
INFORMATION AND CONTROL 23, 260-287 (1973)

Structural Aspects of Local Adjunct Languages*

LEON S. LEvY

University of Delaware,

Several open problems concerning local adjunct languages are considered
and solved. One of the most interesting (from a linguistic point of view) and
difficult (mathematically) open problems was whether or not null symbols
can be dispensed without sacrificing the weak generative capacity. This problem
is solved and the answer is negative.

Also considered are some problems concerning one-sided grammars, homo-
morphisms of languages (it is shown that local adjunct languages are not closed
under homomorphism), fl-linear languages and mixed adjunct grammars.

1. INTRODUCTION

String adjunct grammars and their generalizations have been studied by
Joshi, Kosaraju, and Yamada (1972b) and Joshi (1969, 1972) as an alternate
means for describing the generation of formal languages and their classifica-
tion. Adjunction as an operation on trees has also been studied in Joshi
and Takahashi (1971), Levy (1971), and Joshi, Levy, and Takahashi (1972c),
and, in fact, the operation of tree adjunction alone has more generative
capacity than is necessary to obtain the context-free languages.

The class of languages generated by local string adjunct grammars is
a subset of the class of context-free languages. One might ask: Since context-
free grammars are inadequate for characterizing natural languages, why
should one study subclasses of context-free grammars ? There are two
reasons:

(1) One is interested in obtaining the "simplest" and "most natural"
linguistic mechanisms available in natural language, Harris (1961, 1968),
and in characterizing these using the methods of the theory of formal
languages. In this paper, only the context-free operations are studied,
namely local adjunction and simple replacement. Their linguistic relevance

* Partially supported by NSF GS-2509, NSF GS-27, and U.S. Army Research
Office, Durham (DA 31-124 ARO(D)-98).

260
Copyright © 1973 by Academc Press, Inc.
All rights of reproduction in any form reserved.

STRUCTURAL ASPECTS OF L A L ' s 261

has been discussed in Joshi, Kosaraju, and Yamada (1972b) and Joshi
(1969, 1972).

(2) One uses these grammars (e.g,, mixed adjunct grammars) as the
base component of transformational grammars. We like to narrow down
each component of a transformational grammar. String adjunct grammars
and mixed adjunct grammars provide a very natural way of narrowing
down the base component of a transformational grammar.

The motivation for adjunction is to characterize the notion of a head
of a constituent (which is awkward to characterize in a phrase structure
grammar). (Example: In new books from the reference library, new and from
the library are adjoined to books, while reference is adjoined to library.)
Adjunction of strings, defined formally in Section 2, turns out to be a
surprisingly powerful operation, but one whose characteristics are quite
different from the usual phrase structure descriptions. Thus, the standard
closure properties are either difficult to study or turn out to be false. Closure
under intersection with regular sets fails, and in Section 5 it is shown that
local adjunct languages are not closed under homomorphism. It is not
known whether local adjunct languages are closed under union, concatenation,
or Kleene star. Joshi, Kosaraju, and Yamada (1972b) in attempting to
establish these closure properties introduced a set of special markers, called
null symbols, which were used in the grammatical derivations but deleted
in the languages and were able to show that with these auxiliary symbols,
closure under union, concatenation, and Kleene star obtains. They then
conjectured that the null symbols added no generative power to the class
of local adjunct grammars. In Section 3, it is shown that the null symbols
do, in fact, increase the generative capacity of the local adjunct grammars.

In Section 4 the role of both left and right adjnnction is clarified showing
that adjoining to the left and right is more powerful than just adjoining
to one side. In Section 5, the relationship between local adjunct languages
and right linear tree adjunct languages, defined in Joshi, Levy, and
Takahashi (1972c), is developed, and the nonclosure of the local adjunct
languages under homomorphism is shown.

In Sections 6 and 7, the relationship of the linear context-free languages
and the local adjunct languages is studied, using the replacement operator
and mixed adjunct grammars of Joshi (1969). (Replacement rules were
introduced to take care of exocentric constituents; for example, whether he
came in I don't know whether he came.) The adjunction and replacement
operators are quite different in their generative capacities, yielding incom-
parable subclasses of the class of context-free languages. When combined,

262 LEVY

these operators still do not suffice to generate all context-free languages.
The class of context-free languages is, however, properly included in both
the classes of distributed adjunct languages, Joshi, Kosaraju, and Yamada
(1972b) and tree adjunct languages, Joshi, Levy, and Takahashi (1972c).
These latter two classes of languages can easily be shown to be incomparable.

2. DEFINITIONS FOR STRING ADJUNCT GRAMMARS

DEFINITION 2.1. A local adjunct grammar with null symbols (LAGN), G, is
(formally- described as) a list of seven items, G ~-~ (A, N, Z, 2c , 27h, Za, J),
where

A is a finite alphabet;

N is a finite (possibly empty) set of null symbols, such that A n N ~ ~ ;

27 is a finite set of basic strings over A • N;

27c ~ 27 is a set of center strings;

Z~ ~< 27 is a set of host strings;

Za ~ 27 is a set of adjunct strings;

J is a finite set of adjunction rules.

Each adjunction rule u in J is of the form u ~ (oi, a j , s~k) where ai is
a host string, ~j is an adjunct string, and ~k is a point of adjunction; each
in Z is in (./I u N)* A(A u N)*; and each point of adjunction, ~ , is to
the left or right of a symbol in _d, null symbols having no points of adjunction.
In writing adjunction rules, each adjunction point will be either lq or rq
with q designating the qth nonnull symbol counting from the left of the
host string. (It was shown by Joshi, Kosaraju and Yamada (1972b) that
every LAGN can be put in standard form where each string has at most
one null symbol. Further, in such a standard form the null symbol can
always be made the leftmost symbol in the string. Henceforth, only standard
form LAGN's will be used.)

Remark. A local adjunct grammar (LAG) is an LAGN where N = ~.

EXAMPLE 2.1. The following is an LAGN:

G = (A, X , X , 27°, 27h, Zo, J);

A = (a, b};

STRUCTURAL ASPECTS OF L A L ' s 263

z = {~ab, ~ab},

& = {~ab},

& = & =Z;

J = {(~ab, flab, rl), (~ab, c~ab, rl) }.

In defining the language generated by a local adjunct grammar, reference
must be made to the syntactic classes of strings in Z. I f a string of syntactic
class P is adjoined to a string of syntactic class Q, by some rule in J, the
result will be in syntactic class Q. Markers are used in the language generation
process for identification of syntactic classes, as follows: Let -d -~ {d~ I as
is in A}; let 2~ r = {#i I ~ is in N}; and let e denote the empty string.

The following homomorphisms are introduced. 1 Each homomorphism
is defined in terms of its operation on symbols; the extension to strings and
sets of strings are the usual ones: H (x y) = H (x) H (y) ; H (S t t3 S ~) - -
H(s1) u H(s~).

