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We consider the valued field K := R((Γ )) of formal series (with
real coefficients and monomials in a totally ordered multiplica-
tive group Γ ). We investigate how to endow K with a loga-
rithm l, which satisfies some natural properties such as commuting
with infinite products of monomials. We studied derivations on K

(Kuhlmann and Matusinski, in press [KM10]). Here, we investigate
compatibility conditions between the logarithm and the deriva-
tion, i.e. when the logarithmic derivative is the derivative of the
logarithm. We analyze sufficient conditions on a given derivation
to construct a compatible logarithm via integration of logarithmic
derivatives. In Kuhlmann (2000) [Kuh00], the first author described
the exponential closure K

EL of (K, l). Here we show how to extend
such a log-compatible derivation on K to K

EL.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Consider the valued field K := R((Γ )) of generalized series, with real coefficients and monomials
in a totally ordered multiplicative group Γ . We undertook the investigation of these fields in a se-
ries of publications [KKS97,Kuh00,FKK10,KM10]. We endeavor to endow these formal algebraic objects
with the analogous of classical analytic structures, such as exponential and logarithmic maps, deriva-
tion, integration and difference operators. Hardy fields, extensively studied by M. Rosenlicht, are the
natural domain for asymptotic analysis. Our investigations thus lead us to analyze the relationship
between Hardy fields and generalized series fields. This paper is a further step in this direction. In
particular, we interpret here some key ideas of [Ros83] in the formal setting of generalized series.
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In [KKS97], we proved that if Γ �= 0, then K cannot be endowed with a logarithm (i.e. an isomor-
phism of ordered groups from its multiplicative group of positive elements onto its additive group).
We established however that K always admits a pre-logarithm, i.e. a non-surjective logarithm. In this
paper, we take a closer look at this aspect. We investigate how to endow K with a (non-surjective)
logarithm l, which moreover satisfies some natural properties such as commuting with infinite prod-
ucts of monomials.

In [KM10], we studied derivations on K and introduced in particular Hardy type derivations (that
is, derivations that behaves like derivations in a Hardy field). For the analysis of the derivations on K,
we worked with the chain of fundamental monomials (Φ,�) of Γ (see Section 2). We gave a neces-
sary and sufficient condition for a map d : Φ → K to extend naturally to such a derivation. Here, we
investigate compatibility conditions between the logarithm and the derivation, i.e. when the logarith-
mic derivative is the derivative of the logarithm.

In [Kuh00], the first author described the exponential closure K
EL of (K, l). Here we show how

to extend such a log-compatible derivation on K to K
EL. This exponential closure K

EL is an infinite
towering extension, starting with a pre-logarithmic series field, i.e. a generalized series field endowed
with a pre-logarithm (see Definition 2.7). Thus we begin in Section 3 by proving a criterion for a
derivation on a pre-logarithmic series field to be compatible (see Proposition 3.8). This result is ap-
plied in Section 4. There, the main Theorem 4.10 deals with a Hardy type series derivation d, and gives
sufficient conditions on d to define a d-compatible pre-logarithm. This pre-logarithm is constructed
by a process of “iterated asymptotic integration” of the logarithmic derivatives (Corollary 4.13). This
process is based on the computation of specific asymptotic integrals, which we do in Section 4.1. This
allows us to provide many examples in Section 5. In Section 6, given some pre-logarithmic series field
endowed with a Hardy type derivation, we show how to extend it to the corresponding exponential
closure. Note that this has been considered for fields of transseries in [Sch01, Chapter 4.1.4]. However,
our pre-logarithmic field (K, l) does not necessarily satisfy Axiom (T4) of [Sch01, Definition 2.2.1]. The
last Section 7 is devoted to the questions of asymptotic integration and integration on EL-series fields.

In forthcoming papers, we extend our investigations to study Hardy type derivations on the field
of Surreal Numbers [Con01], and investigate difference operators on generalized series fields.

2. Preliminaries

We summarize notation and terminology from [KM10]. Recall the following corollary to Ramsey’s
theorem [Ros82]:

Lemma 2.1. Let Γ be a totally ordered set. Every sequence (γn)n∈N ⊂ Γ has an infinite sub-sequence which is
either constant, or strictly increasing, or strictly decreasing.

2.1. Hahn groups

Definition 2.2. Let (Φ,�) be a totally ordered set, the set of fundamental monomials. Consider the
set H(Φ) of formal products γ of the form

γ =
∏

φ∈suppγ

φγφ

where γφ ∈ R, and support of γ , suppγ := {φ ∈ Φ | γφ �= 0}, is an anti-well-ordered subset of Φ . We
will refer to γφ as the exponent of φ. Multiplication of formal products is pointwise, and H(Φ) is an
abelian group with identity 1. We endow H(Φ) with the anti lexicographic ordering � which extends
� of Φ . Note that φ � 1 for all φ ∈ Φ . The totally ordered abelian group H(Φ) is the Hahn group
over Φ , which elements are called the (generalized) monomials. The set Φ is the rank. By Hahn’s
embedding theorem [Hah07], every ordered abelian group Γ with rank Φ can be seen as a subgroup
of H(Φ).

From now on, we fix a totally ordered set (Φ,�) and a subgroup Γ of H(Φ).
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Definition 2.3. The leading fundamental monomial of 1 �= γ ∈ Γ is LF(γ ) := max(suppγ ), and
LF(1) := 1. This map verifies the ultrametric triangular inequality:

∀α,β ∈ Γ, LF(αβ) � max
{

LF(α), LF(β)
}
.

The leading exponent of 1 �= γ ∈ Γ is the exponent of LF(γ ). We denote it by LE(γ ). For α ∈ Γ set
|α| := max{α,α−1}.

2.2. Generalized series fields

Below, we adopt our notation as in [KM10].

Definition 2.4. Throughout this paper, K = R((Γ )) will denote the generalized series field. As usual,
we write these series a = ∑

α∈Supp a aαα, and denote by 0 the series with empty support. Here
Supp a = {α ∈ Γ | aα �= 0} is anti-well-ordered in Γ .

For a ∈ K
∗ , its leading monomial is: LM(a) := max(Supp a) ∈ Γ . The map LM : K

∗ → Γ is the
canonical valuation on K. The leading coefficient of a is LC(a) := aLM(a) ∈ R. For nonzero a ∈ K, the
term LC(a) LM(a) is called the leading term of a, that we denote by LT(a). We extend the notions
of leading fundamental monomial and of leading exponent to K

∗ by setting LF(a) := LF(LM(a)),
respectively LE(a) := LE(LM(a)).

We extend the ordering � on Γ to a dominance relation on K by setting a � b ⇔ LM(a) � LM(b).
We write: a 
 b ⇔ LM(a) = LM(b), and: a ∼ b ⇔ LT(a) = LT(b). Let a � 1, b � 1 be two elements of K.
a and b are comparable if and only if LF(a) = LF(b). We also set |a| := |LM(a)|.

The anti lexicographic ordering on K is defined as follows: ∀a ∈ K, a � 0 ⇔ LC(a) � 0. We denote
as usual K

∗ := K \ {0}, and K>0 := {a ∈ K | a > 0}. Note that (K>0, ·) is an ordered abelian group.

Remark 2.5. The results in this paper hold for the generalized series field with coefficients in an
arbitrary ordered exponential field C [Kuh00] containing R (instead of R).

2.3. Pre-logarithmic sections

Definition 2.6. We denote by K
�1 := {a ∈ K | a � 1} the valuation ring of K. Similarly, we denote by

K
≺1 := {a ∈ K | a ≺ 1} the maximal ideal of K

�1. We have K
�1 = R ⊕ K

≺1. We denote by K
�1 :=

R((Γ �1)), the subring of purely infinite series.

We will use repeatedly the following direct sum, respectively direct product, decompositions of
the ordered abelian groups (K,+,�), respectively (K>0, ·,�) [Kuh00, Chapter 1]:

K = K
�1 ⊕ R ⊕ K

≺1,

K>0 = Γ.R>0.
(
1 + K

≺1)
Definition 2.7. Let K be a field of generalized series.

