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quantities for the problem of the torque-free gyrostat. If the conditions of this algebraic
method are not fulfilled then the Lyapunov stability cannot be decided on using the
specified set of conserved quantities.
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1. Introduction

A very important problem in the theory of differential equations is the problem of stability. A very useful tool for
determining the stability of an equilibrium point is Lyapunov’s direct method connected with the Lyapunov functions. A
natural candidate for being a Lyapunov function is a conserved quantity. In a lot of examples coming from mathematical
physics, we identify a set {F1, . . . , Fk} of conserved quantities. In many situations they are not positive definite functions
at the equilibrium points of interest. In this situation, a first step towards deciding whether the equilibrium point is
stable is searching for a Lyapunov function of the form Φ(F1, . . . , Fk), where Φ : Rk

→ R is a smooth function. A function
Φ(F1, . . . , Fk) is a Lyapunov function if and only if it is a positive definite function. In stability theory, some important
methods for constructing positive definite functions using conserved quantities are known.We recall the so-called ‘‘Chetaev
method’’ presented in [1] and somemethods which appeared in the context of Hamilton–Poisson systems. In 1965 Arnold’s
method was introduced; see [2]. At the beginning of eighties the energy–Casimir method was developed (see [3,4]) and
in 1998 the paper [5] presented the Ortega–Ratiu method. In [6] the equivalence of Arnold’s method, the energy–Casimir
method and the Ortega–Ratiu method is proved.

If there exists, for an equilibrium point, a positive definite function of type Φ(F1, . . . , Fk), we say that the equilibrium
point is stable with respect to the set of conserved quantities {F1, . . . , Fk}. In 1958 Pozharitsky (see [7]) proved that it is
sufficient to study the function ∥(F1, . . . , Fk)∥ in order to decide whether an equilibrium point is stable with respect to the
set of conserved quantities {F1, . . . , Fk} (see [1]). Another method for deciding whether an equilibrium point is stable with
respect to the set of conserved quantities {F1, . . . , Fk} (see [1]) is given by an algebraic method which reduces to studying
whether the equilibrium point xe is isolated in the set of all the solutions of the algebraic system F1(x) = F1(xe), . . . , Fk(x) =

Fk(xe). We also show that if the equilibrium point xe is not isolated in the set of all the solutions of the algebraic system given
above, then it is impossible to construct a Lyapunov function in xe using the set of conserved quantities {F1, . . . , Fk}.We apply
this algebraic method to decide on the stability of an equilibrium point with respect to a set of conserved quantities for the
problem of the torque-free gyrostat. In Section 2 we present some notions and results on stability theory which we apply in
the study of our example.
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In Section 3 we present the mathematical model of a torque-free gyrostat and we give a set of two functionally
independent conserved quantities. We find the set of uniform rotations and we first study their stability with respect to
a single conserved quantity. For the cases where the vector of the gyrostatic moment is situated along a principal axis of
inertia of the gyrostat, we study the stability of a uniform rotation with respect to the set of two conserved quantities. We
prove that a uniform rotation is stable with respect to the given set of conserved quantities if and only if it is stable in the
sense of Lyapunov. It is interesting to see that there exist some singular cases for which we cannot decide on the Lyapunov
stability of a uniform rotation using the algebraic method or the linearization method.

In a future studywewill apply the algebraicmethodwhich is used in this work to the problem of the rotational motion of
a gyrostat in the presence of an axisymmetric force field. We take advantage of the set of conserved quantities found in [8].

2. Lyapunov’s direct method based on solving algebraic equations

We consider an open set D ⊂ Rn and the locally Lipschitz function f : D → Rn which generates the differential equation

ẋ = f (x). (2.1)

We denote by x(·, x0) the maximal solution of the above differential equation which verifies the initial condition x(0, x0) =

x0. A point xe ∈ D is an equilibrium point of (2.1) if and only if f (xe) = 0. An equilibrium point xe ∈ D is stable (or stable
in the sense of Lyapunov) if for all ε > 0 there exists δ > 0 such that for all y in the ball B(xe, δ) and t ≥ 0 we have
∥x(t, y) − xe∥ < ε (see [9]). The most important result for proving stability of an equilibrium point is given by Lyapunov’s
direct method.