(i) D is a homomorphism which deletes unmarked symbols and
leaves marked symbols without their marks. D is defined for strings over
A t 3 A u N~3 N b y :

D(x) -~ e for x in A u N,

D(N) = x for ~ i n A t d N .

EXAMPLE 2.2. D(~adb~) = vac.

(ii) H is a homomorphism which removes markers and deletes null
symbols. H is defined for strings over A k3 _~ u N U ~ .

H(x) -= E for x in N u P),

H(x) = x for x i n A ,

H(~) = x for ~ i n A .

EXAMPLE 2.3. H(va6) ~ ab.

(iii) I is a homomorphism which adds markers. I is defined for strings
over A u N.

I(x) = ~ for x i n A u N .

1 These homomorphism operators were not used in the original local adjunct
grammar paper (Joshi, Kosaraju, Yamada, 1972b).

264 LEVY

EXAMPLE 2.4. I(vab) = ~,~6.

S is a substitution operator corresponding to adjunction, having three
operands, one of which is a subscript on S. In Se(X, Y), X and Y are strings
and ~ is either lq or rq. Se(X, Y) is the string obtained by adjoining Y to
the left or right of the qth symbol of A in X as s e is l a or ra, respectively.

EXAMPLE 2.5. S,~(~db~de, fg) = ~dbgfgde.

Now the definition of a local adjunct language with null symbols is as
follows.

DEFINITION 2.2. A local adjunct language with null symbols (LALN) is
the set of strings over _// such that each string is derived from some string
in Z c . Formally, L = H(~(Zc)) where £' is defined recursively as:

(i) If ~, is in Z, then I(~i) is in ~(ai).

(ii) I f a, is in 27(a~) and a~ is in £'(al) and (a~., a l , s ~) is a rule in J, then

S~(oi, H(a~)) is in ~'(~.).

(iii) Nothing else is in 2 (~) unless it follows from (i) and (ii).

For any a in Z, 2(~) is the syntactic class of a. 2(Zc) is the union of the
syntactic classes of all strings in Z c ; i.e., £'(Zc) = (,Jo~n~:o 27(a).

Note that if ~i is in ~(aj), then D(ai) = ~. .
A local adjunct language (LAL) is the language derived from an LAG

(i.e., N = ~) .

EXAMPLE 2.6. Let G be the L A G N given in Example 2.1, thenL(G)
{x Ix is in a(a v b)*b and which is a balanced parenthesis string when a
is considered a left parenthesis and b considered a right parenthesis}.

Note that the language of Example 2.6 could have been derived from a
local adjunct grammar (without null symbols), using the grammar G =
(A, N, 27, • , 4 , & , J) with A ~ {a, b}, N : ~ , Z : Zh = & = & ~ {ab}
and J = {(ab, ab, rl) }.

3. ROLE OF THE NULL SYMBOLS

In the LAGN, G, given in Example 2.1, null symbols were used but
it was noted, following the description of the derived language, L(G), given
in Example 2.6, that an equivalent grammar without null symbols generates

STRUCTURAL ASPECTS OF L A L ' s 265

the same language. Indeed, it is often the case that the null symbols serve
in a convenient, but not essential, role.

The null symbols were originally introduced to allow proofs that:

(i) the union of two LALN's is an LALN;

(ii) the concatenation of two LALN's is an LALN;

(iii) the Kleene closure (without (~}) of an LALN is an LALN.

These facts, together with the observation that every finite set of strings
is an LALN, suffice to show that the (E-free) regular sets are LALN's.

The presence of null symbols in strings of the grammar corresponds to
different structural descriptions of the basic sentences of the language, and
one would prefer to have a unique structural description for each basic
sentence in the language. 2 Joshi et al. (1972b) conjectured that for any LAGN
one could find an LAG (without null symbols) which was weakly equivalent.
This conjecture is refuted by Theorem 3.1, which shows that the class
of LAL's is properly contained in the class of LALN's.

The result that null symbols do increase the weak generative capacity
of the language is established by a diagonalization proof. A grammar, Go,
with null symbols is exhibited, and it is demonstrated that there is no weakly
equivalent grammar without null symbols. In somewhat greater detail, a
language L' properly contained in L(Go) is exhibited, such that in any
grammar, without null symbols, any rule used to generate a word of L'
must satisfy a particular predicate. It is then possible to establish a total
ordering of rules satisfying the given predicate. Then, given any finite set
of rules of this form, there is an effective construction of a word in L ' not
generable by the grammar in question.

Let G O be the following LAGN:

A = {a, b, c, d, e, f}

N = {~}

Z -~ Z¢ = Sn = ~ = {ab, ixab, cd, tzcd, ef, lzef}

J = set of adjunction rules = {(ab, cd, rl) , (ab, tzcd, rl),

(ab, ef, 12), (ab, ~,ef, l~),
(cd, cd, rl) , (cd, Izcd, rl),

(ca, el, z~), (cd, ,ef, 12),

2 Of course, even with unambiguous interpretation of the basic sentences, there are
still ambiguous local adjunct grammars.

266 LEVY

(ef, ca, r~), (el, ~cd, r3,
(ef, el, l~), (el, ~ef, l~),
(gab, ab, rl) , (ixab, i~ab, rl) ,

(~ab, cd, Z~), (t~ab, ~cd, l~),
(txcd, ab, rl) , (~cd, t~ab, rx),

(~d, cd, l~), (~d, ~ed, l~),
(.el, ab, r~), (~ef, ~ab, ~),
(t~ef, ca, le), (l~ef, twd, l~)}.

G O has six host strings. For each host string there are four adjunction
rules. Altogether there are 24 string adjunction rules in the grammar. What
follows is a proof that, in Go, the null symbols play an essential role, since
it will be shown that no grammar Go' , without null symbols, can generate

L(ao).

DEFINITION 3.1. Let L" be the Dyck Language (without null string)
defined by considering (a, b), (c, d), and (e , f) to be matching pairs. I f x
is in L", then x is said to be balanced. I f every word in a language is balanced,
then the language is balanced.

DEFINITION 3.2. Let L ' = L" C~ (a v c v e)* (b v d v f)* . I f x is in L' ,
then we say that x is linearly nested.

DEFINITION 3.3. A preimage of a word x -~ XlX2 "" xn is any word in
N*xlN*x2N* "" N*x~N*.

PROFOSlTION 3.1. L(Go) is balanced.

Proof. Each string in Z is a preimage of a balanced word and each
string formed by adjoining balanced strings to the preimages of balanced
strings is the preimage of a balanced string. Thus, under the homomorphism,
H, which erases null symbols, every string in L(Go) is balanced. Q.E.D.