• The natural logarithm on 1-units is the following isomorphism of ordered groups [All62]:

l1 : 1 + K
≺1 → K

≺1

1 + ε �→
∑
n�1

(−1)n−1 εn

n
. (1)
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• A pre-logarithmic section l of K is an embedding of ordered groups

l : (Γ, ·,�) → (
K

�1,+,�
)
.

• The pre-logarithm on K induced by a pre-logarithmic section l is the embedding of ordered
groups defined by:

l : (K>0, ·,�) → (K,+,�)

a = aαα(1 + εa) �→ l(a) := log(aα) + l(α) + l1(1 + εa)

where log is the usual logarithm on positive real numbers and l1 the logarithm on 1-units. The
pair (K, l) is then called a pre-logarithmic series field.

In particular, we are interested in pre-logarithmic sections that verify the Growth Axiom Scheme:

Definition 2.8. Let (K, l) be a pre-logarithmic series field. We say that the Growth Axiom Scheme
holds if and only if we have:

(GA) ∀α ∈ Γ �1, l(α) ≺ α.

Axiom (GA) is satisfied by non-archimedean models of the theory Th(R,exp) of the ordered field
of real numbers with the exponential function (see [Kuh00, Chapter 3] for more details).

3. Pre-logarithms and derivations

3.1. Defining pre-logarithms on generalized series fields

We consider pre-logarithmic sections on a generalized series field K (see Definition 2.7), which
satisfy the following property:

Definition 3.1. A map l : Γ → K
�1 is a series morphism if it satisfies the following axiom:

(L) ∀α = ∏
φ∈suppα φαφ ∈ Γ , l(α) = ∑

φ∈suppα αφl(φ).

Note that a series morphism l is in particular a group homomorphism. Moreover, a series mor-
phism l is a pre-logarithmic section if and only if it is order preserving (i.e. for any α ≺ β in Γ , we
have l(α) < l(β)).

We are interested in the following setting: given a map lΦ : Φ → K
�1 \ {0}, we study necessary

and sufficient conditions so that lΦ extends to a series morphism lΓ : Γ → K
�1.

Recall the following definition from [KM10]:

Definition 3.2. Let I be an infinite index set and F = (ai)i∈I be a family of series in K. Then F is said
to be summable if the two following properties hold:

(SF1) Supp F := ⋃
i∈I Supp ai (the support of the family) is an anti-well-ordered subset of Γ .

(SF2) For any α ∈ Supp F , the set Sα := {i ∈ I | α ∈ Supp ai} ⊆ I is finite.

Write ai = ∑
α∈Γ ai,αα, and assume that F = (ai)i∈I is summable. Then

∑
i∈I

ai :=
∑

α∈Supp F

( ∑
i∈Sα

ai,α

)
α ∈ K

is a well-defined element of K that we call the sum of F .
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Definition 3.3. Let

lΦ : Φ → K
�1\{0}

φ �→ lΦ(φ)

be a map. We say that lΦ extends to a series morphism on Γ if the following property holds:

(SL) For any anti-well-ordered subset E ⊂ Φ , the family (lΦ(φ))φ∈E is summable.

Then the series morphism lΓ on Γ induced by lΦ is defined to be the map

lΓ : Γ → K
�1

obtained through the axiom (L) (which clearly makes sense by (SL)).

Note that, if the series morphism lΓ is a pre-logarithmic section, then it extends to a pre-
logarithm l on K>0 as in Definition 2.7. We are interested moreover in pre-logarithms which ver-
ify (GA) (see Definition 2.8).

In the next Proposition 3.4, we provide a necessary and sufficient condition on a map lΦ : Φ → K

so that the properties (SL) and (GA) hold. (In the sequel, we drop the subscripts Φ and Γ of lΦ and
lΓ to relax the notation.)

Proposition 3.4. A map l : Φ → K
�1 \ {0} extends to a series morphism on Γ if and only if the following

condition fails:

(HL1) there exist a strictly decreasing sequence (φn)n∈N ⊂ Φ and an increasing sequence (λ(n))n∈N ⊂ Γ such
that for any n, λ(n) ∈ Supp l(φn).

Moreover, such an extension l is a pre-logarithmic section if and only if we have:

(HL2) l is an embedding of ordered sets, i.e. for any φ ≺ ψ ∈ Φ , 0 < l(φ) < l(ψ).

Moreover, such a pre-logarithmic section l satisfies (GA) if and only if we have:

(HL3) for any φ ∈ Φ , LF(l(φ)) ≺ φ .

Proof. Note that (HL1) is the exact analogue of (H1) in [KM10], replacing φ′/φ by l(φ). The proof of
the first statement is the exact analogue of the proof of [KM10, Lemma 3.9], replacing φ′/φ by l(φ).

Let α = ∏
φ∈suppα φαφ ∈ Γ . Assume that α � 1, thus LE(α) > 0. By the first statement, l(α) =∑

φ∈suppα αφl(φ). Since by hypothesis l is order preserving on Φ , we have LC(l(α)) = LE(α) LC(φ0) > 0
where φ0 = LF(α), so l(α) > 0.

For (HL3), we consider some monomial α = ∏
φ∈suppα φαφ in Γ \ {1}. Then LM(l(α)) =

LM(
∑

φ∈suppα αφl(φ)) = LM(αφ0 l(φ0)) where φ0 = LF(α) and αφ0 > 0. So l(α) ≺ α for any α if and

only if, for any φ0 and αφ0 > 0, l(φ0) ≺ φ
αφ0
0 . This is equivalent to (HL3). �

Remark 3.5. As in [KM10, Corollaries 3.12 and 3.13], one can give analogous particular cases of (HL1).

3.2. Compatibility of pre-logarithms and derivations

We recall the following definition from [KM10]:
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Definition 3.6. A map d : K → K, a �→ a′ , verifying the following axioms is called a series derivation:

(D0) 1′ = 0;
(D1) Strong Leibniz rule: ∀α = ∏

φ∈suppα φαφ ∈ Γ , (α)′ = α
∑

φ∈suppα αφ
φ′
φ

;
(D2) Strong linearity: ∀a = ∑

α∈Supp a aαα ∈ K, a′ = ∑
α∈Supp a aαα′ .

Here we provide a criterion on the derivation to be compatible with the pre-logarithm:

Definition 3.7. Let (K, l) be a pre-logarithmic field endowed with a derivation d. Then d is log-
compatible if for all a ∈ K

>0, we have l(a)′ = a′
a . In this case, we shall say the pre-logarithm l is

compatible with the derivation d or that d and l are compatible.

In the case of a series morphism and a series derivation, it is sufficient to verify the compatibility
condition for the fundamental monomials:

Proposition 3.8. Let (K, l,d) be a generalized series field endowed with a series morphism l and a series
derivation d. Then d is log-compatible if and only if the following property holds:

(HL4) ∀φ ∈ Φ , l(φ)′ = φ′
φ

.

Proof. Let a = αaα(1 + εa) ∈ K>0 where α = ∏
φ∈suppα φαφ and aα ∈ R>0. Using (L), (D1), (D2), we

compute:

l(a)′ =
(

l(α) + log(aα) +
+∞∑
k=1

(−1)k−1εk
a

)′

=
∑

φ∈suppα

αφl(φ)′ + 0 +
( +∞∑

k=1

(−1)k−1εk−1
a

)
ε′

a.

On the other hand, we compute: a′ = (αaα(1 + εa))
′ = α′aα(1 + εa) + αaαε′

a. Therefore:

a′

a
= α′

α
+ ε′

a

1 + εa
.

Now, by (D1):

α′ = α
∑

φ∈suppα

αφ

φ′

φ
.

So:

a′

a
=

∑
φ∈suppα

αφ

φ′

φ
+ ε′

a

1 + εa
=

∑
φ∈suppα

αφ

φ′

φ
+

( +∞∑
k=1

(−1)k−1εk−1
a

)
ε′

a.