Theorem 2.1. If there exists a continuous function V : D → R satisfying the conditions: V (xe) = 0, V (x) > 0 for x in a
neighborhood of xe with x ≠ xe and t → V (x(t, y)) is a decreasing function for all y ∈ D, then the equilibrium point xe is stable.

A continuous function which satisfies the conditions (i) and (ii) is called a positive definite function at the equilibrium
point xe. A continuous function V satisfying the hypotheses of the above theorem is called a Lyapunov function at the
equilibrium point xe. We introduce the following notion of stability.

Definition 2.1. The equilibrium point xe of (2.1) is stable with respect to the set of conserved quantities {F1, . . . , Fk} if there
exists a continuous function Φ : Rk

→ R such that x → Φ(F1, . . . , Fk)(x)−Φ(F1, . . . , Fk)(xe) is a positive definite function
in xe.

Under the conditions of the above definition, the function x → Φ(F1, . . . , Fk)(x) − Φ(F1, . . . , Fk)(xe) is a Lyapunov
function at the equilibrium point xe. We have the obvious consequences.

Theorem 2.2. Let xe be an equilibrium point and {F1, . . . , Fk} be a set of conserved quantities for (2.1).

(i) If xe is stable with respect to the set {F1, . . . , Fk} then it is stable in the sense of Lyapunov.
(ii) Let q ∈ {1, . . . , k} be an integer number. If xe is stable with respect to {F1, . . . , Fq}, then it is stable with respect to

{F1, . . . , Fk}.

We have the following equivalent conditions for the stability of an equilibrium point with respect to a set of conserved
quantities.

Theorem 2.3. Let xe be an equilibrium point of (2.1) and {F1, . . . , Fk} a set of conserved quantities. The following statements are
equivalent:

(i) xe is stable with respect to the set of conserved quantities {F1, . . . , Fk};
(ii) x → ∥(F1, . . . , Fk)(x) − (F1, . . . , Fk)(xe)∥ is a positive definite function in xe;
(iii) the system F1(x) = F1(xe), . . . , Fk(x) = Fk(xe) has no root besides xe in some neighborhood of xe.

In 1958, Pozharitsky proved the equivalence between (i) and (ii); see [7,1] p. 130. Equivalence between (ii) and (iii)
appears in [1] p. 151. In the paper [10], Aeyels presented an interesting proof for the implication ‘‘(iii) ⇒ xe is Lyapunov
stable’’.

Theorem 2.3(iii) gives an algebraic method for establishing Lyapunov stability of an equilibrium point. Moreover, it also
shows that if the equilibrium point xe is not isolated in the set of solutions for the algebraic system of equations then it
is impossible to construct a Lyapunov function in xe using the set of conserved quantities {F1, . . . , Fk}. We will apply this
algebraic method to study the stability of uniform rotations for a torque-free gyrostat.

For the case of one conserved quantity, i.e. k = 1, we have the well known result.

Theorem 2.4. Let xe be an equilibrium point of (2.1) and F a conserved quantity. The following statements are equivalent:

(i) xe is stable with respect to the conserved quantity F ;
(ii) xe is a strict local extremum of F .
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3. The stability of the uniform rotations

For the problem of the torque-free gyrostat we find the set of uniform rotations and we study their stability with respect
to a conserved quantity. For the cases where the vector of the gyrostatic moment is situated along a principal axis of inertia
of the gyrostat, we study the stability of a uniform rotation with respect to the set formed by two conserved quantities.
Except for two singular cases, the Lyapunov stability problem for the torque-free gyrostat can be decided using the algebraic
methodwith two conserved quantities and the linearizationmethod. For the singular caseswe decide the Lyapunov stability
by studying the dynamics in an invariant set. The equation for rotation of a torque-free gyrostat is given by (see [8,11])