LEraMA 3.1. L ' CL(Go). (Every linearly nested word is in L(Go).)

Proof. Let h be the homomorphism, h: a ~ b, c ~-~ d, e ~+f , extended
to strings over {a, c, e}, as usual. The lemma claims that among the linearly
nested words in L(Go) can be found any word of the form xy n where x is
in (a v c v e)*, y -~ h(x), and yR is the mirror image of y. Proof is by
induction on I x l. I f Ix I = 1, then a preimage of x[h(x)] n is generable

STRUCTURAL ASPECTS OF L A L ' s 267

in one of the syntactic classes of Go, since x[h(x)] R is a preimage of itself
and is in 2J c . Suppose that for [x [= k, a preimage of x[h(x)] R is in the
syntactic class of c~qh(q), where q is in A and a is in N k3 {e}. Then for any p in
A one can find a fi in N w {~} such that a preimage of px[h(px)] R is in the
syntactic class of fiph(p). This is so because the string adjunction rules
of G o have been so constructed. (In particular, if q = a or q = c, choose
fi ~-/z; if q ~ e, choose/3 ~ the empty string). Q.E.D.

The proof that no local adjunct grammar, G o ' (without null symbols)
can generate L(Go) is developed by considering the set of rules necessary
to generate all words in L ' while generating only words in L(Go). It will be
shown that given any local adjunct grammar, Go' , without null symbols,
such that L(Go') C L(Go) , a string x can be effectively constructed so that

x is in L' c~ L(Go').

DEFINITION 3.4. A rule u is said to be admissible iff u -~ (0"i, crj, ~)
implies that ei is linearly nested, aj is linearly nested, and if ~:~ = r~ then a
n ~- 1/2] oil while if ~ = l n then n = 1/21 (ri] -t- 1, where [0"il is the
length of a i . (Informally, a rule is admissible iff the host and adjunct strings
are linearly nested, and adjunction occurs "in the middle of the string.")

LEMMA 3.2. Any derivation in Go" of any word in L' uses only admissible
rules.

Proof. Each host or adjunct string, 0", used in derivation of any word
x = xlx 2 ".. x~ is of the form

a = x i l x i ~ ' " x i , where 1 ~ i 1 < i ~ < - - - < i k ~ n .

Thus, x in (a v c v e) * (b v d v f) * implies a = a l a z is in (a v c v e) *
(b v d v f)* , where cr t is in (a v c v e)* and a 2 is in (b v d v f)* . I f a is
not linearly nested, then either I el I @ [az I or I O'1 I = I O'2 I but the symbols
are not in symmetrically located positions for balancing. I f [0"1[v~ [a~f
then it is easy to generate unbalanced strings, hence, by Proposition 3.1,
words not in L(Go). Otherwise, 10"11= 1%1 and the symbols are not
symmetrically positioned, so if 0" is a center string, it is not in L(Go) , while
if ~ is an adjunct string, any word formed immediately by its adjunction
is not in L(Go).

Finally, if 0"1 = [h(a2)] R, and a word in L ' is being generated, adjunction
must occur in the middle to preserve the linear nested property. Q.E.D.

[x [denotes the length of the string x.

643]z3[3-5

268 z ~ w

Let S be the set of admissible rules in Go'.

DEFINITION 3.5. (Ordering on strings). Let cr~ <~ a~ if

(i) l ~ l < la;
o r

(ii) I o~ I = I ~ and cri lexicographically precedes a~.

cr/<~cr~ if a~ < ~ a j or a/ = ~ j .

FACT 3.1. <~ is a total ordering on strings. We extend <~ to rules in Go'.

DEFINITION 3.6

(i) host(u,)

(ii) host(u~)

(i/i) host(u/)
where I ~1 = q if

(Ordering on rules), ui <~ u~. if

<~ host(us) or

= host(u~.) and adjunct(u/) <~ adjunct(uj) or

= host(uj) and adjunct(u/) = adjunct(uj) and I sei I < [g:~" [,
= ra or lq.

FACT 3.2. <~ is a total ordering on rules in S.

Remark. In rules in Go', there might be a pair of rules (e l , a2, lq),
(e l , cry, rq) which are not ordered by < ~ . However in S, q is either 1/2 i a l]
if ~ is r~, or 1/21 a l l + 1 if ~: is lq.

DEFINITION 3.7. hd(a) -~ {x Ix is in A and H (a) = xa'}. (hd(cr) is the
first nonnull symbol of a.)

DEFINITION 3.8. n(a) = { y l (3 u i n S)(a = hos t (u)&y = hd(adjunct(u))}.

LEMMA 3.3. For any ~r in Go', [n(e)l ~ 2.

Proof. Let L be a language. We say that L has property A , if for any
x - xlsls2s~x 2 in L with h , s2, sg balanced, either h d (s l) = hd(s2) or
hd(s~) - hd(s~) .

Recall that G 0' is such that L(Go') C L(Go). In Go, each derivation consists
of a sequence of adjunctions of balanced words to preimages of balanced
words. Now for each ~ in Go,] n(a)t ~ 2. Also, the rules in G o are such
that if xlx ~ is in syntactic class P and adjunction can be made between x 1
and x2 of strings in (alA* v a2A*), then a sequence of adjunctions can

STRUCTURAL ASPECTS OF L A L ' s 269

yield words in Xl(~l)g(¥/2)gx¢, o r words in x,(~=)*(gll)*x2, where
W i = {a I hd(a) = ai and a is balanced}. Thus, L(Go) has property A.

Since L(Go') C_L(Go), L(Go') has property A. But if I n(~)l = 3 in Go',
we can generate words inL(Go') of the form x,&s2ssx~ such that hd(sl) ~ hd(s~)
and hd(s~) :/: hd(sa). Thus, it must be that [n(a)l ~< 2. Q.E.D.

DEFINITION 3.9. re(a) = {X I x is in {a, c, e}, x is not in n(a), & (Vy)(y not
in n(e) implies x ~< y)}. That is, re(a) is the least y in {a, c, e} which cannot
be the head of an adjunct to a in the rules in S.

LEMMA 3.4. Given any local adjunct grammar, Go', without null symbols,
such that L(Go') C_ L(Go) , then L(Go') :/: L(Go).

Proof. From the description of Go', an x in L ' which is not in L(Go')
can be constructed. First note that by Lemma 3.2, only the set of admissible
rules, S, need be considered. Also, the rules in S may be ordered by the
total ordering, < , , as u s , u2 , u~. (Fact 3.2).

Let host(u;) T V, T P(uO s(ui) where I p(ue)l = l s(ui)]. Define

0 "1 = P (u l) ,

~-* = ~ m (V O ,

V r+l = {Uj I (~ x) (V j = "i'eeX and (Vh)(3x)(Ve -= r"x implies j ~ k)},

u~+l = tthe unique member of v r+l if v ~+1 is nonempty,
{undefined otherwise,

where

and

G,+I : t p(u~+l) if v,+t # ~ ,
(undefined otherwise,

r,+l = ta"+lm(host(ur+l))if v r+l # 2~,
(undefined otherwise.