Consequently: l(a)′ = a′
a if and only if φ′

φ
= l(φ)′ for all φ ∈ suppα. �
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4. Pre-logarithms and integration for Hardy type derivations

We recall the following definition from [KM10]:

Definition 4.1. A derivation d on K is a Hardy type derivation if:

(HD1) the sub-field of constants of K is R;
(HD2) d verifies l’Hospital’s rule: ∀a,b ∈ K

∗ with a,b �
 1 we have a � b ⇔ a′ � b′;
(HD3) the logarithmic derivation is compatible with the dominance relation: ∀a,b ∈ K with |a| �

|b| � 1, we have a′
a � b′

b . Moreover, a′
a 
 b′

b if and only if a and b are comparable.

4.1. The monomial asymptotic integral

For the rest of this section, we assume that d is a Hardy type series derivation on K.

Notation 4.2. Set

∀φ ∈ Φ, θ(φ) := LM

(
φ′

φ

)
, Θ := {

θ(φ), φ ∈ Φ
}
, and θ̂ := g.l.b.�Θ

if it exists in Γ .
Adopting the notation of [Ros83], we write below: Ψ := {LM( a′

a ); a ∈ K
∗, a �
 1}.

We will make use of the following result [KM10, Theorem 4.3; Corollary 4.4]:
A series derivation on K is of Hardy type if and only if the following condition holds:

(H3′) ∀φ ≺ ψ ∈ Φ , θ(φ) ≺ θ(ψ) and LF( θ(φ)

θ(ψ) ) ≺ ψ .

Definition 4.3. We say that b ∈ K is an asymptotic integral of a ∈ K if b′ ∼ a, equivalently if b′ ∼ LT(a).
We say that b is an integral of a if b′ = a.

Theorem 4.4. A series a ∈ K
∗ has an asymptotic integral if and only if a �
 g.l.b.�Ψ .

This theorem is proved for Hardy fields in [Ros83, Proposition 2 and Theorem 1]. As noted
in [KM10], it suffices to observe that Rosenlicht’s proof only uses the properties of what we call a
Hardy type derivation in Definition 4.1. If d is moreover a series derivation, it suffices to consider
fundamental monomials as we establish below.

Proposition 4.5. Assume that d is a Hardy type series derivation on K. Let a ∈ K
∗ with a �
 1. Then

LT

(
a′

a

)
= LE(a) LT

(
LF(a)′

LF(a)

)
.

More precisely LM( a′
a ) = θ(LF(a)) and LC( a′

a ) = LE(a) LC(
LF(a)′
LF(a)

).

In particular, θ̂ = g.l.b.�Ψ .

Proof. Let 1 �
 a = aαα + · · · ∈ K
∗ with α = ∏

φ∈suppα φαφ . Set φ0 = LF(a) = LF(α) and αφ0 = LE(a) =
LE(α). We compute:

a′ = aαα′ + · · · = aαα

(
αφ0

φ′
0

φ
+ · · ·

)
+ · · · = (aααφ0)α

φ′
0

φ
+ · · · .
0 0



178 S. Kuhlmann, M. Matusinski / Journal of Algebra 345 (2011) 171–189
Therefore:

LT

(
a′

a

)
= LT(a′)

LT(a)
= (aααφ0)α LT(

φ′
0

φ0
)

aαα
= αφ0 LT

(
φ′

0

φ0

)
. �

[Ros83, Theorem 1] gives a parametrized family of asymptotic integrals of an (asymptotically inte-
grable) element a. For a Hardy type series derivations, we compute in Proposition 4.8 below a specific
asymptotic integral, which turns out to be a non-monic monomial (i.e. of the form rα with r ∈ R and
α ∈ Γ ), uniquely determined by a.

Notation 4.6. We call the asymptotic integral computed in Proposition 4.8 below the monomial
asymptotic integral of a, and denote it by a.i.(a).

Lemma 4.7. Let α ∈ Γ with α �= θ̂ . There exists a uniquely determined fundamental monomial ψα ∈ Φ which
satisfies LF( α

θ(ψα) ) = ψα .

Proof. First, suppose that α � θ̂ . Take a monomial β � 1 with α � β ′
β

. Set φ := LF(β), so β ′
β


 θ(φ)

by Proposition 4.5. Set β0 := min{β, α
θ(φ) } and φ0 := LF(β0). Since β � β0 � 1, we have φ � φ0, so

θ(φ) � θ(φ0) . We deduce that α � θ(φ0) and α
θ(φ0) � α

θ(φ) � β0 � 1. If we set φ1 := LF( α
θ(φ0) ), then

φ1 � φ0. We compute: LF( α
θ(φ1) ) = LF( α

θ(φ0) .
θ(φ0)

θ(φ1) ). By (H3′): LF( θ(φ0)

θ(φ1) ) ≺ φ1. We obtain: LF( α
θ(φ1) ) =

max{LF( α
θ(φ0) ); LF( θ(φ0)

θ(φ1) )} = φ1. Set ψα := φ1.

Now suppose that α ≺ θ̂ . Let α1 ∈ Γ be such that α ≺ α1 � θ̂ . Set φ0 := LF( α
α1

), then α
θ(φ0) =

α
α1

. α1
θ(φ0) � α

α1
≺ 1. Set φ1 := LF( α

θ(φ0) ). We deduce that φ1 � φ0, and compute LF( α
θ(φ1) ) = φ1 as above.

Set ψα := φ1. This concludes the proof of the existence of ψα .
Consider now a monomial α �
 θ̂ , and denote by ψ1 and ψ2 two fundamental monomials such

that LF( α
θ(ψi )

) = ψi for i = 1,2. Assume for instance that ψ1 ≺ ψ2. We would have LF( α
θ(ψ2) ) =

LF( α
θ(ψ1) .

θ(ψ1)

θ(ψ2) ) = ψ2. Since LF( α
θ(ψ1) ) = ψ1, we would have LF( θ(ψ1)

θ(ψ2) ) = ψ2, which contradicts (H3′). �
Proposition 4.8. Let a ∈ K

∗ with a �
 θ̂ , and set α := LM(a). Then:

a.i.(α) = α

LE( α
θ(ψα) ) LT(

ψ ′
α

ψα
)

and a.i.(a) = LC(a)a.i.(α).

Proof. Below, set m := a.i.(α) = α

LE( α

θ(ψα)
) LC(

ψ ′
α

ψα
)θ(ψα)

.

Since LF(m) = LF( α
θ(ψα) ) = ψα , using Proposition 4.5, we compute:

LT

(
m′

m

)
= LE(m) LT

(
ψ ′

α

ψα

)
.

Since LE(m) = LE( α
θ(ψα) ), we compute:

LT
(
m′) = m LE(m) LT

(
ψ ′

α

ψα

)
= α

LE( α
θ(ψα) ) LT(

ψ ′
α

ψα
)
. LE

(
α

θ(ψα)

)
LT

(
ψ ′

α

ψα

)
= α,

as desired.
Denote b := a.i.(a). We have: LT(b′) = LT(LC(a)m′) = LC(a) LT(m′) = LC(a)α = LT(a), as desired. �
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Notation 4.9. In the sequel, to simplify the notations, we will write ψ instead of ψα (of Lemma 4.7)
if the context is clear.

4.2. Constructing pre-logarithms as anti-derivatives

In the following theorem, we give a criterion for (K,d) to carry a pre-logarithm, compatible with
the derivation. Moreover, we will require this pre-logarithm to be induced by a pre-logarithmic sec-
tion which is a series morphism. The construction relies on the computation of the anti-derivatives
of φ′

φ
, φ ∈ Φ .

Theorem 4.10. Let d be a Hardy type series derivation on K. There exists a unique pre-logarithmic section l
on K which is a series morphism, for which the induced pre-logarithm is compatible with the derivation, if and
only if the following two conditions hold:

1. θ̂ /∈ ⋃
φ∈Φ Supp φ′

φ
;

2. ∀φ ∈ Φ , ∀τ (φ) ∈ Supp φ′
φ

, a.i.(τ (φ)) � 1.

Moreover, this pre-logarithm verifies (GA).

