SRLN). 
(Note: Similarly an LAGN is an MAGN whose set of replacement rules 
is empty.) 

THEOREM 7.2. L is an SRLN iff L is a linear (e-free) context-free language. 

The proof of Theorem 7.2 is straightforward and is given in Levy (1970). 
LALN's and SRLN's are incomparable, and both contain all regular sets. 
The language of arithmetie expressions, whose grammar was given earlier 
in this section, is an MALN but not an LALN or SRLN. 

THEOREM 7.3. There is a context-free language which can be generated 
by a mixed adjunct grammar but which cannot be generated by adjunction 
rules alone or replacement rules alone. 

643123/3-6 
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Proof. The language 

L ~ {anlpb ~1 ... a~kpbn~cd~n~qe ~ "" d~Zqe ~ ] ni ~ 2, mi ~ 2, k ~ 1, l ~ 1 

is generated by a mixed grammar with rules 

{(c, dSe, rl) , (c, aSb, 11), (aSb, aSb),  (aSb, apb), (dSe, dSe), (dSe, dqe)}. 

Local adjunction rules alone cannot generate this language by Theorem 7.1. 
Replacement rules alone cannot generate this language by Theorem 7.2. 

Q.E.D. 

We state without proof the following. 

THEOREM 7.4. There is a context-free language which cannot be generated 
by combined use of replacement and local adjunction rules. 

The language L = {anpbncdmqe m ] m >/0,  n / >  0) is such a language. In 
Levy (1970) an algorithm is given for forming a distributed adjunct grammar 
with null symbols (DAGN) for any mixed adjunct language. However, in 
Levy (1971), it was proved that, more generally, for any context-free language 
a DAGN can be effectively constructed, and the MALN's are a subclass 
of the class of context-free languages. In Joshi (1972c) the mixed adjunct 
grammars have been used as the base component of a transformational 
grammar. 

8. CONCLUSION 

The major results given here are Theorems 3.1 and 5.2, each of which 
resolves an open question in the theory of adjunct grammars. As a con- 
sequence of Theorem 3.1, which states that null symbols increase the 
generative power of local adjunct grammars, the relationship of the local 
adjunct grammars (without null symbols) to the regular sets is not known. 

Section 4 clarifies the roles of left and right adjunction. In Section 6, 
the relationship of linear context-free and local adjunct languages is con- 
sidered, and it is shown that the fl-linear languages (Rosenberg, 1967) 
which are LALN's are all regular sets, although, in general, the class of 
linear context-free languages which are LALN's properly includes the 
class of regular sets (Hart (1973)). 

Finally, in Section 7 the mixed adjunct grammars with local adjunction 
and simple replacement rules are defined and shown to generate a proper 
subset of the class of context-free languages. 
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APPENDIX 

THEOREM 6.4. Every ~9-linear L A L N  is regular. 

Proof. Every /9-linear L A L N ,  L, is expressible as a finite union L = 
~Jiin, xi fiYi where x i ,y~ are LALN' s .  L can then be rewritten as a union 
of disjoint terms, L = UJ,k x~/gYk, where j, k range over all members  of 
the power set o f / ,  and x~/gy~ denotes (N,:~n~ x~) fi (N~n 7~ Y~). (e.g., x{L~}/gY{~,a} 
denotes (strings in both x~ and x~)/9 (strings in both y~ and Ya)). Note that 
x~- (3 x~z = ~ if j~ v4 j~ and y ~  (~ ye~ = 2~ if k~ 4= k~. We claim that 
x .  ~ye  is contained in a regular set R~,q, which is contained in L. Since 
there are only finitely many members  of the power set of I, it will then follow 
that 