The preceding recursive construction of at, rr, W', v ~ starts with u 1 and
finds r 1 as the prefix of some string in L ' which cannot be generated with
ul as the last applied rule but must be generated by a later rule u 2 in which
host(u ~) is of the form rlx. For such a rule, there will be a string with r 2
as prefix which is not generable by u 2, or any rule < ~ u 2, as the last applied
rule. Continuing in this way', v ~+~ is the singleton set containing the least

270 LEVY

rule in which the host has a prefix arm(host(u*)) if such a rule exists; otherwise
v r+: is empty.

Now, let # = {rUx[h(zMX)]R i M is the largest index for which ~-r is defined
and x in (a v c v e)* chosen so that I ~ [> longest string in 27e}.

By construction ~.u cannot be the prefix of any string generated by the
rules in S. Yet ~ is in L'. Thus, ~ is the desired word whose construction
has been asserted; i.e., 6 is in L' but 6 is not in L(Go'). Therefore, L(Go') =/:
L(Go). Q.E.D.

F rom L e m m a 3.4, we immediately have the following theorem.

THEOREM 3.1. L A L C L A L N . (Null symbols increase the weak generative
capacity of local adjunct grammars.)

Theorem 3.1 while establishing a role for null symbols leaves the following.

Open question. Is every regular set an LAL; i.e., can every regular set
be generated without the use of null symbols ?

Also of interest are the questions of whether the L A L ' s are closed under
union, concatenation, or Kleene star.

4. ONE-SIDED L A G N ' s

I t is often the case that we can construct an adjunct grammar for a given
language which requires only one-sided local adjunction (in which case
there is no distinction between left and right). In this section it is proved
that L A G N ' s with both left and right adjunction are more powerful than
L A G N ' s with one-sided adjunction only. These results carry over to the
case of mixed adjunct grammars, discussed in Section 7. Several definitions
are required.

DEFINITION 4.1 (Joshi et al. (1972b)). A derivation tree has a set of nodes,
each node labeled with a string in 2? and defined recursively as follows:

(i) A single node labeled by a string in Z is a derivation tree.

(ii) I f T is a derivation tree, then T ' is a derivation tree if T ' is
obtained from T by adding a node labeled a, and a branch labeled ~:k,
directed f rom the node labeled a to some node in T.

(iii) Nothing else.

T is a derivation tree in G if each branch in T corresponds to a rule in G;

STRUCTURAL ASPECTS OF L A L ' s 271

i.e., if ai and a t are labeled nodes and ~ is a labeled edge from a t to ~ , ,
then (~ , a j , ~) is a rule in G. The convention is adopted that all edges
directed to a vertex are ordered so that if an edge from ~1 labeled ~:1 occurs
to the right of an edge from ~2 labeled ~:2, then either ~1 -~ ~2 or ~:2 corre-
sponds to a point of adjunction to the left of ~1 • Moreover, when ~3" = ~
and if they are both left adjunction points , and if ~:j labels a point to the
right of ~:k, then the string derived at set is adjoined before the string derived
at ~1~. Dually, when se~ . = ~7~ and both are right adjunction points, and ~j
labels a branch to the left of ~:~, the string derived at ~. is adjoined first.

Finally, T represents the derivation of a word in L(G) if T is a derivation
tree representing a derivation in G and the root of T is in 2J,.

EXAMPLE 4.1.

A = {a, b}, N = ~ ,

X = • = X~ -= Xa = {ab, aa, ha},

J = {(ab, aa, h), (ab, ba, r~), (ab, ab, rl), (ba, ba, r2) , (aa, aa, r2)}°

aa ha

\ /
aa ab ba

ab

FIG. 1. Derivation tree for aaaaaababbab. (The string built up at the interior
node is aaabab.) Fig. 1 follows Example 4.1.

DEFINITION 4.2. Let T, T ' be derivation trees in G, an occurrence of T
in T ' is a tree T obtained from T" by deleting (0 or more) branches and
nodes of T' . T is said to occur at a node x in T ' if T occurs in T ' and the
root of T is x. T h e string derived by T will be denoted e(T).

DEFINITION 4.3. I f a~ and a 2 are strings, an occurrence of al in (r 2 is a
string H(a l) obtained from a 2 by deleting (0 or more) symbols of a 2 . Note
that null symbols of (r 1 need not occur and that the port ions of H(al) occurring
in ae need not be contiguous.

]~XAMPLE 4.2. a 1 = vabc; a2 = izadbecc. There are two occurrences of
a 1 in ~2 as underl ined: Ix adb_ecc, iza_dbec_c.

272 L~VY

A string ~ occurring in a derivation d in G' means that a occurs in some
basic string a ' in G' and that a ' labels a node of the derivation tree for d.

Let

T = ab cd 7"1-----

\ /
ab

T' = cd ab T 1' =

\ /
cd

and let G be the following L A G :

A = {a, b, c, d},

ab T~ -~ cd

ab ab

cd T 2' = ab

cd cd

Z = Z , = Z h = ,Y'a = {ab, cd},

J = {(ab, ab, rl) , (ab, cd, 12), (cd, ab, 12) , (cd, cd, rl) }.

LEMMA 4.1. Let G be as given above, and let G' be any one-sided L A G N
such that L(G') -~ L(G). Let l be the length of the longest center string of G'.
Whenever, in a derivation of z in G, such that I z [> l, the subtree T occurs,
then in G', ~(TI) or a(T2) must occur in a string in the grammar G', in any
derivation of z. Similarly, whenever T ' occurs in a derivation, a(TI') or a(T~')
must occur.

Proof. Assume that T occurs in G but neither cr(T1) nor a(T2) occur
in a corresponding derivation in G'. Then the occurrence of ~r(T1) and
~r(T~) in derived strings in L(G') must be the result of adjunction. This
could occur only if (i) strings of the form axb and cyd can both be adjoined
at the same point, or (ii) a string of one of these forms can be adjoined
and act as a host for the other. Either of these possibilities is easily seen
to lead to the generation of a string not in L(G). Q.E.D.

LEMMA 4.2. In the set of derivation trees of depth k > l = max{J a r I ~
in Z~} over G, there is a set of trees { Ti} each Ti being of depth k, such that
at least one of (~(Ti)} must occur in a string in any one-sided grammar for L(G).