I ˙⃗ω = (Iω⃗ + µ⃗) × ω⃗, (3.1)

where ω⃗ is the angular velocity, and I is the inertia tensor and µ⃗ is the constant vector of the gyrostatic moment. We denote
by I1, I2 and I3 the principal moments of inertia and suppose that I1 > I2 > I3. If we use the angular momentum vector
M⃗ = Iω⃗, then the equation becomes

˙⃗M = (M⃗ + µ⃗) × I−1M⃗. (3.2)

For the above dynamics we have two conserved quantities F1 =
1
2 M⃗ · I−1M⃗, F2 =

1
2 (M⃗ + µ⃗) · (M⃗ + µ⃗). Next, we find the

set of the uniform rotations. In the paper [12] there was considered the differential equation ˙⃗N = N⃗ × I−1N⃗ + a⃗× N⃗, where
a⃗ ∈ R3. This equation is equivalent to the torque-free gyrostat equation (3.2) where a⃗ = −I−1µ⃗ and one makes the change
of variable M⃗ = N⃗ − µ⃗. According to [12] the equilibrium points of (3.2) are of the types:

M⃗1 = (−µ1, −µ2, −µ3); M⃗2 =


λI1

1 − λI1
µ1,

λI2
1 − λI2

µ2,
λI3

1 − λI3
µ3


, λ ∈ R \


1
I1

,
1
I2

,
1
I3


;

M⃗3 =


β,

I2
I1 − I2

µ2,
I3

I1 − I3
µ3


if µ1 = 0, β ∈ R; M⃗4 =


I1

I2 − I1
µ1, β,

I3
I2 − I3

µ3


if µ2 = 0, β ∈ R;

M⃗5 =


I1

I3 − I1
µ1,

I2
I3 − I2

µ2, β


if µ3 = 0, β ∈ R.

Analogous considerations are given in [11], pp. 78–80, for finding the uniform rotations of (3.1).
First we study the stability of a uniform rotation with respect to one conserved quantity.

Theorem 3.1. For the uniform rotations of a torque-free gyrostat we have:

(i) The unique uniform rotation which is stable with respect to F1 is (0, 0, 0). This uniform rotation is of type M⃗2 obtained for
λ = 0.

(ii) The unique uniform rotation which is stable with respect to F2 is M⃗1 = (−µ1, −µ2, −µ3).

Proof. The uniform rotation (0, 0, 0) is the unique strict local extremum of the conserved quantity F1. The uniform rotation
(−µ1, −µ2, −µ3) is the unique strict local extremum of the conserved quantity F2. Using Theorem 2.4 we obtain the
results. �

The uniform rotations found in the above theorem are the only uniform rotations for which Lyapunov stability can be
proved by using only one of the conserved quantities. For the rest of the uniform rotations it is necessary to consider both
conserved quantities. Next, we study the stability of the uniform rotations with respect to the set of conserved quantities
{F1, F2}. In what follows we restrict ourselves to the cases for which the vector of gyrostatic moment µ⃗ is situated along a
principal axis of inertia of the gyrostat.

3.1. The case µ2 = µ3 = 0

In this case we have the following kinds of uniform rotations:

M⃗1−2 = (q, 0, 0), q ∈ R; M⃗4 =


I1

I2 − I1
µ1, q, 0


, q ∈ R∗

; M⃗5 =


I1

I3 − I1
µ1, 0, q


, q ∈ R∗.

First, we study the solutions of the algebraic system F1(M⃗) = F1(M⃗e), F2(M⃗) = F2(M⃗e), where M⃗e is a uniform rotation.
The above system of algebraic equations has the form

M2
2

I2
+

M2
3

I3
=

M2
1e

I1
+

M2
2e

I2
+

M2
3e

I3
−

M2
1

I1
M2

2 + M2
3 = M2

1e + M2
2e + M2

3e − M2
1 − 2µ1M1

(3.3)
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where the unknowns areM1,M2 andM3. The system has at least the solution (M1e,M2e,M3e). We want to see whether this
solution is isolated in the set of all the solutions of the algebraic system. For our study it is preferable to change the variable
M1 with x = M1 − M1e. The algebraic system (3.3) becomes