Proof. To define a pre-logarithm l on K>0, it suffices to define a pre-logarithmic section l on Γ . We
set l(1) := 0. By (D1), for any α = ∏

φ∈suppα φαφ ∈ Γ \{1}, we have α′
α = ∑

φ∈suppα αφ
φ′
φ

. Assume that

for any φ ∈ Φ , there exists l(φ) ∈ K
�1 such that (HL4) holds, i.e. l(φ)′ = φ′

φ
. (The proof of the existence

of such l(φ) ∈ K
�1 will be established below.) We apply Proposition 3.4 to extend l to a series mor-

phism on Γ . Suppose, as in (HL1), that there exist a strictly decreasing sequence (φn)n∈N ⊂ Φ and an
increasing sequence (λ(n))n∈N ⊂ Γ such that for any n, λ(n) ∈ Supp l(φn). By (HD2), τ (n) := LM((λ(n))′)
defines an increasing sequence in Γ such that for any n, τ (n) ∈ Supp φ′

n
φn

. This implies that [KM10,
(H1)] holds, contradicting the fact that d is a series derivation. Therefore, for any α ∈ Γ , we can
indeed define l(α) := ∑

φ∈suppα αφl(φ).
Note that by (HD2), (HL2) holds. Thus l would be the pre-logarithmic section induced by the

given l on Φ . Furthermore, this series morphism l is compatible with the derivation (Proposition 3.8).
It remains to prove the existence of such l(φ) ∈ K

�1. We adapt to our context [Kuh, Theorem 1],
with the “spherically complete” ultrametric space (K, u) where u(a,b) := LM(a − b), and the map
f := d.

Lemma 4.11. (See [Kuh, Theorem 1].) Let φ ∈ Φ . We suppose that for any a ∈ K with a′ �= φ′
φ

, there exists
b ∈ K such that:

(AT1) LM(b′ − φ′
φ

) � LM(a′ − φ′
φ

);

(AT2) ∀c ∈ K, if LM(a − c) � LM(a − b), then LM(a′ − c′) � LM(a′ − φ′
φ

).

Then there exists l(φ) ∈ K such that l(φ)′ = φ′
φ

.

Proof. Let a ∈ K. By (D1) and (D2), we can denote LT(a′ − φ′
φ

) = c0ατ (φ̃) for some c0 ∈ R, α ∈ Supp a ∪
{1}, φ̃ ∈ suppα ∪ {φ} and τ (φ̃) ∈ Supp φ̃′

φ̃
.

Claim 4.12. Provided Hypotheses 1 and 2 of Theorem 4.10, we consider α ∈ Γ , α �
 1. Then any monomial β =
ατ (φ̃) ∈ Supp(α′) (where φ̃ ∈ suppα and τ (φ̃) ∈ Supp φ̃′

φ̃
by (D1)) admits an asymptotic integral. Moreover,

ψβ = LF(α) and LE(β) = LE(α).
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Indeed, by Lemma 4.7 and Proposition 4.8, we show that LF( ατ (φ̃)

θ(ψ) ) = ψ . Set ψ := LF(α), therefore

ψ � φ̃. Denote by ψ̃ the unique fundamental monomial such that LF( τ (φ̃)

θ(ψ̃)
) = ψ̃ (which exists since

τ (φ̃) �
 θ̂ by Hypothesis 1). Since τ (φ̃)

θ(ψ̃)
� 1 by Hypothesis 2, we have ψ̃ ≺ φ̃. Consequently, ψ̃ ≺ ψ , so

LF( θ(ψ̃)

θ(ψ) ) ≺ ψ by (H3′). Then, using the ultrametric triangular inequality for LF, we compute:

LF

(
ατ (φ̃)

θ (ψ)

)
= LF

(
α

τ (φ̃)

θ (ψ̃)

θ (ψ̃)

θ (ψ)

)
= LF(α) = ψ and LE(β) = LE(α).

Consequently, c0ατ (φ̃) admits an asymptotic integral monomial. To conclude the proof of (AT1), it
suffices to set b := a − a.i.(c0ατ (φ̃)).

Concerning (AT2), we consider c ∈ K such that

LM(a − c) � LM(a − b) = LM
(
a.i.

(
c0ατ (φ̃)

)) = ατ (φ̃)

θ (ψ)
.

By (HD2), we have:

LM
(
a′ − c′) � LM

[(
ατ (φ̃)

θ (ψ)

)′]
= ατ (φ̃) = LM

(
a′ − φ′

φ

)
. �

Note that l(φ) is defined up to addition by a real constant. We choose the l(phi)’s so that this real
constant is zero, i.e. 1 /∈ Supp l(φ).

We prove now that l(φ) ∈ K
�1 for any φ ∈ Φ . Suppose not, and denote by λ(φ) the greatest mono-

mial in Supp l(φ) such that λ ≺ 1. Then, LM(λ′) = λθ(ψ) , where ψ = LF(λ). We consider two cases.
Either λθ(ψ) = τ ∈ Supp φ′

φ
, which is impossible since a.i.(τ ) � 1 by Hypothesis 2. Or λθ(ψ) = λ̃τ̃ for

some λ̃ � 1, φ̃ ∈ supp λ̃ and τ̃ ∈ Supp φ̃′
φ̃

, meaning that, up to multiplication by a real coefficient,

λ is the asymptotic integral monomial of λ̃τ̃ . But, computing a.i.(λ̃τ̃ ) as in the proof of (AT1) in the
preceding lemma, we obtain:

LM
[
a.i.(λ̃τ̃ )

] = λ̃τ (φ̃)

θ (ψ)

with ψ := LF(λ̃) = LF( λ̃τ (φ̃)

θ(ψ) ) and LE( λ̃τ (φ̃)

θ(ψ) ) = LE(λ̃) > 0. This means that a.i.(λ̃τ̃ ) � 1: contradiction.
To conclude the proof of the theorem, we show that the pre-logarithm is uniquely determined,

and that it verifies (GA). Indeed, let l1 and l2 be two pre-logarithms compatible with d, and a ∈ K>0.
So l1(a)′ = a′

a = l2(a)′ , which means that l1(a) = l2(a) + c for some c ∈ R. But if we take a = 1, then
l1 = l2 = log, so l1(1) = l2(1) = 0 which implies that c = 0.

Concerning (GA), since the derivation verifies l’Hospital’s rule (HD2), we observe that, for any φ,

the leading monomial of l(φ) is θ(φ)

θ(ψ) where ψ is the fundamental monomial such that LF( θ(φ)

θ(ψ) ) = ψ

(exists by Hypothesis 1). By Hypothesis 2, we have moreover that θ(φ)

θ(ψ) � 1, so φ � ψ . Thus, we obtain
LF(l(φ)) = ψ ≺ φ, as desired. �

In the next result and in its proof, we give a description of the l(φ)’s via a method that we may
call an iterated asymptotic integration.

Corollary 4.13. With the same hypothesis as in Theorem 4.10, for any φ ∈ Φ , if we denote l(φ) =∑
λ∈Supp l(φ) dλλ ∈ K

�1 , then for any λ ∈ Supp l(φ), there is n ∈ N such that:
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λ =
n∏

i=1

τ (φi)

θ (ψ)
and dλ =

∏n
i=1 cτ (φi )

(β0c0,ψ )n

where:

a) τ (φ1) = τ (φ) ∈ Supp φ′
φ

and ψ = ψτ(φ) (Lemma 4.7: i.e. ψ verifies LF( τ (φ)

θ(ψ) ) = ψ );

b) for any i = 2, . . . ,n, cτ (φi ) τ
(φi) is a monomial of

φ′
i

φi
for some φi � ψ with τ (φi) ≺ θ(ψ);

c) β0 = LE( τ (φ)

θ(ψ) ) > 0 and c0,ψ = LC(
ψ ′
ψ

);

d) for any k = 1, . . . ,n, LF(
∏k

i=1
τ (φi )

θ(ψ) ) = ψ and LE(
∏k

i=1
τ (φi )

θ(ψ) ) = β0 > 0.

Proof. Let φ ∈ Φ . We set the iterated asymptotic integration of φ′
φ

as being the fixed point of the
following map f (we prove below that such a fixed point is well defined, unique and equal to l(φ)).
Given a series l = ∑

λ∈S dλλ (which can be thought as an approximation of l(φ)), by (D1) and (D2) we
have:

[
l(φ) − l

]′ = φ′

φ
− l′ =

∑
λ∈Supp l(φ)\S

∑
φ̃∈supp λ

∑
τ (φ̃)∈Supp φ′/φ

(dλc̃φ̃ ).λτ (φ̃).