Proof. Call a tree which at each node except for the terminal nodes
has an occurrence of T or T', a comPlete tree. A tree, all of whose terminal

STRUCTURAL ASPECTS OF LAL's 273

nodes are at the same depth, is called a uniform tree. Let TA be a tree in G
and TB a tree in G' such that a(TA) = a(T~). We claim that for each complete
tree TA there is an occurrence in T~ of a(Tc) where T c is a tree which occurs
at the root of T~, and has, as one of its leaves, a leaf of TA •

By the preceding lemma, for derivation of words of length > l , a(T1)
or a(T~) must occur in the root label of a(Ts). Assume that Ta is a uniform
complete tree of depth h' > k and assume that there is in the root label
of T B an occurrence of cr(Tc) of a tree Tc of depth k at most, where T c
is a subtree of TA occurring at the root of TA • Let n be a terminal node
of T c at depth k and let TD be the subtree of T A occurring at n. Now, either
T or T ' occurs at the root of T . , and both axb and cyd cannot be adjoined
in G', which is a one-sided adjunct grammar, to the same point of a(Tc),
or we could generate a string not in L(G). Thus, at least one of these must
occur in the root label of TB. Thus, the tree whose derived string occurs
in the root label of TB must have, as one of its leaves, a leaf of TA • Q.E.D.

THEOREM 4.1. There is an L A L which is not generable by any one-sided
L A L N .

Proof. By the preceding lemma, there is no fixed upper bound on the
length of a string in a one-sided grammar for L(G). Hence, no one-sided
LAGN. Q.E.D.

5. HOMOMORPHISM OF L A L N ' s

In this section it is shown that the L A L N ' s are not closed under homo-
morphism. The question of closure under homomorphism is left open by
Joshi et al. (1972b). The proof is by way of connection with tree adjunct
grammars.

Tree adjunct grammars were defined by Joshi and Takahashi (1971)
and some related results are given in Levy (1971). The discussion here
corresponds most closely to a slightly different development given in Joshi,
Levy, and Takahashi (1972c).

DEFINITION 5.1. A tree adjunct grammar, G , , consists of a set of center
strings, ~'c, and a set of adjunct trees, ~-~. Each center tree has root labeled S,
each interior node is labeled with a nonterminal symbol, and each leaf
is labeled with a terminal symbol or e (denoting the empty string). Each
adjunct tree has all leaves except one labeled with terminals or e, and one

274 LEVY

leaf labeled with the same nonterminal as the root label; all interior nodes
are labeled with nonterminals.

DEFINITION 5.2. The set of derivation trees in G7 is defined recursively
as follows:

(i) Every center tree is a derivation tree.

(ii) I f T is a derivation tree and T' is obtained from T by detaching
the subtree T" at some internal node v, labeled V, attaching a V-tree in r A
to v, and attaching T" to the V-node on the frontier of T", then T ' is a
derivation tree.

(iii) Nothing else.

EXAMPLE 5.1. The adjunction of an adjunct tree to a derivation tree to
obtain a new derivation tree is shown in Fig. 2. T ' is adjoined to T, as
described above, yielding T".

T: S T ' : U T": S

/ l \ / \ / 1 \
a U b V U a U b

/ \ I / \
a b E V U

e a b

FIG. 2. Tree adjunction (see text).

DEFINITION 5.3. A tree is linear if at each level there is at most a single
nonterminal. A right-linear (left-linear) tree is a linear tree in which the
nonterminal at any level is the rightmost (leftmost) symbol at that level.
(A tree is one-sided linear if it is either left-linear or right-linear.) These
definitions of right linearity, left linearity, and one-sided linearity are
extended to tree adjunct grammars in the usual way.

A language is a right (one-sided) linear tree adjunct language if it is the
set of yields of the derivation trees in some right (one-sided) linear grammar.

PROPOSITION 5.1. Linear context-free and one-sided linear tree adjunct
languages are incomparable.

STRUCTURAL ASPECTS OF L A L ' s 275

THEOREM 5.]. Every L A L N is a right linear tree adjunct language.

Proof. We give a construction for the tree adjunct grammar corresponding
to a given L A L N .

(a) For each center string ~i ~-- v~x~xi~ "'" xi~ add to ~'c the tree shown
in Fig. 3a.

(b) For each adjunct string ~j ~ vjxjx~ "." xj~ construct the tree shown
in Fig. 3b.

Add to zA, for each point of adjunction v to which it applies, the tree
shown in Fig. 3c. Q.E.D.

S~ 1 xj~ Sjrl

Siz2 xj 2 S ~

/ l

x~ Sir k

c

(a)

FIG. 3.

&

Tj

&

(b) (c)

Trees used in the construction of Theorem 5.I.

276 LEVY

C: S S S

A1 B1 C1

/'~ /I /I
a A2 c B 2 e C~

A3 B3 C3

A4 B4 C4

/I /I /I
b e d ~ f E

A: A 2 A a A 4 B~ B 3 B 4

,,"I /~ /; /I /l /I
a A S c B~ e C~ c B~ e C 2 a A~

A3 B3 C3 B3 C8 Aa

A 4 B 4 C 4 B 4 C 4 A~

/I /I /; /I /I /i
b A2 d A3 f A4 d B2 f B 3 b B 4

FIC.. 4. Tree adjunct grammar of Example 5.2.

STRUCTURAL ASPECTS OF L A L ' s 277

c~ c~ c,

/1 / l
e C a a A 2 c B~

C3 A3 B3

(2, A 4 B 4

f c~ b c~ d C~

FIa. 4 (continued)

LEMMA 5.1. I f LALN's were closed under homomorphism, then the class
of right linear tree adjunct languages would equal the class of LALN's.

Proof. Modify the tree adjunct grammar so that at each level, whenever

Xi

X~,

both 32/and Xj being nonterminals, we have

Xi

/ \
a i X j

where ai is a new terminal. The set of yields of the set of derivation trees
of the modified tree adjunct grammar is an LALN, 'L ' , (the grammar can
easily be written), and the (unmodified) tree adjunct language is a homo-
morphic image of L'. Q.E.D.

Rosa Hwang (1972) has constructed the following example.

278 LEVY

EXAMPLE 5.2. The tree adjunct grammar shown in Fig. 4 generates
a language for which there is no LAGN.

The proof that the grammar given in Example 5,2 yields a language
which is not an L A L N is similar to the proof of Lemmas 4.1 and 4.2, except
that one considers a complete uniform set of trees where at each node there
is an occurrence of one of the following three trees:

ab cd ef cd ef ab ef ab

\ , l / \ l / \ l /
ab cd ef

We omit the details here.
Based on Lemma 5.1 and Example 5.2, we have the following.

cd

THEOREM 5.2. LALN's are not closed under homomorphism.

Remark. The local adjunct languages (without null symbols) are also
not closed under homomorphism. This can be seen, since it is easy to show
that every LALN is a homomorphic image of a one-sided local adjunct
language.