M2
2

I2
+

M2
3

I3
=

M2
2e

I2
+

M2
3e

I3
−

x2 + 2xM1e

I1
M2

2 + M2
3 = M2

2e + M2
3e − (x2 + 2xM1e) − 2µ1(x + M1e)

(3.4)

with the unknowns x,M2 andM3. The system has at least the solution (0,M2e,M3e). The solution (M1e,M2e,M3e) of (3.3) is
isolated in the set of all the solutions of this system if and only if the solution (0,M2e,M3e) of (3.4) is isolated in the set of
corresponding solutions. If we use the unknownsM2

2 andM2
3 , then we have a linear system. Using Cramer’s rule we can find

the solutions of (3.4).

I. The uniform rotation of type M⃗1−2. The solutions of (3.4) verify
M2

2 = −
2xI2

I1(I2 − I3)


1
2
x(I1 − I3) + q(I1 − I3) + I1µ1


M2

3 =
2xI3

I1(I2 − I3)


1
2
x(I1 − I2) + q(I1 − I2) + I1µ1


.

(3.5)

I.1. If q = −
I1µ1
I1−I3

, then the system (3.5) becomes
M2

2 = −
x2I2(I1 − I3)
I1(I2 − I3)

M2
3 =

2xI3
I1(I2 − I3)


1
2
x(I1 − I2) +

I1(I2 − I3)
I1 − I3

µ1


.

(3.6)

By our hypotheses we have I1 > I2 > I3 and if (x,M2,M3) is a solution of (3.6), thenM2
2 ≤ 0. We deduce that (0, 0, 0) is the

unique solution of the above system and consequently, it is isolated in the set of all the solutions.

I.2. If q = −
I1µ1
I1−I2

, then the system (3.5) becomes
M2

2 = −
2xI2

I1(I2 − I3)


1
2
x(I1 − I3) +

I1(I2 − I3)
I1 − I2

µ1


M2

3 =
x2I3(I1 − I2)
I1(I2 − I3)

.

(3.7)

For |x| sufficiently small we have sgn

−

2xI2
I1(I2−I3)


1
2x(I1 − I3) +

I1(I2−I3)
I1−I2

µ1


= −sgn(x) · sgn(µ1). For every |x| sufficiently

small such that sgn(x) = −sgn(µ1), we obtain a solution of (3.7) and consequently, we have that (0, 0, 0) is not an isolated
solution in the set of all the solutions.
I.3. The case when q ≠ −

I1µ1
I1−I2

and q ≠ −
I1µ1
I1−I3

. For |x| sufficiently small the terms in the right hand side of the

system (3.5) have the properties sgn

−

2xI2
I1(I2−I3)

 1
2x(I1 − I3) + q(I1 − I3) + I1µ1


= −sgn(x) · sgn(q(I1 − I3) + I1µ1), and

sgn


2xI3
I1(I2−I3)

 1
2x(I1 − I2) + q(I1 − I2) + I1µ1


= sgn(x) · sgn(q(I1 − I2) + I1µ1). If sgn(q(I1 − I3) + I1µ1) · sgn(q(I1 −

I2) + I1µ1) > 0, then there exists r > 0 such that a solution of the form (x,M2,M3) which verifies x ≠ 0 has the
property |x| > r . In this case, the solution (0, 0, 0) of the system (3.5) is an isolated solution in the set of all the solutions.
If sgn(q(I1 − I3) + I1µ1) · sgn(q(I1 − I2) + I1µ1) < 0, then for every |x| sufficiently small we have that the solutions of the
system (3.5) are of the form (x,M2,M3). We obtain that the solution (0, 0, 0) of the system (3.5) is not isolated in the set of
all the solutions.
II. The uniform rotation of type M⃗4. In this case the system (3.4) is equivalent to the system

M2
2 = q2 −

I2(I1 − I3)
I1(I2 − I3)

x2 +
2I2µ1

I1 − I2
x

M2
3 =

x2I3(I1 − I2)
I1(I2 − I3)

.