Since any of the terms (dλc̃φ̃ ).λτ (φ̃) admits an asymptotic integral monomial (Claim 4.12), we set:

A.I.
([

l(φ) − l
]′) :=

∑
λ∈Supp l(φ)\S

∑
φ̃∈supp λ

∑
τ (φ̃)∈Supp φ′/φ

a.i.
[
(dλc̃φ̃ ).λτ (φ̃)

]
and A.I.(0) := 0

and

f (l) := l + A.I.
([

l(φ) − l
]′)

.

Note that l(φ) is a fixed point for f . We adapt to our context [PCR93, Theorem 1] for the ultrametric
u(a,b) := LM(a − b), provided the fact that (K, u) is spherically complete:

Lemma 4.14. (See [PCR93, Theorem 1].) Since K is spherically complete, any contracting map f : K → K has
exactly one fixed point.

Our map f is contracting. Indeed, given l1, l2 ∈ K, l1 �= l2, we compute:

f (l1) − f (l2) = l1 − A.I.

(
φ′

φ
− l′1

)
− l2 + A.I.

(
φ′

φ
− l′2

)

= (l1 − l2) − A.I.
[
(l1 − l2)

′].
Therefore: u[ f (l1) − f (l2)] = LM[(l1 − l2) − A.I.[(l1 − l2)′]] < LM(l1 − l2) = u(l1, l2). Consequently, l(φ)

is the unique fixed point of f .
To obtain the desired properties for l(φ), we proceed by induction along the iterated asymptotic

integration. We begin with l = 0. Thus, we compute the asymptotic integral of any monomial cτ (φ)τ (φ)

of φ′
φ

. By Proposition 4.8 and Hypothesis 1, its asymptotic integral exists and is of the form:

dλλ := cτ (φ)

β0c0,ψ

τ (φ)

θ(ψ)

where ψ := ψτ(φ) , β0 := LE( α
(ψ) ) and c0,ψ := LC(

ψ ′
ψ

). Moreover, by Hypothesis 2, λ � 1 as desired.

θ
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We consider now f n(0) for some n ∈ N which we denote by the series l = ∑
dλλ, supposing that

properties a)–d) hold for it. Then any term in [l(φ) − l]′ is of the form

(dλc̃φ̃ ).λτ (φ̃) = (
∏n

i=1 cτ (φi ) )c̃φ̃

(β0c0,ψ )n

(
n∏

i=1

τ (φi)

θ (ψ)

)
τ (φ̃)

where φ̃ ∈ suppλ, so φ̃ � ψ , and c̃φ̃τ (φ̃) is a monomial of Supp φ̃′
φ̃

with τ (φ̃) ≺ θ(ψ) . By Proposition 4.8,

Claim 4.12 and the induction hypothesis, its asymptotic integral is:

dλ̃λ̃ := dλc̃φ̃

β0c0,ψ

λ

θ(ψ)
= (

∏n+1
i=1 cτ (φi ) )

(β0c0,ψ )n+1

n+1∏
i=1

τ (φi)

θ (ψ)

where φn+1 := φ̃, τ (φn+1) := τ (φ̃) and cτ (φn+1) := c̃φ̃ . Note that LF(dλ̃λ̃) = ψ and LF(dλ̃λ̃) = β0 > 0, which

implies that dλ̃λ̃ � 1 as desired. �
5. Pre-logarithms and derivations induced by decreasing automorphisms

5.1. Decreasing automorphisms and monomial series morphisms

Definition 5.1. Let (Φ,�) be a chain. A decreasing endomorphism σ of Φ is an order preserving
map σ : Φ → Φ , such that for all φ ∈ Φ , σ(φ) ≺ φ. If this map is surjective, we call it a decreasing
automorphism.

Remark 5.2. Note that, if Φ has a decreasing endomorphism, then it has necessarily no least element.
It would be interesting to characterize linear orderings which admit a decreasing endomorphism.

Definition 5.3. A pre-logarithm on K is monomial if its restriction to the fundamental monomials
has its image in the monomials:

l : Φ → R
∗.Γ.

In [KM10, Proposition 5.2], we study derivations on K that are also called monomial (i.e. such
that their restrictions to the fundamental monomials have their image in the monomials), and we
prove that:

Proposition 5.4. A monomial derivation d extends to a Hardy type series derivation on K if and only if the
condition (H3′) holds.

Here we prove that:

Proposition 5.5. Let d be a monomial Hardy type series derivation on K. Assume that the set Θ = {θ(φ),

φ ∈ Φ} has no least element. Then there exists a unique pre-logarithmic section l on K which is a series mor-
phism, for which the induced pre-logarithm is compatible with the derivation. Moreover, this pre-logarithm
verifies (GA).

Proof. We just need to check the hypotheses of Theorem 4.10. Indeed, for any φ, θ(φ) �= θ̂ , which
implies that assumption 1 of Theorem 4.10 holds. We compute now:
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a.i.
(
θ(φ)

) = θ(φ)

LE( θ(φ)

θ(ψ) ) LT(
ψ ′
ψ

)
= 1

LE( θ(φ)

θ(ψ) ) LC(θ(ψ))

θ(φ)

θ(ψ)

with LF( θ(φ)

θ(ψ) ) = ψ (as in Lemma 4.7 with α = θ(φ)). Since d is a Hardy type derivation, by (H3′) we

have: LF( θ(φ)

θ(ψ) ) ≺ max{φ,ψ} for any φ �= ψ . Consequently, φ = max{φ,ψ} � ψ , which implies also that

θ(φ) � θ(ψ) . Assumption 2 of Theorem 4.10 holds, as desired. �
Example 5.6. We define the basic pre-logarithmic section on K by:

l

( ∏
φ∈Φ

φγφ

)
=

∑
φ∈Φ

γφφ.

Here (SL) is readily verified. The basic pre-logarithmic section l does not satisfy (GA) (e.g. l(φ) = φ).
To remedy to this problem, we fix a decreasing endomorphism

σ : Φ → Φ.

We define the pre-logarithmic section lσ induced by σ as follows:

lσ

( ∏
φ∈Φ

φγφ

)
=

∑
φ∈Φ

γφσ (φ).

The induced pre-logarithm (given in Definition 2.7) is denoted by lσ . We leave it to the reader to
verify that lσ satisfies (GA) (see [Kuh00, Chapter 3] for more details).

As an elementary but important illustration, take the following chain of infinitely increasing real
germs at infinity (applying the usual comparison relations of germs):

Φ := {
expn(x); n ∈ Z

}
where expn denotes for positive n, the nth iteration of the real exponential function, for negative n,
the |n|’s iteration of the logarithmic function, and for n = 0 the identical map. The restriction of the
(germ of the) natural logarithmic function log to Φ is such an embedding σ . We leave it to the
reader to verify that its lifting as a pre-logarithm on K, extends the logarithmic function on the
rational functions field R(expn(x), n ∈ Z).

5.2. Defining a compatible monomial derivation from a series morphism

We study now the converse situation of Proposition 5.5. We consider the chain (Φ,�) endowed
with a decreasing automorphism σ , and the induced pre-logarithm lσ . We want to know when we
can define a log-compatible Hardy type series derivation on K, and describe it.

Definition 5.7. Given an ordered chain (Φ,�), an element φ ∈ Φ and a decreasing endomorphism
σ : Φ �→ Φ , we call:

• the Z-orbit of φ: O(φ) = {σ k(φ) | k ∈ Z};
• the convex orbit of φ: C(φ) = {ψ ∈ Φ | ∃k ∈ N, σ k(φ) � ψ � σ−k(φ)};
• For any α = ∏

φ∈suppα φαφ ∈ Γ , any ψ ∈ Φ and any binary relation R ∈ {≺,�,�,�}, we de-
note Sψ = {φ ∈ suppα | φRψ}, and define the corresponding truncation of α as TrRψ(α) :=∏

φ∈Sψ
φγφ .