6. /3-LINEAR LALN's

In Joshi et al. (1972b) the relationship between the linear context-free
languages, and the LALN's was explored. I t was originally conjectured
that any language which is both an L A L N and a linear context-free language
must be regular. Recently, Hart (1973) has shown an example of a nonregular
linear context-free language which is an LALN.

In this section, a class of fi-linear LALN's is defined, and it is shown
that if L is a/3-linear LALN then L is regular.

DEFINITION 6.l (Rosenberg (1967)). A ~3-linear language is one which
can be generated by a grammar in which all productions are of the forms
V --~ TV, V ~ VT, or V --+/3 where V is any nonterminal, T is any terminal
in 27, and /3 is a distinguished terminal not in Z'. (It is a linear language
generated by a grammar in which all productions whose right side is a single
terminal have /3 as the right side of the productions.) A fl-linear LALN
is a/3-1inear language which is an LALN.

STRUCTURAL ASPECTS OF L A L ' s 279

DEFINITION 6.2. A homomorphic mapping of languages is a mapping, h,
from languages to languages which satisfies the condition h (x) u h(y) -~
h(x u y) for any languages x, y.

EXAMPLE 6.1. Let f (L) be the operation which removes all words x
such that [x t ~ 5 from a language (if they were in it). It is shown in Levy
(1970) t h a t f preserves LALN's and i lL 1 and L 2 are LALN's then (L 1 uL2)
is an LALN. Finally, f(L1) w f(L~) = f (L 1 W L2); thus, f is a homomorphic
mapping of languages which preserves LALN's.

THEOREM 6.1. Let L be a fi-LALN. (L is of the form (JiLi f lLi ' where
the Li and L i' are languages over Z, and fl is not in 2.) Let k 1 and k 2 be homo-
morphic mappings'of languages which preserve LALN's. Then (Ji hl(L~) fi k~(Li')
is an LALN.

Proof. L is derived from some finite set of center strings each of which
contains ft. Adjunctions to the right of fi do not affect anything to the left
of fi and vice versa (i.e., we can use "separate grammars" with distinguishing
null symbols for the adjuncts on each side). Hence, we are free to modify
the left and right languages independently. Q.E.D.

THEOREM 6.2. Let L be a h-linear language, expressible as a finite union in
the form ~)~ xi fi y i , and let k 1 and h~ be homomorphic mappings of languages
which preserve regular sets. Then L' = Oi kl(xi) fi ke(yi) is a h-linear language.

Proof. In Rosenberg (1967) it is noted that "the class of h-linear languages
is coextensive with the class of fi-CFL's (a]3-CFL is a context-free language
L C Z* fi X*) such that both (x I (~y)(x fl y is in L)} and {y { (x)(x f ly is in L)}
are regular sets."

Now suppose UiLi fiL i' is a fl-linear language (not necessarily an LALN)
and let h 1 , k 2 be homomorphie mappings which preserve regular sets, then
~)~ kl(L~) k~(L/) will be h-linear since it preserves both conditions. Q.E.D.

We also have the following corollary to Theorem 6.2.

COROLLARY 6.1. Let L be a h-linear LALN. (L is of the form OiL~fiLi'
where L i and Li' are languages over X and fl is not in X.) Let k 1 and k S be
homomorphic mappings of languages which preserve regular sets and LALN's.
Then (Ji kl(L~) fl k2(Li') is a fl-linear LALN.

DEFINITION 6.3. I f L is a fl-linear language, then x such that (3y)(xfly is
in L) is called a left part, and {y lx f i y is in L} denoted r(x) is called its

280 LEVY

corresponding right set. Similarly, right part and corresponding left set are
defined in the obvious way.

THEOREM 6.3. l f L is a fi-linear language, then for each left (right)part,
the corresponding right (left) set is regular.

Proof. We give the proof for a left part and its corresponding right set:
The rules for a grammar, G, forL are all of the forms: S i ---> yS~ ; Si ~ Sty;
Si -+/3, where y is any member of V r , and the start symbol is S O . If we
fix x, we can construct a new /3-linear grammar, G', which generates
L(G') = x fi r(x). Since all the rules of G' will be right-linear, L(G') will be
regular.

Let x = xlx 2 ... x m . The construction of G' is as follows:

G' = (VN', Vr', P', So(°)),

V T t = V T ; VN t = {S~ ~) I Si is in VN and 0 ~ k ~ [x t},

P ' = {S~ ~-1) --~ x~S~) [S i --+ x~S~ is in G},

w {S/k)---~ S~k)y [S, ~ S jy , y in Vr , is in G},

u m)--,/3}.

Clearly, L(G') = x f3 r(x). Q.E.D.

EXAMPLE 6.2. Let the productions of G be: {So--> aSx; S 1 --+ S2b;
S~ -+ aS 1 ; $2 -+ $2c; $2 --* dSa ; $8 --~ dSa ; $8 -+ fl}. The fl-linear
language with add as its only left part is generated by a grammar with produc-
tions: (S O ---> aS(11); S(~ 1) --~ S(~l)b; S(~ 1) --~ S~l)c; S~ 1) -+ dS(~2); S~a~'--~ dS~aZ);

COROLLARY 6.2. Let L be a ~3-linear language and x be any finite set of
left (right) parts of L. Any Boolean function of the corresponding right (left)
sets is regular.

Proof. This is a direct consequence of Theorem 6.3 and the closure
of the regular sets under Boolean operations. Q.E.D.

THEOREM 6.4. Every fi-linear LALN is regular.

The proof of Theorem 6.4 is given in the appendix. The proof is essentially
constructive, and an example of its application is also given.

STRUCTURAL ASPECTS OF L A L ' s 281

7. MIXED ADJUNCT GRAMMARS

It has been shown in Section 6 that no nonregular fl-linear language is
an LALN. Also, it was pointed out that many linear languages which are
not regular sets are non LALN's , such as {a% n In ~ 1}. Also in Levy
(1970) the following is proved.

THEOREM 7.1. Suppose that for some nonnull x, y in A*, ux~vy~w is in L
for every n ~ O, and v in A* is nonnull and contains some symbol which appears
neither in x nor in y, and for arbitrarily large k', there is an m ~ k" such that
uxmvym-~w, 1 ~ p ~ k', is not in L, then L is not an LALN.

As a direct application of Theorem 7.1 it can be shown that the grammar,
G, for arithmetic expressions in an ALGOL-like language yields a language
which is not an LALN:

G ~-(Vz~, V T , P , S) ,

V N = {S,L, T); V~- = (a, b, + , - - , ×, /} ,

P ~ { S - - ~ S + T ; S - - ~ T - - S ; S - - ~ T ; T - + L × T;

T - + L / T ; T--~ L ; L - + (S); L--~ a;L -+ b}.

The proof that G is not an L A L N is by considering {(~a) ~ I n ~ 0} ~ L(G)
and applying Theorem 7.1.