(3.8)

As before, for every |x| sufficiently small we have a solution of the above system which is of the form (x,M2,M3) and
consequently, (0, q, 0) is not isolated in the set of all the solutions of (3.8).
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III. The uniform rotation of type M⃗5. The system (3.4) is equivalent to the following system:
M2

2 = −
x2I2(I1 − I3)
I1(I2 − I3)

M2
3 = q2 +

I3(I1 − I2)
I1(I2 − I3)

x2 +
2I3µ1

I1 − I3
x.

(3.9)

The solutions of the above system are (0, 0, q) and (0, 0, −q). The solution (0, 0, q) is isolated in the set of all the solutions
of (3.9).

Summarizing, we obtain the following result.

Theorem 3.2. For a vector of a gyrostatic moment along the first axis of inertia we have the results:

(i) A uniform rotation of type M⃗1−2 = (q, 0, 0) is stable with respect to the set of conserved quantities {F1, F2} if and only if
q ∈ (−∞, −

I1µ1
I1−I2

) ∪ [−
I1µ1
I1−I3

, ∞) and µ1 > 0 or q ∈ (−∞, −
I1µ1
I1−I3

] ∪ (−
I1µ1
I1−I2

, ∞) and µ1 < 0.

(ii) A uniform rotation of type M⃗4 = (
I1

I2−I1
µ1, q, 0) with q ≠ 0 is not stable with respect to the set of conserved quantities

{F1, F2}.
(iii) A uniform rotation of type M⃗5 = (

I1
I3−I1

µ1, 0, q) with q ≠ 0 is stable with respect to the set of conserved quantities {F1, F2}.

Weprove that the uniform rotationswhich are not stablewith respect to the set {F1, F2} are Lyapunov unstable. According
to the paper [12], for q ∈ (−

I1µ1
I1−I2

, −
I1µ1
I1−I3

) and µ1 > 0 or for q ∈ (−
I1µ1
I1−I3

, −
I1µ1
I1−I2

) and µ1 < 0, a uniform rotation of type

M⃗1−2 is spectrally unstable and consequently, it is unstable in the sense of Lyapunov. A uniform rotation of type M⃗4 is
spectrally unstable and also it is unstable in the sense of Lyapunov.

The Lyapunov stability or instability of M⃗e = (−
I1µ1
I1−I2

, 0, 0) cannot be decided on using the set of conserved quantities
{F1, F2} or using the linearizationmethod. This uniform rotation is spectrally stable and it is not stable with respect to the set
of conserved quantities {F1, F2}. The instability in the sense of Lyapunov of this uniform rotation will be proved by studying
the dynamics on the invariant set

M = {M⃗ | F1(M⃗) = F1(M⃗e), F2(M⃗) = F2(M⃗e)}.

Theorem 3.3. The uniform rotation (−
I1µ1
I1−I2

, 0, 0) is unstable in the sense of Lyapunov.

Proof. The projection of the equation (3.2) on the first axis using the variables x,M2 andM3 is

ẋ =


1
I3

−
1
I2


M2M3.

By using (3.7)we have ẋ2 = −
2x3(I1−I2)
I21 (I2−I3)2


1
2x(I1 − I3) +

I1(I2−I3)
I1−I2

µ1


. First we consider the caseµ1 > 0. Suppose thatwe have

x(0) > −
2I1(I2−I3)

(I1−I2)(I1−I3)
µ1 and M2(0)M3(0) < 0. Consequently, we obtain that ẋ(0) < 0. In this case there exists t∗ > 0 such

that x(t∗) = −
2I1(I2−I3)

(I1−I2)(I1−I3)
µ1 which implies that our uniform rotation is unstable. In the case µ1 < 0 we have analogous

considerations. �

For a vector of a gyrostatic moment along the first axis of inertia a uniform rotation is stable with respect to the set of
conserved quantities {F1, F2} if and only if it is stable in the sense of Lyapunov.

3.2. The case µ1 = µ3 = 0

We have the following kinds of uniform rotations:

M⃗1−2 = (0, q, 0), q ∈ R; M⃗3 =


q,

I2
I1 − I2

µ2, 0


, q ∈ R∗
; M⃗5 =


0,

I2
I3 − I2

µ2, q


, q ∈ R∗.