L = U xj/gyT~ C ~) R~,k CL. 
j , k  J,k 

Hence, L = (3J,7~ Rj,~ is regular. 
Next, we show that x~/9 Ye is contained in a regular set which is contained 

in L. Suppose that x~/gyq C l(yq)/9 r(x~) -~ L' C_L. Then  L '  is regular, 
since l(yq) and r(x~) are regular. Otherwise, x~/gyqC_L (and, surely, 
xrflyqC_l(yq)/gr(x~) ) and there are Xs,yt  such that XsfiyqC_L and 
x~ /gy tCL  but L 1 =l(yq)/gr(x~) is not a subset of L. Hence, we must  
find a regular language, R~.q, smaller than L 1 , such that R~.~ is contained 
in L. Let  h 1 be the homomorphism on languages which maps everything 
in l(yt) into itself, and everything else to ~ ,  and h~ be the homomorphism 
which maps everything in r(x~) into itself, and everything else to ~ .  Now 
x~/g yq C_ h~(l(yq)) /9 h~(r(x~)) and either h~(l(yq)) /9 h2(r(x~) ) C_L or we may 
find a new pair of elements and repeat the construction. 

Since 21 is a finite set, the process must conclude after a finite number  
of steps. Q.E.D. 

EXAMPLE 6.3. We illustrate the construction in the preceding theorem. 
Let  L = aq/9 Yl o x2/9 Y2 be a/?-linear LA LN ,  and let 

X l  r ~ X l  ~ X2 

X2 t ~ "~1 ('~ N2 

x[2 = xl n x~ 

Yl' ~- Yx N 372, 

Y2' = 371 n Y2, 

Y[2 ----- Y~ n Y2- 

L may be represented by a modified Venn diagram, as shown in Fig. 5. 
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Fm. 5. 

X l  t 

X 2" 

Xl2 

y_( 
x;3yl '  

/////!/// 
Ys' [ Yl2 

/ / / / / / / / /  x~'~y'~ 

x( f ly (  x(fiy12 

~y~' xh3yh 

Diagrammatic representation of the language of Example 6.3. 

The crosshatched areas of Fig. 5 are necessarily empty. (We assume, 
in this example, that all of the xj', y~' are nonempty. But the argument 
is essentially unchanged if some of these are empty.) 

To show that x~zf3y~CL'  C L such that L' is regular: Note first that 
l(y~) fi r(x~) is not contained in L if all of the x/,  Yk' are nonempty. Let 
x ~ ,  3'1' be the elements corresponding to x , ,  y, in the proof of Theorem 6.3. 
Then 

r(xh) = y ;  v y ;  u y h ,  

Now let 

t l (yl '  ) = x 1' U x12. 

hi : xl' ~+ xl" ; x (  ~-~ ;~ ; x'l~ ~-~ x~ , 

t .  s p 

NowL1 = xl' fl Yl' ~) xl' ~ Yl~' U x12' fl yl '  u x~  ~ ys' U x'ls ~ y'l~ . L 1 may be 
represented as shown in Fig. 6. 

x (  

xh 

Yl' Ys' 

xl"fiYl' / / / / / ! / / /  

x;213yl" x~sflYl~ 

Y12' 
p t . 

X l / ~ Y 1 2  

~h3yh 

Fio. 6. Diagrammatic representation of L1 in Example 6.3. 

Again L ' =  hl(l(y'l~))[J hs(r(x~2)) is not contained in L since x t' [3y 2' 
is contained in L' but not in L. Choosing the elements x'l~ , yz', we have 

r(x'l~) = yx" u y~" u Y'12, 

l(ys" ) = x~2. 
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Now applying the required homomorphism, we have 

L~ = x[2 B Yl' u x;2/~ y~' w xi~ 5 Yi~ which is p-linear. 

Thus, x[~ is regular by Theorem 6.3, and Yl' u y (  td y[e is regular by Theo- 
rem 6.3. Thus, Le _C L is regular. So x[~ fi Y[2 C L~ _C L, as claimed. Q.E.D. 

Remarks. It can also be proved directly that if any B-linear language 
can be expressed as a finite union L = Ui xi fdyi (xi, Yi languages) then 
L is regular. Note that this formulation does not mention LALN's and has 
Theorem 6.4 as a corollary. 

RECEIVED; April 7, 1972 
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