To add to local adjunct grammars the ability to nest parentheses one
is led to the use of replacement rules. Replacement rules were introduced
by]oshi (1969) to account for phrases which are not endocentric and, hence,
cannot be built up by adjunction.

DEFINITION 7.1. A mixed adjunct grammar with null symbols (MAGN)
is (formally described as) a list of nine items,

G = (A , N , Z , Z ~ , Z ~ , Z ~ , Z ~ , L R) ,

where

A is a finite alphabet;

N is a finite (possibly empty) set of null symbols;

Z is a finite set of basic strings over A t3 N U {S};

Z' c ~ ,~ is the set of center strings;

27~ ~ Z is the set of host strings;

282 LEVY

Z~ ~< Z is the set of adjunct strings;

Z~. ~ Z is the set of replacer strings;

J is a finite set of adjunction rules;

R is a finite set of replacement rules.

Each rule in J is of the form u = (ai, crj, ~), where ei is a host string,
aj is an adjunct string, and ~ is a point of adjunction; each point of adjunction
being to the left or right of a symbol in A.

Each rule in R is of the form r = <ei, at) where ei is in Zh t~ X s and
~. is in Z , . (Z s is the set o f strings over A k3 N u {S} containing exactly
one occurrence of S.)

is
EXAMPLE 7.1. An MAGN combining replacement and adjunction rules

A - ~ { a , b , c , d , e } N - ~ fg,

Z = {aXb, c, de},

Ze : {de},

Sn = {aSh, de},

S , -= Z r -= {aSh, c},

J -~ {(de, aSb, is)},

R -= {<aSb, aSb), <aSh, c>}.

The definition of the language generated by G is, informally, the set
of strings derivable from Z'c, using rules of J and R, with the provision
that whenever a string containing an S is to be used either as a replacer
or as an adjunct, it must be completely built up (i.e., have no occurrence
of S, and have all its adjuncts.)

In order to give the formal definition of the language generated by an
MAGN, we must extend some of the homomorphisms, given in Section 2,
to the symbol S, and define a substitution operation for replacement.

DEFINITION 7.2. I is a homomorphism which adds markers. I is defined
for strings over A k3 N t3 {S}

I(x) = * for x in A k¢ N ;

EXAMPLE 7.2. I(vabS) -= ~abS.

~ (s) = s .

STRUCTURAL ASPECTS OF LAL's 283

DEFINITION 7.3. R is a replacement operator. The first operand of R
is a string having a single occurrence of S, and the second operand is a
string over A. R(X, Y) is the string obtained by substituting Y for S in X.

EXAMPLE 7.3. R(aSb, cd) = acdb.

We extend the domain of the adjunction operator S, defined in Section 2,
so that in Se(X, Y), X, Y are strings over A w 2 /w N w fir u {S}.

DEFINITION 7.4. A mixed adjunct language with null symbols (MALN) is
defined as H(2)(Z,)), where 2) is defined recursively as follows:

(i) If ai is in 27 -- 27s, then I(a/) is in 27(~,). If ~i is in 27s, then I(ai)
is in Z's(~i).

(ii)(a) If ai is in ~s(%'), an is in £'(%) and @j, a,> is in R, then
R(a/, n(%)) is in 2(~) .

(b) If ~, is in 2 , (~,) , ~ is in 2(~1) and (~;, ~1, ¢) is in J, then
Se((~i, H(%)) is in 2s(aj).

(c) If q i is in 2)(aj), an is in 2(al) and (cry, oh, ~:) is in J, then
Se(cri, H(a~)) is in 2(aj).

(iii) Nothing else is in (ai), or ~s(ai) unless specified by (i) and (ii).

EXAMPLE 7.4. The language generated by the MAGN of Example 7.1 is

L = {da~¥bnlan:cb ~ "'" a~cbn~d[h >/0; ni >~ 1, 1 <~ i ~ k}.

DEFINITION 7.5. A simple replacement grammar with null symbols (SRGN)
is an MAGN where J, the set of adjunction rules, is empty. The language
it generates is called a simple replacement language with null symbols (SRLN).
(Note: Similarly an LAGN is an MAGN whose set of replacement rules
is empty.)

THEOREM 7.2. L is an SRLN iff L is a linear (e-free) context-free language.

The proof of Theorem 7.2 is straightforward and is given in Levy (1970).
LALN's and SRLN's are incomparable, and both contain all regular sets.
The language of arithmetie expressions, whose grammar was given earlier
in this section, is an MALN but not an LALN or SRLN.

THEOREM 7.3. There is a context-free language which can be generated
by a mixed adjunct grammar but which cannot be generated by adjunction
rules alone or replacement rules alone.

643123/3-6

284 LEVY

Proof. The language

L ~ {anlpb ~1 ... a~kpbn~cd~n~qe ~ "" d~Zqe ~] ni ~ 2, mi ~ 2, k ~ 1, l ~ 1

is generated by a mixed grammar with rules

{(c, dSe, rl) , (c, aSb, 11), (aSb, aSb), (aSb, apb), (dSe, dSe), (dSe, dqe)}.

Local adjunction rules alone cannot generate this language by Theorem 7.1.
Replacement rules alone cannot generate this language by Theorem 7.2.

Q.E.D.

We state without proof the following.

THEOREM 7.4. There is a context-free language which cannot be generated
by combined use of replacement and local adjunction rules.

The language L = {anpbncdmqe m] m >/0, n / > 0) is such a language. In
Levy (1970) an algorithm is given for forming a distributed adjunct grammar
with null symbols (DAGN) for any mixed adjunct language. However, in
Levy (1971), it was proved that, more generally, for any context-free language
a DAGN can be effectively constructed, and the MALN's are a subclass
of the class of context-free languages. In Joshi (1972c) the mixed adjunct
grammars have been used as the base component of a transformational
grammar.

8. CONCLUSION

The major results given here are Theorems 3.1 and 5.2, each of which
resolves an open question in the theory of adjunct grammars. As a con-
sequence of Theorem 3.1, which states that null symbols increase the
generative power of local adjunct grammars, the relationship of the local
adjunct grammars (without null symbols) to the regular sets is not known.

Section 4 clarifies the roles of left and right adjunction. In Section 6,
the relationship of linear context-free and local adjunct languages is con-
sidered, and it is shown that the fl-linear languages (Rosenberg, 1967)
which are LALN's are all regular sets, although, in general, the class of
linear context-free languages which are LALN's properly includes the
class of regular sets (Hart (1973)).

Finally, in Section 7 the mixed adjunct grammars with local adjunction
and simple replacement rules are defined and shown to generate a proper
subset of the class of context-free languages.

STRUCTURAL ASPECTS OF L A L ' s 285

APPENDIX

THEOREM 6.4. Every ~9-linear L A L N is regular.