184 S. Kuhlmann, M. Matusinski / Journal of Algebra 345 (2011) 171–189
Notation 5.8. Given a family F ⊂ Φ of representatives of the convex orbits of Φ , given φ ∈ F , we
denote S F ,φ := {ψ ∈ Φ | φ � ψ ≺ σ−1(φ)}, and SF := ⋃

φ∈F SF ,φ .

Proposition 5.9. Let σ be a decreasing automorphism on Φ , and lσ the induced pre-logarithm. There exists
a log-compatible monomial Hardy type series derivation on K if and only if there exists a map Φ → Γ , φ �→
θ(φ) , such that:

(M) for any φ ≺ ψ ∈ Φ , Tr�Cψ
( θ(ψ)

θ(φ) ) = Tr�Cψ
(
∏∞

j=1
σ j(ψ)

σ j(φ)
), with in particular, for any k ∈ N, θ(σ k(φ)) =

θ(φ)∏k
j=1 σ j(φ)

.

Moreover, given a family F of representatives of the various convex orbits of Φ , such a derivation d is unique
up to the definition of the corresponding map S F → R

∗ ·Γ , ψ �→ tψθ(ψ) (for arbitrary tψ ∈ R
∗). In particular,

when Φ admits only one convex orbit, say Cφ , then d is unique up to the definition of θ(φ) ∈ Γ , and tψ ∈ R
∗

for ψ ∈ Φ with φ � ψ ≺ σ−1(φ). More precisely, we have θ(ψ) = θ(φ)
∏∞

k=1
σ k(ψ)

σ k(φ)
.

Proof. By Proposition 5.4, the existence of a monomial Hardy type series derivation on K reduces
to the existence of a map d : Φ → R

∗Γ such that (H3′) holds. By Proposition 3.8, such a series
derivation is log-compatible if and only if (HL4) holds, which means, in the monomial case, that
for any φ ∈ Φ , (σ (φ))′ = φ′

φ
= tφ.θ(φ) . But, (σ (φ))′ = tσ(φ).θ

(σ (φ))σ (φ) by definition. Therefore, we

obtain tσ(φ).θ
(σ (φ)) = tφ. θ(φ)

σ (φ)
, and by induction, for any k ∈ N

∗ , tσ k(φ).θ
(σ k(φ)) = tφ. θ(φ)∏k

j=1 σ j(φ)
, and

tσ−k(φ).θ
(σ−k(φ)) = tφ.θ(φ)

∏k−1
j=0 σ− j(φ). Now, consider ψ ∈ Φ such that φ � ψ ≺ σ−1(φ), so σ k(φ) �

σ k(ψ) ≺ σ k−1(φ) for any k ∈ N. We deduce that θ(φ)∏k
j=1 σ j(φ)

� θ(ψ)∏k
j=1 σ j(ψ)

≺ θ(φ)∏k−1
j=1 σ j(φ)

, and equivalently

1 � θ(ψ)

θ(φ)

∏k
j=1

σ j(φ)

σ j(ψ)
≺ σ k(φ). By letting k tends to +∞, we deduce that 1 � θ(ψ)

θ(φ)

∏+∞
j=1

σ j(φ)

σ j(ψ)
≺ χ

for all χ ∈ Cφ . For ψ ∈ Φ such that σ−k(φ) � ψ ≺ σ−k−1(φ), we set ψ̃ := σ k(ψ). Then, θ(ψ)

θ(φ) =
θ(ψ)

θ(ψ̃)

θ(ψ̃)

θ(φ) = ∏k
j=1 σ j(ψ) θ(ψ̃)

θ(φ) . We are reduced to the preceding case. Finally, assume that Cφ ≺ Cψ ,

i.e. for any k, l ∈ N, σ−k(φ) ≺ σ l(ψ). By (H3′), we have LF( θ(σ l (ψ))

θ(φ) ) = LF( θ(ψ)

θ(φ)
∏l

j=1 σ j(ψ)
) ≺ σ l(ψ),

which implies that LF( θ(ψ)

θ(φ)
∏∞

j=1 σ j(ψ)
) ≺ Cψ . To conclude, it suffices to note that, in the present case,

Tr�Cψ
(
∏∞

j=1
σ j(ψ)

σ j(φ)
) = ∏∞

j=1 σ j(ψ).

Conversely, suppose now that there is a map Φ → Γ , φ �→ θ(φ) , such that condition (M) holds. We
set tφ := 1 for any φ ∈ Φ . It remains to verify that (H3′) and (HL4) hold for such a map d : Φ → Γ ,

φ �→ φ′ = θ(φ)φ. Condition (HL4) holds since, for any φ ∈ Φ , σ(φ)′ = θ(σ (φ))σ (φ) = θ(φ)

σ (φ)
σ (φ) = φ′

φ
. For

(H3′), we consider φ ≺ ψ ∈ Φ , and deduce from (M) that: LF( θ(ψ)

θ(φ) ) = σ(ψ) ≺ ψ , and LE( θ(ψ)

θ(φ) ) = 1 > 0.
Concerning the second part of the statement of the proposition, we observe from the preceding

proof that, whenever we fix φ′
φ

:= tφ.θ(φ) , this determines the values of ψ ′
ψ

for any ψ ∈ O(φ). Then
note that S F ,φ is a family of representatives of the Z-orbits included in C(φ). Therefore, (S F ,φ)φ∈F
is a partition of Φ , and S F is a family of representatives of the Z-orbits of Φ . �
5.3. Examples

1. Our purpose is to illustrate Proposition 5.9, in particular when the chain Φ = {φi | i ∈ Z} is iso-
morphic to Z. Let n ∈ N

∗ be given. We consider the corresponding automorphism σ of Φ defined by
φi �→ φi−n . For instance, we set θ(φ0) := 1. In order to build a log-compatible monomial Hardy type se-

ries derivation on K, we have to set θ(σ−k(φ0)) := θ(φkn) = ∏k−1
l=0 φln , and θ(σ k(φ0)) = θ(φ−kn) := 1∏k φ

,

l=1 −ln
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for any k ∈ N. Furthermore, for any j ∈ {1, . . . ,n − 1}, we have to set θ(φ j) := ∏+∞
l=1

φ j−ln
φ−ln

. Then,

for any k ∈ N, θ(σ−k(φ j)) = θ(φ j+kn) := ∏+∞
l=1

φ j−ln
φ−ln

∏k−1
l=0 φ j+ln =

∏+∞
l=−k+1 φ j−ln∏+∞

l=1 φ−ln
, and θ(σ k(φ j)) = θ(φ j−kn) :=∏+∞

l=k+1
φ j−ln
φ−ln

1∏k
l=1 φ−ln

=
∏+∞

l=k+1 φ j−ln∏+∞
l=1 φ−ln

.

As an illustration with germs of real functions at +∞, consider for any i ∈ Z, φ2i := log−i+1(x)
(with log0(x) := x), and φ2i+1 := log−i+1 ◦g(x), where g is an (ultimately positive and differentiable)
half compositional iterate of exp (i.e. g ◦ g(x) = exp(x): see [Bos86, Section 6]). The automorphism
of the chain Φ is the usual real logarithmic function. We have: σ(φi) = φi+2. By applying the

usual derivation with respect to x, for any k ∈ N
∗ , we compute:

φ′
2k

φ2k
= exp(x)exp2(x) · · ·expk−1(x) =∏k−1

l=0 φ2l , and
φ′

−2k
φ−2k

= 1
logk(x)··· log(x)x

= ∏k
l=1 φ−l . Concerning the fundamental monomial with odd

indexes, following Proposition 5.9, we have to set:
φ′

2k+1
φ2k+1

:=
∏+∞

l=−k+1 φ1−2l∏+∞
l=1 φ−2l

=
∏+∞

l=−k+1 logl+1 ◦g(x)∏+∞
l=1 logl+1 , and

φ′
−2k+1

φ−2k+1
:=

∏+∞
l=k+1 φ1−2l∏+∞

l=1 φ−2l
=

∏+∞
l=k+1 logl+1 ◦g(x)∏+∞

l=1 logl+1 . In particular, g′(x)
g(x) = φ′−1

φ−1
:=

∏+∞
l=2 φ1−2l∏+∞
l=1 φ−2l

= ∏+∞
l=1

logl+1 ◦g(x)
logl(x)

.