Using the method of the previous section and by analogous calculations we obtain the following result.

Theorem 3.4. For a vector of a gyrostatic moment along the second axis of inertia we have the results:

(i) A uniform rotation of type M⃗1−2 = (0, q, 0) is stable with respect to the set of conserved quantities {F1, F2} if and only if
q ∈ [−

I2µ2
I2−I3

,
I2µ2
I1−I2

] and µ2 > 0 or q ∈ [
I2µ2
I1−I2

, −
I2µ2
I2−I3

] and µ2 < 0.

(ii) A uniform rotation of type M⃗3 = (q, I2
I1−I2

µ2, 0) with q ≠ 0 is stable with respect to the set of conserved quantities {F1, F2}.

(iii) A uniform rotation of type M⃗5 = (0, I2
I3−I2

µ2, q) with q ≠ 0 is stable with respect to the set of conserved quantities {F1, F2}.
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According to the paper [12], for q ∈ R \ [−
I2µ2
I2−I3

,
I2µ2
I1−I2

] and µ2 > 0 or q ∈ R \ [
I2µ2
I1−I2

, −
I2µ2
I2−I3

] and µ2 < 0, a uniform

rotation of type M⃗1−2 = (0, q, 0) is spectrally unstable and also it is unstable in the sense of Lyapunov.
In this case the stability (in the sense of Lyapunov) can be decided on using the stability with respect to the set of

conserved quantities {F1, F2} and the linearization method. A uniform rotation is stable with respect to the set of conserved
quantities {F1, F2} if and only if it is stable in the sense of Lyapunov.

3.3. The case µ1 = µ2 = 0

We have the following kinds of uniform rotations:

M⃗1−2 = (0, 0, q), q ∈ R; M⃗3 =


q, 0,

I3
I1 − I3

µ3


, q ∈ R∗

; M⃗4 =


0, q,

I3
I2 − I3

µ3


, q ∈ R∗.

Theorem 3.5. For a vector of gyrostatic moment along the third axis of inertia we have the results:

(i) A uniform rotation of type M⃗1−2 = (0, 0, q) is stable with respect to the set of conserved quantities {F1, F2} if and only if
q ∈ (−∞,

I3µ3
I1−I3

] ∪ (
I3µ3
I2−I3

, ∞) and µ3 > 0 or q ∈ (−∞,
I3µ3
I2−I3

) ∪ [
I3µ3
I1−I3

, ∞) and µ3 < 0.

(ii) A uniform rotation of type M⃗3 = (q, 0, I3
I1−I3

µ3) with q ≠ 0 is stable with respect to the set of conserved quantities {F1, F2}.

(iii) A uniform rotation of type M⃗4 = (0, q, I3
I2−I3

µ3) with q ≠ 0 is not stable with respect to the set of conserved quantities
{F1, F2}.

According to the paper [12], for q ∈ (
I3µ3
I1−I3

,
I3µ3
I2−I3

) and µ3 > 0 or for q ∈ (
I3µ3
I2−I3

,
I3µ3
I1−I3

) and µ3 < 0, a uniform rotation of

type M⃗1−2 is spectrally unstable and consequently, it is unstable in the sense of Lyapunov. A uniform rotation of type M⃗4 is
spectrally unstable and also it is unstable in the sense of Lyapunov. The Lyapunov stability or instability of M⃗e = (0, 0, I3µ3

I2−I3
)

cannot be decided using the set of conserved quantities {F1, F2} or using the linearization method. This uniform rotation is
spectrally stable and it is not stable with respect to the set of conserved quantities {F1, F2}. The instability in the sense of
Lyapunov of this uniform rotation will be proved by studying the dynamics on the invariant set M. The proof is analogous
to the proof of the Theorem 3.3.

Theorem 3.6. The uniform rotation (0, 0, I3µ3
I2−I3

) is unstable in the sense of Lyapunov.

A uniform rotation is stable with respect to the set of conserved quantities {F1, F2} if and only if it is stable in the sense
of Lyapunov.
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