Proof. Every /9-linear L A L N , L, is expressible as a finite union L =
~Jiin, xi fiYi where x i ,y~ are LALN' s . L can then be rewritten as a union
of disjoint terms, L = UJ,k x~/gYk, where j, k range over all members of
the power set o f / , and x~/gy~ denotes (N,:~n~ x~) fi (N~n 7~ Y~). (e.g., x{L~}/gY{~,a}
denotes (strings in both x~ and x~)/9 (strings in both y~ and Ya)). Note that
x~- (3 x~z = ~ if j~ v4 j~ and y ~ (~ ye~ = 2~ if k~ 4= k~. We claim that
x . ~ye is contained in a regular set R~,q, which is contained in L. Since
there are only finitely many members of the power set of I, it will then follow
that

L = U xj/gyT~ C ~) R~,k CL.
j , k J,k

Hence, L = (3J,7~ Rj,~ is regular.
Next, we show that x~/9 Ye is contained in a regular set which is contained

in L. Suppose that x~/gyq C l(yq)/9 r(x~) -~ L' C_L. Then L ' is regular,
since l(yq) and r(x~) are regular. Otherwise, x~/gyqC_L (and, surely,
xrflyqC_l(yq)/gr(x~)) and there are Xs,yt such that XsfiyqC_L and
x~ /gy tCL but L 1 =l(yq)/gr(x~) is not a subset of L. Hence, we must
find a regular language, R~.q, smaller than L 1 , such that R~.~ is contained
in L. Let h 1 be the homomorphism on languages which maps everything
in l(yt) into itself, and everything else to ~ , and h~ be the homomorphism
which maps everything in r(x~) into itself, and everything else to ~ . Now
x~/g yq C_ h~(l(yq)) /9 h~(r(x~)) and either h~(l(yq)) /9 h2(r(x~)) C_L or we may
find a new pair of elements and repeat the construction.

Since 21 is a finite set, the process must conclude after a finite number
of steps. Q.E.D.

EXAMPLE 6.3. We illustrate the construction in the preceding theorem.
Let L = aq/9 Yl o x2/9 Y2 be a/?-linear LA LN , and let

X l r ~ X l ~ X2

X2 t ~ "~1 ('~ N2

x[2 = xl n x~

Yl' ~- Yx N 372,

Y2' = 371 n Y2,

Y[2 ----- Y~ n Y2-

L may be represented by a modified Venn diagram, as shown in Fig. 5.

286 LEVY

Fm. 5.

X l t

X 2"

Xl2

y_(
x;3yl '

/////!///
Ys' [Yl2

/ / / / / / / / / x~'~y'~

x(f ly (x(fiy12

~y~' xh3yh

Diagrammatic representation of the language of Example 6.3.

The crosshatched areas of Fig. 5 are necessarily empty. (We assume,
in this example, that all of the xj', y~' are nonempty. But the argument
is essentially unchanged if some of these are empty.)

To show that x~zf3y~CL' C L such that L' is regular: Note first that
l(y~) fi r(x~) is not contained in L if all of the x/, Yk' are nonempty. Let
x ~ , 3'1' be the elements corresponding to x , , y, in the proof of Theorem 6.3.
Then

r(xh) = y ; v y ; u y h ,

Now let

t l (yl ') = x 1' U x12.

hi : xl' ~+ xl" ; x (~-~ ;~ ; x'l~ ~-~ x~ ,

t . s p

NowL1 = xl' fl Yl' ~) xl' ~ Yl~' U x12' fl yl ' u x~ ~ ys' U x'ls ~ y'l~ . L 1 may be
represented as shown in Fig. 6.

x (

xh

Yl' Ys'

xl"fiYl' / / / / / ! / / /

x;213yl" x~sflYl~

Y12'
p t .

X l / ~ Y 1 2

~h3yh

Fio. 6. Diagrammatic representation of L1 in Example 6.3.

Again L ' = hl(l(y'l~))[J hs(r(x~2)) is not contained in L since x t' [3y 2'
is contained in L' but not in L. Choosing the elements x'l~ , yz', we have

r(x'l~) = yx" u y~" u Y'12,

l(ys") = x~2.

STRUCTURAL ASPECTS OF LAL ' s 287

Now applying the required homomorphism, we have

L~ = x[2 B Yl' u x;2/~ y~' w xi~ 5 Yi~ which is p-linear.

Thus, x[~ is regular by Theorem 6.3, and Yl' u y (td y[e is regular by Theo-
rem 6.3. Thus, Le _C L is regular. So x[~ fi Y[2 C L~ _C L, as claimed. Q.E.D.

Remarks. It can also be proved directly that if any B-linear language
can be expressed as a finite union L = Ui xi fdyi (xi, Yi languages) then
L is regular. Note that this formulation does not mention LALN's and has
Theorem 6.4 as a corollary.

RECEIVED; April 7, 1972

REFERENCES

HARRIS, Z. S. (1961), "String Analysis of Language Structure," Mouton, The Hague.
HaRms, Z. S. (1968), "Mathematical Structure of Language," Mouton, The Hague.
HART, J. M. (1973), An infinite hierarchy of linear local adjunct languages, J. Comput

System Sci., to appear.
HWANC, R. (1972), private communication.
JOSHI, A. K. (1969), Properties of formal grammars with mixed types of rules and

their linguistic relevance, Proceedings of the Second International Symposium on
Computational Linguistics, Sanga Saby, Sweden.

JosI-iI, A. K. (1972a), A class of transformational grammars, in "Formal Language
Analysis" (M. Gross, M. Halle, and M. P. Schutzenberger, Eds.), Mouton (Series
Janua Linguarum), The Hague.

JOSHI, A. K., KOSARAJU, S. R., ANn YAMAOA, H. (1972b), String adjunct grammars,
Information and Control 21, 93-Ii6, 235-260.

JOSHI, A. K., LEVY, L. S., ANn TAKAHASm, M. (1972c), A tree generating system,
Proceedings IRIA Colloquium on the Theory of Automata, Languages, and Program-
ming, Paris.

JOSHI, A. K. AND TAKAHASHI, M. (1971), A characterization of the derivation trees of
a context-free grammar and an intercalation theorem, Moore School Technical
Report, University of Pennsylvania, Philadelphia, PA.

LEVY, L. S. (1970), Generalized local adjunetion and replacement in adjunct languages,
Moore School Report No. 70-29, University of Pennsylvania, Philadelphia, PA.

LEVY, L. S. (1971), Tree adjunct, parenthesis, and distributed adjunct grammars, in
"Theory of Machines and Computations," pp. 127-143, Academic Press, New York.

ROSENBERG, A. L. (1967), A machine realization of the linear context-free languages,
Information and Control 10, 175-188.