It would be interesting to investigate the possible analytic meaning of such a formal definition for
the derivative of g .

2. The purpose now is to provide a general example illustrating Proposition 5.9, with a uniform
definition for the θ(φ) ’s. Let (Φ,�) be a chain endowed with a decreasing automorphism σ : Φ → Φ .
Set θ(φ) := ∏+∞

k=1 σ k(φ) and tφ = 1 for any φ ∈ Φ . These monomials verify (M), since for any φ ≺
ψ ∈ Φ , we have θ(ψ)

θ(φ) = ∏+∞
k=1

σ k(ψ)

σ k(φ)
.

In the case of germs of real functions described at the end of Example 5.6 (Φ ≈ Z), the present one
can be seen as a limit case. Indeed, instead of differentiating with respect to the variable x, one may
differentiate with respect to φi , with i → −∞. This can be viewed as a differentiation with respect to
a variable ρ dominated by all the φ’s in Φ: ρ ≺ Φ . In other words, differentiation with respect to a
translogarithm (i.e. the compositional inverse of a transexponential: see [Bos86]).

6. Derivation on EL-series field

We consider K endowed with a pre-logarithm l. The exponential-logarithmic series (EL-series for
short) field (KEL, log) corresponding to the pre-logarithmic series field (K, l), is built as an infinite
towering extension of K, namely its exponential closure (see below, [Kuh00] and [KT] for details).
Given a log-compatible series derivation d on K, the purpose of this section is to show how to extend
d to a log-compatible series derivation (also denoted by d) on K

EL. If we assume moreover that d is
of Hardy type, then so will be its extension.

6.1. The exponential closure of a pre-logarithmic series field

Recall that the pre-logarithmic section l : Γ → K
�1 is an embedding of ordered groups. We denote

by Γ̂ = K
�1 \ l(Γ ) the set complement of l(Γ ) in K

�1, and by Γ̃ = eΓ̂ a multiplicative copy of it (the
choice of e as abstract variable will result obvious from the definition of the new pre-logarithm l�

below). We endow the later with an ordering �: ∀ea, eb ∈ Γ̃ , ea ≺ eb ⇔ a < b. Then we define a new
group Γ � = Γ ∪ Γ̃ with the following multiplicative rule: if α�,β� ∈ Γ � both belong to Γ , multiply
them there; similarly if they both belong to Γ̃ . If α� = α ∈ Γ and β� = ea ∈ Γ̃ (i.e. a ∈ Γ̂ ), then set
α�.β� := el(α)+a . Therefore Γ � is a group extension of Γ .

We extend also l to the following isomorphism:

l� : (Γ �, .
) → (

K
�1,+)

α� �→ l�
(
α�

)
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by defining l�|Γ := l, and for any α� = ea ∈ Γ̃ , l�(α�) := l�(ea) = a. Subsequently, we endow Γ � with

the ordering � defined as the transfer of the ordering � on K
�1. Hence it extends the ordering �

on Γ .
We set K

� := R((Γ �)), and the corresponding (K�)≺1, (K�)�1, (K�)�1 as before. Note that K
�1 ⊂

(K�)�1, so l� : Γ � → (K�)�1 is a pre-logarithmic section. We extend it to a pre-logarithm l� on K
� as

in Definition 2.7.
Repeating this process, we obtain inductively the nth extension of (K, l), denoted by (K�n, l�n),

n ∈ N. The corresponding EL-series field is defined as follows:

Definition 6.1. Set K
EL = ⋃

n∈N
K

�n and log = ⋃
n∈N

l�n . We call (KEL, log) the EL-series field over the
pre-logarithmic field (K, l).

Note that log : ((KEL)>0, ·) → (KEL,+) is then an order preserving isomorphism. We denote by exp =
log−1 its inverse map.

6.2. Extending derivations to the exponential closure

Consider a strongly linear (i.e. which verifies (D2)) and log-compatible derivation d on K. We show
how to extend d to the corresponding EL-series field K

EL. Note that this has been considered for fields
of transseries in [Sch01, Chapter 4.1.4]. However, our pre-logarithmic field (K, l) does not necessarily
satisfy Axiom (T4) of [Sch01, Definition 2.2.1].

Theorem 6.2. The strongly linear and log-compatible derivation d on K extends to a strongly linear and log-
compatible derivation on K

EL , and this extension is uniquely determined. Moreover, if d is of Hardy type, then
so is its extension to K

EL .

To prove the theorem, we proceed by induction along the towering extension process. Hence (K, l)
represents from now until the end of this section, for simplicity of the notations, (K�n, l�n) for some n ∈ N.
We suppose K endowed with a strongly linear and log-compatible derivation d, and require that its
extension to K

� (also denoted by d) is also strongly linear and log-compatible:

Lemma 6.3. For any a� = ∑
α�∈Supp a� aα�α� ∈ K

� , if we set

d
(
a�

) = (
a�

)′ =
∑

α�∈Supp a�

aα�α�
(
l�
(
α�

))′
,

then d is well defined. Moreover, d is the unique strongly linear and log-compatible derivation on K
� that

extends d.
Furthermore, if d is a Hardy type derivation on K, then so it is on K

� .

Proof. Consider a� = ∑
α�∈Supp a� a�

α�α
� ∈ K

� . For any α� ∈ Supp a� , we denote α� = α if α� ∈ Γ , and

α� = ea for some a ∈ Γ̂ if α� ∈ Γ̃ . Then, by definition, we have:

(
a�

)′ =
∑

α∈(Supp a�)∩Γ

a�
αα′ +

∑
ea∈(Supp a�)∩Γ̃

a�
ea a′ea.

If we denote a = ∑
α∈Supp a aαα ∈ K

�1, and a′ = ∑
β∈Supp a′ bββ ∈ K, then:

(
a�

)′ =
∑

α∈(Supp a�)∩Γ

a�
αα′ +

∑
ea∈(Supp a�)∩Γ̃

∑
β∈Supp a′

a�

ea bβea+l(β).
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First, we verify that (a�)′ is well defined. We set S := (Supp a�) ∩ Γ , and S̃ := (Supp a�) ∩ Γ̃ . Observe
that S and S̃ are anti-well-ordered subsets of Γ and Γ̃ respectively. Hence, if we set Ŝ := l�( S̃), then
Ŝ is anti-well-ordered in (K�1,�). The first sum is the derivative of

∑
α∈S a�

αα, which is an element
of K. By the induction hypothesis, it is well defined. For the second sum, we have to show that
the family (a′ea)a∈ Ŝ is summable (see Definition 3.2). As noted above, the elements of the support

of this family are of the form ea+l(β) , where a ∈ Ŝ and β ∈ Supp a′ . Hence, to proceed by contra-
diction, we suppose that there is an increasing sequence c0 � c1 � c2 � · · · of elements of K with
cn := an + l(β(n)), an ∈ Ŝ , β(n) ∈ Supp a′

n for any n. Consider the corresponding sequence (an)n∈N . Since
Ŝ is anti-well-ordered in K

�1, it cannot have an increasing subsequence. Moreover, if it had a station-
ary subsequence, we would have a corresponding increasing subsequence of l(β(n))’s. Since l is order
preserving, we would have an increasing subsequence of βn ’s, all of them belonging to the support
of a same a′

n0
, contradicting the induction hypothesis. Therefore, by Lemma 2.1, there is a strictly

decreasing subsequence ai0 > ai1 > ai2 > · · · . Since the corresponding sequence ci0 < ci1 < · · · is in-
creasing, we must have l(β(i0)) < l(β(i1)) < · · · , and equivalently β(i0) ≺ β(i1) ≺ · · · . Subsequently, we
observe that:

∀k < l ∈ N, 0 < aik − ail < l
(
β(il)

) − l
(
β(ik)

) = l

(
β(il)

β(ik)

)
(2)

with β(ik) ∈ Supp a′
ik

and β(il) ∈ Supp a′
il

. By the induction hypothesis, we denote β(in) = α(in)γ (in) ,

where α(in) ∈ Supp ain and γ (in) ∈ Supp (α(in))′
α(in) = Supp l(α(in))′ for any n ∈ N. We observe that α(in) ∈

Γ �1 since ain ∈ K
�1, and l( β(il )

β(ik) ) = l( α(il )

α(ik) ) + l( γ (il )

γ (ik) ) for any k, l. Consider the sequence (α(in))n∈N . If

it had a strictly decreasing subsequence, we could define the series ã = ∑
n∈N

α(in) . But the corre-
sponding increasing subsequence of (β(in))n∈N would be included in Supp ã′ , contradiction. Neither
can (α(in))n∈N have any stationary subsequence. Indeed, the corresponding increasing subsequence
of (β(in))n∈N would be included in Supp(α(in0 ))′ for a fixed n0. Hence, by Lemma 2.1, (α(in))n∈N has a
strictly increasing subsequence, say (α( jn))n∈N . Observe now that:

∀k < l ∈ N, 1 ≺ γ ( jk)

γ ( jl)
� α( jl)

α( jk)
. (3)

It implies that 0 < l( γ ( jk)

γ ( jl )
) � l( α( jl )

α( jk) ) < l(α( jl)) (since α( jk) ∈ Γ �1). But, since l verifies (GA), we also

have l(α( jl)) ≺ α( jl) . Therefore, l( α( jl )

α( jk) ) ≺ α( jl) , which implies that l( γ ( jk)

γ ( jl )
) ≺ α( jl) . We obtain that

l( β(il )

β(ik) ) ≺ α( jl) . But, we deduce from (2) that aik − ail ≺ α( jl) . It implies that the term with mono-

mial α( jl) in ail has been canceled by a term in aik . Therefore, α( jl) ∈ Supp aik , so β( jl) ∈ Supp a′
ik

. By

a straightforward induction, we obtain that the strictly increasing sequence (β( jn))n∈N is included in
Supp a′

i0
, contradiction. The extension of d to K

� is well defined.
The proofs that such an extension is a log-compatible derivation follow straightly from the defini-

tions and are left to the reader.
Moreover, we observe that the extension of d to K

� is uniquely determined by its definition, since
we suppose that it is strongly linear and log-compatible:

d
(
a�

) = (
a�

)′ =
∑

α�∈Supp a�

a�

α�α
�
(
l�
(
α�

))′
.

Suppose now additionally that d is a Hardy type derivation on K. To prove that d verifies l’Hospital’s
rule (HD2) on K

� , it suffices to prove it for its monomials. Hence, we consider α�,β� ∈ Γ �\{1} with
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α� ≺ β� . It means that l�(α�) < l�(β�) in K
�1, which is equivalent, by the induction hypothesis, to:

l�(α�)′ < l�(β�)′ . Therefore: (α�)′ = α�l�(α�)′ ≺ β�l�(β�)′ = (β�)′ .
To determine the subfield of constants of K

� , suppose now that there exists a�=∑
α�∈Supp a� a�

α�α
�∈

K
� \ R such that (a�)′ = 0. We denote as before:

(
a�

)′ =
∑

α�∈Supp a�

a�

α�α
�
(
l�
(
α�

))′

=
∑
α∈S

a�
αα′ +

∑
ea∈ S̃

a�

ea a′ea

=
∑
α∈S

a�
αα′ +

∑
a∈ Ŝ

∑
β∈Supp a′

a�

ea bβea+l(β),

where S := (Supp a�)∩Γ , S̃ := (Supp a�)∩ Γ̃ , and Ŝ := l�( S̃). Set α
�
0 := max(Supp a\{1}). There are two

possibilities. Either α
�
0 = α0 ∈ Γ . By the induction hypothesis, it implies that there is β0 ∈ Suppα′

0.
So the corresponding term in (a�)′ must have been canceled by the leading term of the second
sum. Or α

�
0 = ea0 for some a0 ∈ Γ̂ . Then there exist α̂0 := LM(a0) � 1 and β̂0 := LM(α̂′

0) �= 0 (by

the induction hypothesis). So ea0+l(β̂0) is the leading monomial of the second sum. The correspond-
ing term in (a�)′ must have been canceled by the leading term of the first sum, say β0. Therefore,

in the two cases, there must be an equality ea0+l(β̂0) = β0, which is equivalent to: ea0+l(β̂0)

β0
= 1. But

ea0+l(β̂0)

β0
= ea0+l(β̂0)−l(β0) . So we should have a0 + l(β̂0) − l(β0) = a0 + l( β̂0

β0
) = 0, which is absurd since

a0 ∈ Γ̂ = K
�1 \ l(Γ ).

It remains to prove (HD3) on K
� . We consider a�,b� ∈ K� with |a�| � |b�| � 1. Note that, by replac-

ing a� and b� by −a� , ± 1
a� , and −b� , ± 1

b� respectively, we still have |a�| � |b�| � 1, and the leading

monomials of (a�)′
a� and (b�)′

b� are preserved. So we can suppose without loss of generality that a� �
b� � 1. Consequently, l�(a�) > l�(b�) > 0 in K. This implies that (a�)′

a� = l�(a�)′ � l�(b�)′ = (b�)′
b� . More-

over, a� � b� � 1 if and only if l�(a�) � l�(b�) in K, which means that (a�)′
a� = l�(a�)′ � l�(b�)′ = (b�)′

b� .
This concludes the proof of Lemma 6.3, and so the one of Theorem 6.2. �

7. Asymptotic integration and integration on EL-series

Let (K, l,d) be a pre-logarithmic series field endowed with a strongly linear and log-compatible
Hardy type derivation d. Recall that θ̂ := g.l.b.�{θ(φ), φ ∈ Φ}, whenever it exists in Γ . In particular,

in the case where d is a series derivation, θ̂ = g.l.b.�{LM( a′
a ); a ∈ K

∗, a �
 1} (see Proposition 4.5).

Theorem 7.1. Let (KEL, log,d) be the induced differential EL-series field as in Theorem 6.2. A series a ∈ K
EL

admits an asymptotic integral if and only if a �
 θ̂ .

Proof. Recall that the induced derivation d on K
EL is itself strongly linear, log-compatible and of

Hardy type (Theorem 6.2). We proceed by induction along the towering extension construction of K
EL.

The initial step is given by Theorem 4.4. Consider (K, l,d) as in the statement of the theorem.

We want to show that its extension (K�, l�) verifies g.l.b.�{LM(
(a�)′

a� ); a� ∈ K
�\{0}, a� �
 1} = θ̂

(indeed, we will then obtain the desired result by applying Theorem 4.4 to K
� = R((Γ �))). Let

1 �
 a� ∈ K
�\{0}. We denote α� := LM(a�). By (HD2), LM(

(a�)′
a� ) = LM(

(α�)′
α� ). There are two possibilities.

Either α� = α ∈ Γ , which implies that LM(
(α�)′
α� ) � θ̂ . Or α� = ea ∈ Γ̃ for some a ∈ Γ̂ = K

�1\l(Γ ). We

denote α := LM(a). Then LM(
(α�)′

� ) = LM(a′) = LM(α′) = α LM(
(α)′
α ). Since LM(

(α)′
α ) � θ̂ , and α � 1,
α
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then LM(
(α�)′
α� ) � θ . Therefore, by induction we obtain that θ̂ = g.l.b.�{LM(

(â)′
â

); â ∈ K
�n\{0}, â �
 1}

for any n ∈ N, so θ̂ = g.l.b.�{LM(
(â)′

â
); â ∈ K

EL\{0}, â �
 1} as desired. �
Denote Γ EL := LM(KEL) = ⋃

n∈N
Γ �n .

Corollary 7.2. The EL-series field K
EL is closed under integration if and only if θ̂ /∈ Γ EL .

Proof. By [Kuh, Theorems 55 and 56], it suffices to prove that θ̂ /∈ Γ EL implies that any element
of K

EL has an asymptotic integral, which was proved in the preceding theorem. �
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